gowin: add global VCC and VSS networks

- VSS and VCC sources in each cell are used;
- constant LUT inputs are disabled;
- putting the class declaration into a header file.

Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
This commit is contained in:
YRabbit 2023-06-30 17:18:14 +10:00 committed by myrtle
parent fb5f764b85
commit ae89430075
4 changed files with 311 additions and 146 deletions

View File

@ -1045,9 +1045,6 @@ X(DECAL_IOBS_INACTIVE)
X(DECAL_IOBS_ACTIVE) X(DECAL_IOBS_ACTIVE)
X(DECAL_ALU_ACTIVE) X(DECAL_ALU_ACTIVE)
X(SINGLE_INPUT_MUX) X(SINGLE_INPUT_MUX)
X(cst) X(cst)
X(none) X(none)
@ -1057,3 +1054,7 @@ X(placer)
X(route) X(route)
X(router) X(router)
// misc
X(GOWIN_GND)
X(GOWIN_VCC)

View File

@ -3,142 +3,200 @@
#include "nextpnr.h" #include "nextpnr.h"
#include "util.h" #include "util.h"
#include "himbaechel_helpers.h" #include "gowin.h"
#define GEN_INIT_CONSTIDS
#define HIMBAECHEL_CONSTIDS "uarch/gowin/constids.inc"
#include "himbaechel_constids.h"
NEXTPNR_NAMESPACE_BEGIN NEXTPNR_NAMESPACE_BEGIN
namespace { void GowinImpl::init(Context *ctx) {
struct GowinImpl : HimbaechelAPI h.init(ctx);
{ HimbaechelAPI::init(ctx);
// These fields go in the header of the output JSON file and can help
// gowin_pack support different architectures
ctx->settings[ctx->id("packer.arch")] = std::string("himbaechel/gowin");
// XXX it would be nice to write chip/base name in the header as well,
// but maybe that will come up when there is clarity with
// Arch::archArgsToId
}
~GowinImpl(){}; void GowinImpl::prePlace() {
void init_constids(Arch *arch) override { init_uarch_constids(arch); } ctx->cells.at(ctx->id("leds_OBUF_O"))->setAttr(ctx->id("BEL"), std::string("X0Y14/IOBA"));
void init(Context *ctx) override ctx->cells.at(ctx->id("leds_OBUF_O_1"))->setAttr(ctx->id("BEL"), std::string("X0Y15/IOBB"));
{ ctx->cells.at(ctx->id("leds_OBUF_O_2"))->setAttr(ctx->id("BEL"), std::string("X0Y20/IOBB"));
h.init(ctx); ctx->cells.at(ctx->id("leds_OBUF_O_3"))->setAttr(ctx->id("BEL"), std::string("X0Y21/IOBB"));
HimbaechelAPI::init(ctx); ctx->cells.at(ctx->id("leds_OBUF_O_4"))->setAttr(ctx->id("BEL"), std::string("X0Y24/IOBB"));
} ctx->cells.at(ctx->id("leds_OBUF_O_5"))->setAttr(ctx->id("BEL"), std::string("X0Y25/IOBB"));
ctx->cells.at(ctx->id("rst_IBUF_I"))->setAttr(ctx->id("BEL"), std::string("X0Y4/IOBA"));
assign_cell_info();
}
void prePlace() override { void GowinImpl::pack() {
ctx->cells.at(ctx->id("leds_OBUF_O"))->setAttr(ctx->id("BEL"), std::string("X46Y14/IOBA")); // Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis
ctx->cells.at(ctx->id("leds_OBUF_O_1"))->setAttr(ctx->id("BEL"), std::string("X0Y15/IOBB")); const pool<CellTypePort> top_ports{
ctx->cells.at(ctx->id("leds_OBUF_O_2"))->setAttr(ctx->id("BEL"), std::string("X0Y20/IOBB")); CellTypePort(id_IBUF, id_I),
ctx->cells.at(ctx->id("leds_OBUF_O_3"))->setAttr(ctx->id("BEL"), std::string("X0Y21/IOBB")); CellTypePort(id_OBUF, id_O),
ctx->cells.at(ctx->id("leds_OBUF_O_4"))->setAttr(ctx->id("BEL"), std::string("X0Y24/IOBB")); };
ctx->cells.at(ctx->id("leds_OBUF_O_5"))->setAttr(ctx->id("BEL"), std::string("X0Y25/IOBB")); h.remove_nextpnr_iobs(top_ports);
ctx->cells.at(ctx->id("rst_IBUF_I"))->setAttr(ctx->id("BEL"), std::string("X0Y4/IOBA")); // Replace constants with LUTs
assign_cell_info(); const dict<IdString, Property> vcc_params;
const dict<IdString, Property> gnd_params;
h.replace_constants(CellTypePort(id_GOWIN_VCC, id_V), CellTypePort(id_GOWIN_GND, id_G), vcc_params, gnd_params);
// disconnect the constant LUT inputs
mod_lut_inputs();
// Constrain directly connected LUTs and FFs together to use dedicated resources
