Change Cluster placement algorithm

Use physical placement from device DB
It should reduce runtime

Signed-off-by: Maciej Dudek <mdudek@antmicro.com>
This commit is contained in:
Maciej Dudek 2021-09-20 13:51:08 +02:00
parent 3cd459912a
commit 94acf7a797
3 changed files with 132 additions and 122 deletions

View File

@ -859,8 +859,6 @@ struct Arch : ArchAPI<ArchRanges>
} }
const TileStatus &tile_status = iter->second; const TileStatus &tile_status = iter->second;
CellInfo *cell = tile_status.boundcells[bel.index]; CellInfo *cell = tile_status.boundcells[bel.index];
auto &bel_data = bel_info(chip_info, bel);
auto &bel_data = bel_info(chip_info, bel); auto &bel_data = bel_info(chip_info, bel);
auto &site_status = get_site_status(tile_status, bel_data); auto &site_status = get_site_status(tile_status, bel_data);

View File

@ -276,26 +276,25 @@ bool Arch::normal_cluster_placement(
return true; return true;
} }
/*
static void handle_macro_expansion_node( static void handle_macro_expansion_node(
const Context *ctx, WireId wire, PipId pip, ClusterWireNode curr_node, const Context *ctx, WireId wire, PipId pip, ClusterWireNode curr_node,
std::vector<ClusterWireNode> &nodes_to_expand, BelPin root_pin, std::vector<ClusterWireNode> &nodes_to_expand, BelPin root_pin,
dict<std::pair<BelId, BelId>, dict<IdString, IdString>> &bels, dict<std::pair<BelId, BelId>, dict<IdString, pool<IdString>>> &bels,
ExpansionDirection direction, pool<WireId> &visited, CellInfo *cell) ExpansionDirection direction, pool<WireId> &visited, CellInfo *cell)
{ {
if (curr_node.state == IN_SINK_SITE || curr_node.state == ONLY_IN_SOURCE_SITE) { if (curr_node.state == IN_SINK_SITE || curr_node.state == ONLY_IN_SOURCE_SITE) {
for (BelPin bel_pin : ctx->getWireBelPins(wire)) { for (BelPin bel_pin : ctx->getWireBelPins(wire)) {
BelId bel = bel_pin.bel; BelId bel = bel_pin.bel;
log_info("\t\t\tconsidering:\n");
for (auto s : ctx->getBelName(bel)){
log_info("\t\t\t\t - %s\n", s.c_str(ctx));
}
log_info("\t\t\t\t pin: %s\n",bel_pin.pin.c_str(ctx));
if (bel == root_pin.bel) if (bel == root_pin.bel)
continue; continue;
auto const &bel_data = bel_info(ctx->chip_info, bel); auto const &bel_data = bel_info(ctx->chip_info, bel);
if (bels.count(std::pair<BelId, BelId>(root_pin.bel, bel))) if (bels.count(std::pair<BelId, BelId>(root_pin.bel, bel)) &&\
bels[std::pair<BelId, BelId>(root_pin.bel, bel)].count(root_pin.pin) &&\
bels[std::pair<BelId, BelId>(root_pin.bel, bel)][root_pin.pin].count(bel_pin.pin)){
continue; continue;
}
if (bel_data.category != BEL_CATEGORY_LOGIC){ if (bel_data.category != BEL_CATEGORY_LOGIC){
continue; continue;
@ -307,9 +306,8 @@ static void handle_macro_expansion_node(
if (!ctx->isValidBelForCellType(cell->type, bel)) if (!ctx->isValidBelForCellType(cell->type, bel))
continue; continue;
log_info("\t\t\tfound: %s\n", bel_pin.pin.c_str(ctx)); bels[std::pair<BelId, BelId>(root_pin.bel, bel_pin.bel)][root_pin.pin].\
bels[std::pair<BelId, BelId>(root_pin.bel, bel_pin.bel)].insert( insert(bel_pin.pin);
std::pair<IdString, IdString>(root_pin.pin, bel_pin.pin));
} }
} }
@ -320,15 +318,6 @@ static void handle_macro_expansion_node(
else else
next_wire = ctx->getPipDstWire(pip); next_wire = ctx->getPipDstWire(pip);
log_info("\t\t\tPIP:\n");
for (auto s : ctx->getPipName(pip)){
log_info("\t\t\t\t - %s\n", s.c_str(ctx));
}
log_info("\t\t\t next_wire:\n");
for (auto s : ctx->getWireName(next_wire)){
log_info("\t\t\t\t - %s\n", s.c_str(ctx));
