Using hashlib in timing

Signed-off-by: gatecat <gatecat@ds0.me>
This commit is contained in:
gatecat 2021-06-02 11:03:13 +01:00
parent ecc19c2c08
commit b8a68f5f35
2 changed files with 26 additions and 82 deletions

View File

@ -23,7 +23,6 @@
#include <boost/range/adaptor/reversed.hpp> #include <boost/range/adaptor/reversed.hpp>
#include <deque> #include <deque>
#include <map> #include <map>
#include <unordered_map>
#include <utility> #include <utility>
#include "log.h" #include "log.h"
#include "util.h" #include "util.h"
@ -272,7 +271,7 @@ void TimingAnalyser::setup_port_domains()
void TimingAnalyser::reset_times() void TimingAnalyser::reset_times()
{ {
for (auto &port : ports) { for (auto &port : ports) {
auto do_reset = [&](std::unordered_map<domain_id_t, ArrivReqTime> &times) { auto do_reset = [&](dict<domain_id_t, ArrivReqTime> &times) {
for (auto &t : times) { for (auto &t : times) {
t.second.value = init_delay; t.second.value = init_delay;
t.second.path_length = 0; t.second.path_length = 0;
@ -426,7 +425,7 @@ void TimingAnalyser::walk_backward()
void TimingAnalyser::print_fmax() void TimingAnalyser::print_fmax()
{ {
// Temporary testing code for comparison only // Temporary testing code for comparison only
std::unordered_map<int, double> domain_fmax; dict<int, double> domain_fmax;
for (auto p : topological_order) { for (auto p : topological_order) {
auto &pd = ports.at(p); auto &pd = ports.at(p);
for (auto &req : pd.required) { for (auto &req : pd.required) {
@ -591,6 +590,7 @@ struct ClockEvent
ClockEdge edge; ClockEdge edge;
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; } bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
unsigned int hash() const { return mkhash(clock.hash(), int(edge)); }
}; };
struct ClockPair struct ClockPair
@ -598,37 +598,10 @@ struct ClockPair
ClockEvent start, end; ClockEvent start, end;
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; } bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
unsigned int hash() const { return mkhash(start.hash(), end.hash()); }
}; };
} // namespace } // namespace
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock));
boost::hash_combine(seed, hash<int>()(int(obj.edge)));
return seed;
}
};
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
return seed;
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
typedef std::vector<const PortRef *> PortRefVector; typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency; typedef std::map<int, unsigned> DelayFrequency;
@ -639,7 +612,7 @@ struct CriticalPath
delay_t path_period; delay_t path_period;
}; };
typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap; typedef dict<ClockPair, CriticalPath> CriticalPathMap;
struct Timing struct Timing
{ {
@ -660,7 +633,7 @@ struct Timing
delay_t min_remaining_budget; delay_t min_remaining_budget;
bool false_startpoint = false; bool false_startpoint = false;
std::vector<delay_t> min_required; std::vector<delay_t> min_required;
std::unordered_map<ClockEvent, delay_t> arrival_time; dict<ClockEvent, delay_t> arrival_time;
}; };
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr, Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
@ -677,14 +650,14 @@ struct Timing
// First, compute the topological order of nets to walk through the circuit, assuming it is a _acyclic_ graph // First, compute the topological order of nets to walk through the circuit, assuming it is a _acyclic_ graph
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops // TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
std::vector<NetInfo *> topological_order; std::vector<NetInfo *> topological_order;
std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data; dict<const NetInfo *, dict<ClockEvent, TimingData>, hash_ptr_ops> net_data;
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port // In lieu of deleting edges from the graph, simply count the number of fanins to each output port
std::unordered_map<const PortInfo *, unsigned> port_fanin; dict<const PortInfo *, unsigned, hash_ptr_ops> port_fanin;
std::vector<IdString> input_ports; std::vector<IdString> input_ports;
std::vector<const PortInfo *> output_ports; std::vector<const PortInfo *> output_ports;
std::unordered_set<IdString> ooc_port_nets; pool<IdString> ooc_port_nets;
// In out-of-context mode, top-level inputs look floating but aren't // In out-of-context mode, top-level inputs look floating but aren't
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) { if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
@ -880,7 +853,7 @@ struct Timing
} }
} }
std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets; dict<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
// Now go backwards topologically to determine the minimum path slack, and to distribute all path slack evenly // Now go backwards topologically to determine the minimum path slack, and to distribute all path slack evenly
// between all nets on the path // between all nets on the path