int lutffs = h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT3, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT2, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT1, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT3, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT2, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT1, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
bool GowinImpl::isBelLocationValid(BelId bel, bool explain_invalid) const {
Loc l = ctx->getBelLocation(bel);
if (ctx->getBelType(bel).in(id_LUT4, id_DFF)) {
return slice_valid(l.x, l.y, l.z / 2);
} else {
return true;
} }
}
void pack() override // Bel bucket functions
{ IdString GowinImpl::getBelBucketForCellType(IdString cell_type) const {
// Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis if (cell_type.in(id_IBUF, id_OBUF)) {
const pool<CellTypePort> top_ports{ return id_IOB;
CellTypePort(id_IBUF, id_I), }
CellTypePort(id_OBUF, id_O), if (cell_type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4)) {
}; return id_LUT4;
h.remove_nextpnr_iobs(top_ports); }
// Replace constants with LUTs if (cell_type == id_GOWIN_GND) {
const dict<IdString, Property> vcc_params = {{id_INIT, Property(0xFFFF, 16)}}; return id_GND;
const dict<IdString, Property> gnd_params = {{id_INIT, Property(0x0000, 16)}}; }
h.replace_constants(CellTypePort(id_LUT4, id_F), CellTypePort(id_LUT4, id_F), vcc_params, gnd_params); if (cell_type == id_GOWIN_VCC) {
// Constrain directly connected LUTs and FFs together to use dedicated resources return id_VCC;
int lutffs = h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1); }
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT3, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1); return cell_type;
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT2, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1); }
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT1, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT3, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT2, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
lutffs += h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT1, id_F}}, pool<CellTypePort>{{id_DFFR, id_D}}, 1);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
bool isBelLocationValid(BelId bel, bool explain_invalid) const override bool GowinImpl::isValidBelForCellType(IdString cell_type, BelId bel) const {
{ IdString bel_type = ctx->getBelType(bel);
Loc l = ctx->getBelLocation(bel); if (bel_type == id_IOB) {
if (ctx->getBelType(bel).in(id_LUT4, id_DFF)) { return cell_type.in(id_IBUF, id_OBUF);
return slice_valid(l.x, l.y, l.z / 2); }
} else { if (bel_type == id_LUT4) {
return true; return cell_type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4);
} }
} if (bel_type == id_DFF) {
return cell_type.in(id_DFF, id_DFFR);
}
if (bel_type == id_GND) {
return cell_type == id_GOWIN_GND;
}
if (bel_type == id_VCC) {
return cell_type == id_GOWIN_VCC;
}
return (bel_type == cell_type);
}
// Bel bucket functions void GowinImpl::assign_cell_info() {
IdString getBelBucketForCellType(IdString cell_type) const override fast_cell_info.resize(ctx->cells.size());
{ for (auto &cell : ctx->cells) {
if (cell_type.in(id_IBUF, id_OBUF)) { CellInfo *ci = cell.second.get();
return id_IOB; auto &fc = fast_cell_info.at(ci->flat_index);
if (ci->type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4)) {
fc.lut_f = ci->getPort(id_F);
} else if (ci->type.in(id_DFF, id_DFFR)) {
fc.ff_d = ci->getPort(id_D);
} }
if (cell_type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4)) { }
return id_LUT4; }
}
return cell_type;
}
bool isValidBelForCellType(IdString cell_type, BelId bel) const override bool GowinImpl::slice_valid(int x, int y, int z) const {