}
if (next_wire == WireId() || visited.count(next_wire)) if (next_wire == WireId() || visited.count(next_wire))
return; return;
@ -376,10 +365,6 @@ static void handle_macro_expansion_node(
BelId bel; BelId bel;
bel.tile = pip.tile; bel.tile = pip.tile;
bel.index = pip_data.bel; bel.index = pip_data.bel;
log_info("Pip bel stat:\n");
for (auto s : ctx->getBelName(bel)){
log_info("\t - %s\n", s.c_str(ctx));
}
const auto &bel_data = bel_info(ctx->chip_info, bel); const auto &bel_data = bel_info(ctx->chip_info, bel);
if(bel_data.category == BEL_CATEGORY_LOGIC) if(bel_data.category == BEL_CATEGORY_LOGIC)
expand_node = false; expand_node = false;
@ -395,7 +380,7 @@ static void handle_macro_expansion_node(
static void static void
find_macro_cluster_bels(const Context *ctx, WireId wire, find_macro_cluster_bels(const Context *ctx, WireId wire,
dict<std::pair<BelId, BelId>, dict<IdString, IdString>> &possible_places, dict<std::pair<BelId, BelId>, dict<IdString, pool<IdString>>> &possible_places,
ExpansionDirection direction, BelPin root_pin, CellInfo *cell, bool out_of_site_expansion = false) ExpansionDirection direction, BelPin root_pin, CellInfo *cell, bool out_of_site_expansion = false)
{ {
std::vector<ClusterWireNode> nodes_to_expand; std::vector<ClusterWireNode> nodes_to_expand;
@ -419,11 +404,6 @@ static void
WireId wire = node_to_expand.wire; WireId wire = node_to_expand.wire;
nodes_to_expand.pop_back(); nodes_to_expand.pop_back();
visited.insert(wire); visited.insert(wire);
log_info("\t\t visited:\n");
for (auto s : ctx->getWireName(wire)){
log_info("\t\t\t - %s\n", s.c_str(ctx));
}
if (direction == CLUSTER_DOWNHILL_DIR) { if (direction == CLUSTER_DOWNHILL_DIR) {
for (PipId pip : ctx->getPipsDownhill(node_to_expand.wire)) { for (PipId pip : ctx->getPipsDownhill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip)) if (ctx->is_pip_synthetic(pip))
@ -465,98 +445,136 @@ static void
} }
return; return;
} }
*/
bool Arch::macro_cluster_placement( bool Arch::macro_cluster_placement(
const Context *ctx, const Cluster &packed_cluster, const ClusterPOD &cluster_data, const Context *ctx, const Cluster &packed_cluster, const ClusterPOD &cluster_data,
CellInfo *root_cell, BelId root_bel, std::vector<std::pair<CellInfo *, BelId>> &placement) const CellInfo *root_cell, BelId root_bel, std::vector<std::pair<CellInfo *, BelId>> &placement) const
{ {
// Check root_bel site_type
const auto &cluster = cluster_info(chip_info, packed_cluster.index);
bool found = false;
uint32_t idx = 0;
const auto &site_inst = ctx->get_site_inst(root_bel);
IdString site_type(site_inst.site_type);
if(ctx->debug)
log_info("%s\n", ctx->get_site_name(root_bel));
if (ctx->debug){
log_info("Root_bel site_type: %s\n", site_type.c_str(ctx));
log_info("Allowed site_types:\n");
}
for(const auto &site : cluster.physical_placements){
IdString name(site.site_type);
if(ctx->debug)
log_info("\t%s\n", name.c_str(ctx));
if (name == site_type){
found = true;
break;
}
idx++;
}
if (!found)
return false;
// Check if root_bel name
uint32_t placement_idx = 0;
found = false;
const auto &bel_data = bel_info(chip_info, root_bel); const auto &bel_data = bel_info(chip_info, root_bel);
IdString root_bel_name(bel_data.name);
if(ctx->debug){
log_info("Root_bel name: %s\n", root_bel_name.c_str(ctx));
log_info("Allowed root_bels:\n");
}
for(const auto &place : cluster.physical_placements[idx].places){
// root_bel has idx 0
IdString name(place.bels[0]);