View File

@ -35,15 +35,7 @@ struct CellPortKey
port = pr.port; port = pr.port;
} }
IdString cell, port; IdString cell, port;
struct Hash unsigned int hash() const { return mkhash(cell.hash(), port.hash()); }
{
inline std::size_t operator()(const CellPortKey &arg) const noexcept
{
std::size_t seed = std::hash<IdString>()(arg.cell);
seed ^= std::hash<IdString>()(arg.port) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
inline bool operator==(const CellPortKey &other) const { return (cell == other.cell) && (port == other.port); } inline bool operator==(const CellPortKey &other) const { return (cell == other.cell) && (port == other.port); }
inline bool operator!=(const CellPortKey &other) const { return (cell != other.cell) || (port != other.port); } inline bool operator!=(const CellPortKey &other) const { return (cell != other.cell) || (port != other.port); }
inline bool operator<(const CellPortKey &other) const inline bool operator<(const CellPortKey &other) const
@ -69,15 +61,8 @@ struct NetPortKey
return idx; return idx;
} }
struct Hash unsigned int hash() const { return mkhash(net.hash(), idx); }
{
std::size_t operator()(const NetPortKey &arg) const noexcept
{
std::size_t seed = std::hash<IdString>()(arg.net);
seed ^= std::hash<size_t>()(arg.idx) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
inline bool operator==(const NetPortKey &other) const { return (net == other.net) && (idx == other.idx); } inline bool operator==(const NetPortKey &other) const { return (net == other.net) && (idx == other.idx); }
}; };
@ -89,15 +74,8 @@ struct ClockDomainKey
// probably also need something here to deal with constraints // probably also need something here to deal with constraints
inline bool is_async() const { return clock == IdString(); } inline bool is_async() const { return clock == IdString(); }
struct Hash unsigned int hash() const { return mkhash(clock.hash(), int(edge)); }
{
std::size_t operator()(const ClockDomainKey &arg) const noexcept
{
std::size_t seed = std::hash<IdString>()(arg.clock);
seed ^= std::hash<int>()(int(arg.edge)) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
inline bool operator==(const ClockDomainKey &other) const { return (clock == other.clock) && (edge == other.edge); } inline bool operator==(const ClockDomainKey &other) const { return (clock == other.clock) && (edge == other.edge); }
}; };
@ -111,15 +89,7 @@ struct ClockDomainPairKey
{ {
return (launch == other.launch) && (capture == other.capture); return (launch == other.launch) && (capture == other.capture);
} }
struct Hash unsigned int hash() const { return mkhash(launch, capture); }
{
std::size_t operator()(const ClockDomainPairKey &arg) const noexcept
{
std::size_t seed = std::hash<domain_id_t>()(arg.launch);
seed ^= std::hash<domain_id_t>()(arg.capture) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
}; };
struct TimingAnalyser struct TimingAnalyser
@ -223,16 +193,17 @@ struct TimingAnalyser
NetPortKey net_port; NetPortKey net_port;
PortType type; PortType type;
// per domain timings // per domain timings
std::unordered_map<domain_id_t, ArrivReqTime> arrival; dict<domain_id_t, ArrivReqTime> arrival;
std::unordered_map<domain_id_t, ArrivReqTime> required; dict<domain_id_t, ArrivReqTime> required;
std::unordered_map<domain_id_t, PortDomainPairData> domain_pairs; dict<domain_id_t, PortDomainPairData> domain_pairs;
// cell timing arcs to (outputs)/from (inputs) from this port // cell timing arcs to (outputs)/from (inputs) from this port
std::vector<CellArc> cell_arcs; std::vector<CellArc> cell_arcs;
// routing delay into this port (input ports only) // routing delay into this port (input ports only)
DelayPair route_delay; DelayPair route_delay{0};
// worst criticality and slack across domain pairs // worst criticality and slack across domain pairs
float worst_crit; float worst_crit = 0;
delay_t worst_setup_slack, worst_hold_slack; delay_t worst_setup_slack = std::numeric_limits<delay_t>::max(),
worst_hold_slack = std::numeric_limits<delay_t>::max();
}; };
struct PerDomain struct PerDomain
@ -260,9 +231,9 @@ struct TimingAnalyser
void copy_domains(const CellPortKey &from, const CellPortKey &to, bool backwards); void copy_domains(const CellPortKey &from, const CellPortKey &to, bool backwards);
std::unordered_map<CellPortKey, PerPort, CellPortKey::Hash> ports; dict<CellPortKey, PerPort> ports;
std::unordered_map<ClockDomainKey, domain_id_t, ClockDomainKey::Hash> domain_to_id; dict<ClockDomainKey, domain_id_t> domain_to_id;
std::unordered_map<ClockDomainPairKey, domain_id_t, ClockDomainPairKey::Hash> pair_to_id; dict<ClockDomainPairKey, domain_id_t> pair_to_id;
std::vector<PerDomain> domains; std::vector<PerDomain> domains;
std::vector<PerDomainPair> domain_pairs; std::vector<PerDomainPair> domain_pairs;