{ const CellInfo *lut = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2)));
IdString bel_type = ctx->getBelType(bel); const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2 + 1)));
if (bel_type == id_IOB) { if (!lut || !ff)
return cell_type.in(id_IBUF, id_OBUF); return true; // always valid if only LUT or FF used
} const auto &lut_data = fast_cell_info.at(lut->flat_index);
if (bel_type == id_LUT4) { const auto &ff_data = fast_cell_info.at(ff->flat_index);
return cell_type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4); if (ff_data.ff_d == lut_data.lut_f)
} return true;
if (bel_type == id_DFF) { return false;
return cell_type.in(id_DFF, id_DFFR); }
}
return (bel_type == cell_type);
}
private: // modify LUTs with constant inputs
HimbaechelHelpers h; void GowinImpl::mod_lut_inputs(void) {
for (IdString netname : {ctx->id("$PACKER_GND"), ctx->id("$PACKER_VCC")}) {
auto net = ctx->nets.find(netname);
if (net == ctx->nets.end()) {
continue;
}
NetInfo *constnet = net->second.get();
for (auto user : constnet->users) {
CellInfo *uc = user.cell;
if (ctx->verbose)
log_info("%s user %s\n", ctx->nameOf(constnet), ctx->nameOf(uc));
// Validity checking if (is_lut(ctx, uc) && (user.port.str(ctx).at(0) == 'I')) {
struct GowinCellInfo auto it_param = uc->params.find(id_INIT);
{ if (it_param == uc->params.end())
const NetInfo *lut_f = nullptr, *ff_d = nullptr; log_error("No initialization for lut found.\n");
};
std::vector<GowinCellInfo> fast_cell_info; int64_t uc_init = it_param->second.intval;
void assign_cell_info() int64_t mask = 0;
{ uint8_t amt = 0;
fast_cell_info.resize(ctx->cells.size());
for (auto &cell : ctx->cells) { if (user.port == id_I0) {
CellInfo *ci = cell.second.get(); mask = 0x5555;
auto &fc = fast_cell_info.at(ci->flat_index); amt = 1;
if (ci->type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4)) { } else if (user.port == id_I1) {
fc.lut_f = ci->getPort(id_F); mask = 0x3333;
} else if (ci->type.in(id_DFF, id_DFFR)) { amt = 2;
fc.ff_d = ci->getPort(id_D); } else if (user.port == id_I2) {
} mask = 0x0F0F;
} amt = 4;
} } else if (user.port == id_I3) {
bool slice_valid(int x, int y, int z) const mask = 0x00FF;
{ amt = 8;
const CellInfo *lut = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2))); } else {
const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2 + 1))); log_error("Port number invalid.\n");
if (!lut || !ff) }
return true; // always valid if only LUT or FF used
const auto &lut_data = fast_cell_info.at(lut->flat_index); if ((constnet->name == ctx->id("$PACKER_GND"))) {
const auto &ff_data = fast_cell_info.at(ff->flat_index); uc_init = (uc_init & mask) | ((uc_init & mask) << amt);
if (ff_data.ff_d == lut_data.lut_f) } else {
return true; uc_init = (uc_init & (mask << amt)) | ((uc_init & (mask << amt)) >> amt);
return false; }
}
}; size_t uc_init_len = it_param->second.to_string().length();
uc_init &= (1LL << uc_init_len) - 1;
if (ctx->verbose)
log_info("%s lut config modified from 0x%lX to 0x%lX\n", ctx->nameOf(uc), it_param->second.intval,
uc_init);
it_param->second = Property(uc_init, uc_init_len);
uc->disconnectPort(user.port);
}
}
}
}
// Return true if a cell is a LUT
bool GowinImpl::is_lut(const BaseCtx *ctx, const CellInfo *cell) const {
switch (cell->type.index) {
case ID_LUT1:
case ID_LUT2:
case ID_LUT3:
case ID_LUT4:
return true;
default:
return false;
}
}
struct GowinArch : HimbaechelArch
{
GowinArch() : HimbaechelArch("gowin"){};
std::unique_ptr<HimbaechelAPI> create(const dict<std::string, std::string> &args)
{
return std::make_unique<GowinImpl>();
}
} exampleArch;
} // namespace
NEXTPNR_NAMESPACE_END NEXTPNR_NAMESPACE_END

View File

@ -0,0 +1,63 @@