if(ctx->debug)
log_info("\t%s\n",name.c_str(ctx));
log_info("Bel_name: %s type: %s\n", IdString(bel_data.name).c_str(ctx), IdString(bel_data.type).c_str(ctx)); if(name == root_bel_name){
log_info("Cell_name: %s type: %s\n", root_cell->name.c_str(ctx), root_cell->type.c_str(ctx)); found = true;
break;
}
placement_idx++;
}
if (!found)
return false;
// Build a cell to bell mapping required to find BELs connected to the cluster ports. // Check if all better placements are used
dict<IdString, std::vector<IdString>> cell_bel_pins; auto root_bel_full_name = ctx->getBelName(root_bel);
dict<IdString, IdString> bel_cell_pins; for(uint32_t i = 0; i < placement_idx; i++){
IdStringList cpy(root_bel_full_name.size());
int32_t mapping = bel_data.pin_map[get_cell_type_index(root_cell->type)]; for(uint32_t j = 0; j < root_bel_full_name.size(); j++)
NPNR_ASSERT(mapping >= 0); cpy.ids[j] = root_bel_full_name[j];
cpy.ids[1] = IdString(cluster.physical_placements[idx].places[i].bels[0]);
const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping]; BelId t = ctx->getBelByName(cpy);
for (const auto &pin_map : cell_pin_map.common_pins) { if(ctx->debug){
IdString cell_pin(pin_map.cell_pin); for (auto str : cpy)
IdString bel_pin(pin_map.bel_pin); log_info("%s\n", str.c_str(ctx));
log_info("%s %s\n", cell_pin.c_str(ctx), bel_pin.c_str(ctx)); }
if (ctx->getBoundBelCell(t) == nullptr)
cell_bel_pins[cell_pin].push_back(bel_pin); return false;
bel_cell_pins[bel_pin] = cell_pin;
} }
for (const auto &pair : bel_data.connected_pins){ // Check if bels are avaiable
IdString p1(pair.pin1), p2(pair.pin2); dict<uint32_t, BelId> idx_bel_map;
IdString i1(bel_cell_pins[p1]), i2(bel_cell_pins[p2]); uint32_t t_idx = 0;
log_info("%s %s\n", i1.c_str(ctx), i2.c_str(ctx)); for(const auto &bel : cluster.physical_placements[idx].places[placement_idx].bels){
if (root_cell->ports[i1].net != root_cell->ports[i2].net){ IdStringList cpy(root_bel_full_name.size());
log_info("%s != %s\n", root_cell->ports[i1].net->name.c_str(ctx), for(uint32_t j = 0; j < root_bel_full_name.size(); j++)
root_cell->ports[i2].net->name.c_str(ctx)); cpy.ids[j] = root_bel_full_name[j];
cpy.ids[1] = IdString(bel);
BelId t = ctx->getBelByName(cpy);
if(ctx->debug){
for (auto str : cpy)
log_info("%s\n", str.c_str(ctx));
}
if (ctx->getBoundBelCell(t) != nullptr &&
ctx->getBoundBelCell(t) != packed_cluster.cluster_nodes[t_idx]){
if(ctx->debug)
log_info("Failed\n");
return false; return false;
} }
idx_bel_map[t_idx] = t;
t_idx++;
} }
dict<uint32_t, pool<BelId>> idx_bel_map; /*
idx_bel_map[0].insert(root_bel); for(auto idx_bel : idx_bel_map){
std::queue<uint32_t> queue; const auto &bel_data = bel_info(chip_info, idx_bel.second);
queue.push(0); dict<IdString, pool<IdString>> cell_bel_pins;
dict<IdString, IdString> bel_cell_pins;
while (!queue.empty()){ CellInfo *cell = packed_cluster.cluster_nodes[idx_bel.first];
uint32_t idx = queue.front(); queue.pop();
std::vector<BelId> remove_bels;
dict<std::pair<BelId, BelId>, dict<IdString, IdString>> possible_places;
for (const auto &root_bel : idx_bel_map[idx]){
for (const auto &connection : cluster_data.connection_graph[idx].connections){
log_info("Target idx:%d\n", connection.target_idx);
CellInfo *cell_to_place = packed_cluster.cluster_nodes[connection.target_idx];
pool<IdString> needed_pins;
for (const auto &edge : connection.edges){
log_info("\t - %s %s\n", IdString(edge.cell_pin).c_str(ctx), IdString(edge.other_cell_pin).c_str(ctx));