#ifndef GOWIN_H
#define GOWIN_H
#include "himbaechel_api.h"
#include "himbaechel_helpers.h"
#include "nextpnr.h"
#define GEN_INIT_CONSTIDS
#define HIMBAECHEL_CONSTIDS "uarch/gowin/constids.inc"
#include "himbaechel_constids.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct GowinImpl : HimbaechelAPI
{
~GowinImpl(){};
void init_constids(Arch *arch) override { init_uarch_constids(arch); }
void init(Context *ctx) override;
void prePlace() override;
void pack() override;
bool isBelLocationValid(BelId bel, bool explain_invalid) const override;
// Bel bucket functions
IdString getBelBucketForCellType(IdString cell_type) const override;
bool isValidBelForCellType(IdString cell_type, BelId bel) const override;
private:
HimbaechelHelpers h;
// Validity checking
struct GowinCellInfo
{
const NetInfo *lut_f = nullptr, *ff_d = nullptr;
};
std::vector<GowinCellInfo> fast_cell_info;
void assign_cell_info();
bool slice_valid(int x, int y, int z) const;
// modify LUTs with constant inputs
void mod_lut_inputs(void);
// Return true if a cell is a LUT
bool is_lut(const BaseCtx *ctx, const CellInfo *cell) const;
};
struct GowinArch : HimbaechelArch
{
GowinArch() : HimbaechelArch("gowin"){};
std::unique_ptr<HimbaechelAPI> create(const dict<std::string, std::string> &args)
{
return std::make_unique<GowinImpl>();
}
} exampleArch;
} // namespace
NEXTPNR_NAMESPACE_END
#endif

View File

@ -11,7 +11,13 @@ sys.path.append(path.join(path.dirname(__file__), "../.."))
from himbaechel_dbgen.chip import * from himbaechel_dbgen.chip import *
from apycula import chipdb from apycula import chipdb
# XXX u-turn at the rim # Z of the bels
VCC_Z = 277
GND_Z = 288
created_tiletypes = set()
# u-turn at the rim
uturnlut = {'N': 'S', 'S': 'N', 'E': 'W', 'W': 'E'} uturnlut = {'N': 'S', 'S': 'N', 'E': 'W', 'W': 'E'}
def uturn(db: chipdb, x: int, y: int, wire: str): def uturn(db: chipdb, x: int, y: int, wire: str):
m = re.match(r"([NESW])([128]\d)(\d)", wire) m = re.match(r"([NESW])([128]\d)(\d)", wire)
@ -39,6 +45,7 @@ def create_nodes(chip: Chip, db: chipdb):
dirs = { 'N': (0, -1), 'S': (0, 1), 'W': (-1, 0), 'E': (1, 0) } dirs = { 'N': (0, -1), 'S': (0, 1), 'W': (-1, 0), 'E': (1, 0) }
X = db.cols X = db.cols
Y = db.rows Y = db.rows
global_nodes = {}
for y in range(Y): for y in range(Y):
for x in range(X): for x in range(X):
nodes = [] nodes = []
@ -67,6 +74,12 @@ def create_nodes(chip: Chip, db: chipdb):
NodeWire(*uturn(db, x + offs[0] * 8, y + offs[1] * 8, f'{d}8{i}8'))]) NodeWire(*uturn(db, x + offs[0] * 8, y + offs[1] * 8, f'{d}8{i}8'))])
for node in nodes: for node in nodes:
chip.add_node(node) chip.add_node(node)
# VCC and VSS sources in the all tiles
global_nodes.setdefault('GND', []).append(NodeWire(x, y, 'VSS'))
global_nodes.setdefault('VCC', []).append(NodeWire(x, y, 'VCC'))
for node in global_nodes.values():
chip.add_node(node)
# About X and Y as parameters - in some cases, the type of manufacturer's tile # About X and Y as parameters - in some cases, the type of manufacturer's tile
# is not different, but some wires are not physically present, that is, routing # is not different, but some wires are not physically present, that is, routing
@ -83,13 +96,37 @@ def create_switch_matrix(tt: TileType, db: chipdb, x: int, y: int):
tt.create_wire(src) tt.create_wire(src)
tt.create_pip(src, dst) tt.create_pip(src, dst)
def create_null_tiletype(chip: Chip, db: chipdb, x: int, y: int): def create_null_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
tt = chip.create_tile_type(f"NULL_{db.grid[y][x].ttyp}") if ttyp in created_tiletypes:
return ttyp
tt = chip.create_tile_type(f"NULL_{ttyp}")
create_switch_matrix(tt, db, x, y) create_switch_matrix(tt, db, x, y)