for (auto &root_pin : cell_bel_pins.at(IdString(edge.cell_pin))) {
WireId bel_pin_wire = ctx->getBelPinWire(root_bel, root_pin);
BelPin root;
root.bel = root_bel;
root.pin = root_pin;
needed_pins.insert(root_pin);
for (auto s : ctx->getWireName(bel_pin_wire)){
log_info("\t\t - %s\n", s.c_str(ctx));
}
find_macro_cluster_bels(
ctx, bel_pin_wire, possible_places,
ExpansionDirection(edge.dir), root,
cell_to_place);
}
}
for (const auto &place : possible_places){ int32_t mapping = bel_data.pin_map[get_cell_type_index(cell->type)];
BelId check_bel = place.first.second; NPNR_ASSERT(mapping >= 0);
const auto &bel_data2 = bel_info(chip_info, check_bel);
bool failed = false; const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping];
for (const auto &pin : needed_pins){ for (const auto &pin_map : cell_pin_map.common_pins) {
log_info("Pin: %s\n", pin.c_str(ctx)); IdString cell_pin(pin_map.cell_pin);
if (!place.second.count(pin)){ IdString bel_pin(pin_map.bel_pin);
failed = true; cell_bel_pins[cell_pin].insert(bel_pin);
break; bel_cell_pins[bel_pin] = cell_pin;
} }
}
if (failed) for (const auto &pair : bel_data.connected_pins){
continue; IdString p1(pair.pin1), p2(pair.pin2);
log_info("Bel_name: %s type: %s\n", IdString(bel_data2.name).c_str(ctx), IdString i1(bel_cell_pins[p1]), i2(bel_cell_pins[p2]);
IdString(bel_data2.type).c_str(ctx)); if (root_cell->ports[i1].net != root_cell->ports[i2].net){
log_info("Cell_name: %s type: %s\n", cell_to_place->name.c_str(ctx), cell_to_place->type.c_str(ctx)); return false;
}
} }
} }
} }
*/
for(auto idx_bel : idx_bel_map){
placement.emplace_back(packed_cluster.cluster_nodes[idx_bel.first], idx_bel.second);
}
exit(0);
return true; return true;
} }
@ -575,7 +593,6 @@ bool Arch::getClusterPlacement(ClusterId cluster, BelId root_bel,
return normal_cluster_placement(ctx, packed_cluster, cluster_data, root_cell, return normal_cluster_placement(ctx, packed_cluster, cluster_data, root_cell,
root_bel, placement); root_bel, placement);
else{ else{
log_info("Macro cluster\n");
bool temp = macro_cluster_placement(ctx, packed_cluster, cluster_data, root_cell, bool temp = macro_cluster_placement(ctx, packed_cluster, cluster_data, root_cell,
root_bel, placement); root_bel, placement);
return temp; return temp;
@ -680,12 +697,8 @@ bool reduce(uint32_t x, uint32_t y, const ClusterPOD *cluster, dict<uint32_t, po
counter ++; counter ++;
} }
for (const auto &x_cell : domain[x]){ for (const auto &x_cell : domain[x]){
if (ctx->verbose)
log_info("Testing cell %s\n", x_cell->name.c_str(ctx));
bool found = false; bool found = false;
for (const auto &y_cell : domain[y]){ for (const auto &y_cell : domain[y]){
if (ctx->verbose)
log_info(" - Y candidate: %s\n", y_cell->name.c_str(ctx));
for (const auto edge : cluster->connection_graph[x].connections[counter].edges){ for (const auto edge : cluster->connection_graph[x].connections[counter].edges){
if (!x_cell->ports.count(IdString(edge.cell_pin)) || !y_cell->ports.count(IdString(edge.other_cell_pin))) if (!x_cell->ports.count(IdString(edge.cell_pin)) || !y_cell->ports.count(IdString(edge.other_cell_pin)))
break; break;
@ -701,7 +714,6 @@ bool reduce(uint32_t x, uint32_t y, const ClusterPOD *cluster, dict<uint32_t, po
found = true; found = true;
} }
if (found){ if (found){
log_info(" - Works for %s\n", y_cell->name.c_str(ctx));
break; break;
} }
} }
@ -725,8 +737,6 @@ void binary_constraint_check(const ClusterPOD *cluster,