return ttyp
# responsible nodes, there will be IO banks, configuration, etc.
def create_corner_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
if ttyp in created_tiletypes:
return ttyp
tt = chip.create_tile_type(f"CORNER_{ttyp}")
if x == 0 and y == 0:
# GND is the logic low level generator
tt.create_wire('VSS', 'GND')
gnd = tt.create_bel('GND', 'GND', z = GND_Z)
tt.add_bel_pin(gnd, "G", "VSS", PinType.OUTPUT)
# VCC is the logic high level generator
tt.create_wire('VCC', 'VCC')
gnd = tt.create_bel('VCC', 'VCC', z = VCC_Z)
tt.add_bel_pin(gnd, "V", "VCC", PinType.OUTPUT)
create_switch_matrix(tt, db, x, y)
return ttyp
# simple IO - only A and B # simple IO - only A and B
def create_io_tiletype(chip: Chip, db: chipdb, x: int, y: int): def create_io_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
tt = chip.create_tile_type(f"IO_{db.grid[y][x].ttyp}") if ttyp in created_tiletypes:
return ttyp
tt = chip.create_tile_type(f"IO_{ttyp}")
for i in range(2): for i in range(2):
name = ['IOBA', 'IOBB'][i] name = ['IOBA', 'IOBB'][i]
# wires # wires
@ -97,16 +134,19 @@ def create_io_tiletype(chip: Chip, db: chipdb, x: int, y: int):
tt.create_wire(portmap['I'], "IO_I") tt.create_wire(portmap['I'], "IO_I")
tt.create_wire(portmap['O'], "IO_I") tt.create_wire(portmap['O'], "IO_I")
# bels # bels
io = tt.create_bel(name, "IOB", z=i) io = tt.create_bel(name, "IOB", z = i)
tt.add_bel_pin(io, "I", portmap['I'], PinType.INPUT) tt.add_bel_pin(io, "I", portmap['I'], PinType.INPUT)
tt.add_bel_pin(io, "O", portmap['O'], PinType.OUTPUT) tt.add_bel_pin(io, "O", portmap['O'], PinType.OUTPUT)
create_switch_matrix(tt, db, x, y) create_switch_matrix(tt, db, x, y)
return ttyp
# XXX 6 lut+dff only for now # XXX 6 lut+dff only for now
def create_logic_tiletype(chip: Chip, db: chipdb, x: int, y: int): def create_logic_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
N = 6 N = 6
lut_inputs = ['A', 'B', 'C', 'D'] lut_inputs = ['A', 'B', 'C', 'D']
tt = chip.create_tile_type(f"LOGIC_{db.grid[y][x].ttyp}") if ttyp in created_tiletypes:
return ttyp
tt = chip.create_tile_type(f"LOGIC_{ttyp}")
# setup wires # setup wires
for i in range(N): for i in range(N):
for inp_name in lut_inputs: for inp_name in lut_inputs:
@ -125,7 +165,7 @@ def create_logic_tiletype(chip: Chip, db: chipdb, x: int, y: int):
# create logic cells # create logic cells
for i in range(N): for i in range(N):
# LUT # LUT
lut = tt.create_bel(f"LUT{i}", "LUT4", z=(i*2 + 0)) lut = tt.create_bel(f"LUT{i}", "LUT4", z = (i * 2 + 0))
for j, inp_name in enumerate(lut_inputs): for j, inp_name in enumerate(lut_inputs):
tt.add_bel_pin(lut, f"I{j}", f"{inp_name}{i}", PinType.INPUT) tt.add_bel_pin(lut, f"I{j}", f"{inp_name}{i}", PinType.INPUT)
tt.add_bel_pin(lut, "F", f"F{i}", PinType.OUTPUT) tt.add_bel_pin(lut, "F", f"F{i}", PinType.OUTPUT)
@ -135,12 +175,13 @@ def create_logic_tiletype(chip: Chip, db: chipdb, x: int, y: int):
for inp_name in lut_inputs: for inp_name in lut_inputs:
tt.create_pip(f"{inp_name}{i}", f"XD{i}") tt.create_pip(f"{inp_name}{i}", f"XD{i}")
# FF # FF
ff = tt.create_bel(f"DFF{i}", "DFF", z=(i*2 + 1)) ff = tt.create_bel(f"DFF{i}", "DFF", z =(i * 2 + 1))
tt.add_bel_pin(ff, "D", f"XD{i}", PinType.INPUT) tt.add_bel_pin(ff, "D", f"XD{i}", PinType.INPUT)
tt.add_bel_pin(ff, "CLK", f"CLK{i // 2}", PinType.INPUT) tt.add_bel_pin(ff, "CLK", f"CLK{i // 2}", PinType.INPUT)
tt.add_bel_pin(ff, "Q", f"Q{i}", PinType.OUTPUT) tt.add_bel_pin(ff, "Q", f"Q{i}", PinType.OUTPUT)
tt.add_bel_pin(ff, "RESET", f"LSR{i // 2}", PinType.INPUT) tt.add_bel_pin(ff, "RESET", f"LSR{i // 2}", PinType.INPUT)
create_switch_matrix(tt, db, x, y) create_switch_matrix(tt, db, x, y)
return ttyp
def main(): def main():
parser = argparse.ArgumentParser(description='Make Gowin BBA') parser = argparse.ArgumentParser(description='Make Gowin BBA')
@ -164,27 +205,29 @@ def main():
# The manufacturer distinguishes by externally identical tiles, so keep # The manufacturer distinguishes by externally identical tiles, so keep
# these differences (in case it turns out later that there is a slightly # these differences (in case it turns out later that there is a slightly
# different routing or something like that). # different routing or something like that).
created_tiletypes = set()
logic_tiletypes = {12, 13, 14, 15, 16, 17} logic_tiletypes = {12, 13, 14, 15, 16, 17}
io_tiletypes = {53, 58, 64} # Tangnano9k leds tiles and clock ;) io_tiletypes = {53, 58, 64} # Tangnano9k leds tiles and clock ;)
# Setup tile grid # Setup tile grid
for x in range(X): for x in range(X):
for y in range(Y): for y in range(Y):
ttyp = db.grid[y][x].ttyp ttyp = db.grid[y][x].ttyp
if (x == 0 or x == X - 1) and (y == 0 or y == Y - 1):
assert ttyp not in created_tiletypes, "Duplication of corner types"
ttyp = create_corner_tiletype(ch, db, x, y, ttyp)
created_tiletypes.add(ttyp)
ch.set_tile_type(x, y, f"CORNER_{ttyp}")
continue
if ttyp in logic_tiletypes: if ttyp in logic_tiletypes:
if ttyp not in created_tiletypes: ttyp = create_logic_tiletype(ch, db, x, y, ttyp)
create_logic_tiletype(ch, db, x, y) created_tiletypes.add(ttyp)
created_tiletypes.add(ttyp)
ch.set_tile_type(x, y, f"LOGIC_{ttyp}") ch.set_tile_type(x, y, f"LOGIC_{ttyp}")
elif ttyp in io_tiletypes: elif ttyp in io_tiletypes:
if ttyp not in created_tiletypes: ttyp = create_io_tiletype(ch, db, x, y, ttyp)
create_io_tiletype(ch, db, x, y) created_tiletypes.add(ttyp)
created_tiletypes.add(ttyp)
ch.set_tile_type(x, y, f"IO_{ttyp}") ch.set_tile_type(x, y, f"IO_{ttyp}")
else: else:
if ttyp not in created_tiletypes: ttyp = create_null_tiletype(ch, db, x, y, ttyp)
create_null_tiletype(ch, db, x, y) created_tiletypes.add(ttyp)
created_tiletypes.add(ttyp)
ch.set_tile_type(x, y, f"NULL_{ttyp}") ch.set_tile_type(x, y, f"NULL_{ttyp}")
# Create nodes between tiles # Create nodes between tiles