workqueue.pop(); workqueue.pop();
uint32_t x,y; uint32_t x,y;
x = arc.first; y = arc.second; x = arc.first; y = arc.second;
if (ctx->verbose)
log_info("Checking pair %d:%d\n", x, y);
if (reduce(x, y, cluster, idx_to_cells, ctx)){ if (reduce(x, y, cluster, idx_to_cells, ctx)){
for (const auto &connection : cluster->connection_graph[arc.first].connections) for (const auto &connection : cluster->connection_graph[arc.first].connections)
if (connection.target_idx != y) if (connection.target_idx != y)
@ -1207,7 +1217,7 @@ void Arch::pack_cluster()
const auto &cluster = chip_info->clusters[i]; const auto &cluster = chip_info->clusters[i];
prepare_cluster(&cluster, i); prepare_cluster(&cluster, i);
} else if(!chip_info->clusters[i].out_of_site_clusters) { } else if(chip_info->clusters[i].physical_placements.size() > 0) {
const auto &cluster = chip_info->clusters[i]; const auto &cluster = chip_info->clusters[i];
if(ctx->verbose){ if(ctx->verbose){
log_info("%s\n", IdString(cluster.name).c_str(ctx));\ log_info("%s\n", IdString(cluster.name).c_str(ctx));\
@ -1216,16 +1226,9 @@ void Arch::pack_cluster()
prepare_macro_cluster(&cluster, i); prepare_macro_cluster(&cluster, i);
} }
else { else {
// No good way to handle out of site clusters, as fulfiling routing requirements // No physical placement definitions found for given macro.
// can be done by router. Right now cluster connection map creates connections from each // Use default place and route algorithm as routes connectiong
// cell to each cell, and in placement this is used as well. // cells will use global routing
// We could assume that in macros, where there are no root cells and
// we have multiple unconnected graphs, source cells must be in the same site.
// Why create a macro if these cells have nothing in common.
// For now python-fpga-interchange does not support this assumption
// and neither does placement code.
// Cluster preparing and packing works for both, but as we cannot place
// out of site clusters, we don't create them, letting generic P&R do it.
const auto &cluster = chip_info->clusters[i]; const auto &cluster = chip_info->clusters[i];
if(ctx->verbose) if(ctx->verbose)
log_info("Out of site cluster from macro: %s\n", IdString(cluster.name).c_str(ctx)); log_info("Out of site cluster from macro: %s\n", IdString(cluster.name).c_str(ctx));

View File

@ -451,6 +451,14 @@ NPNR_PACKED_STRUCT(struct ClusterConnectionGraphPOD{
RelSlice<ClusterUsedPortPOD> used_ports; RelSlice<ClusterUsedPortPOD> used_ports;
}); });
NPNR_PACKED_STRUCT(struct ClusterPhysicalPlacementEntryPOD{
RelSlice<uint32_t> bels;
});
NPNR_PACKED_STRUCT(struct ClusterPhysicalPlacementsPOD{
uint32_t site_type;
RelSlice<ClusterPhysicalPlacementEntryPOD> places;
});
NPNR_PACKED_STRUCT(struct ClusterPOD { NPNR_PACKED_STRUCT(struct ClusterPOD {
uint32_t name; uint32_t name;
@ -459,6 +467,7 @@ NPNR_PACKED_STRUCT(struct ClusterPOD {
RelSlice<ClusterCellPortPOD> cluster_cells_map; RelSlice<ClusterCellPortPOD> cluster_cells_map;
RelSlice<ClusterRequiredCellPOD> required_cells; RelSlice<ClusterRequiredCellPOD> required_cells;
RelSlice<ClusterConnectionGraphPOD> connection_graph; RelSlice<ClusterConnectionGraphPOD> connection_graph;
RelSlice<ClusterPhysicalPlacementsPOD> physical_placements;
uint32_t out_of_site_clusters; uint32_t out_of_site_clusters;
uint32_t disallow_other_cells; uint32_t disallow_other_cells;
uint32_t from_macro; uint32_t from_macro;