nexus: Add iterator types based on nextpnr-xilinx

Signed-off-by: David Shah <dave@ds0.me>
This commit is contained in:
David Shah 2020-01-06 19:04:43 +00:00
parent 60c6510b3b
commit c7f00b4760

View File

@ -162,6 +162,7 @@ NPNR_PACKED_STRUCT(struct ChipInfoPOD {
RelPtr<char> device_name;
uint16_t width;
uint16_t height;
uint32_t num_tiles;
RelPtr<GridLocationPOD> grid;
});
@ -174,6 +175,330 @@ NPNR_PACKED_STRUCT(struct DatabasePOD {
RelPtr<LocTypePOD> loctypes;
});
// -----------------------------------------------------------------------
// Helper functions for database access
namespace {
template <typename Id> const LocTypePOD &chip_loc_data(const DatabasePOD *db, const ChipInfoPOD *chip, Id &id)
{
return db->loctypes[chip->grid[id.tile].loc_type];
}
template <typename Id> const LocNeighourhoodPOD &chip_nh_data(const DatabasePOD *db, const ChipInfoPOD *chip, Id &id)
{
auto &t = chip->grid[id.tile];
return db->loctypes[t.loc_type].neighbourhoods[t.neighbourhood_type];
}
inline const BelInfoPOD &chip_bel_data(const DatabasePOD *db, const ChipInfoPOD *chip, BelId id)
{
return chip_loc_data(db, chip, id).bels[id.index];
}
inline const LocWireInfoPOD &chip_wire_data(const DatabasePOD *db, const ChipInfoPOD *chip, WireId &id)
{
return chip_loc_data(db, chip, id).wires[id.index];
}
inline const PipInfoPOD &chip_pip_data(const DatabasePOD *db, const ChipInfoPOD *chip, PipId &id)
{
return chip_loc_data(db, chip, id).pips[id.index];
}
inline bool chip_rel_tile(const ChipInfoPOD *chip, int32_t base, int16_t rel_x, int16_t rel_y, int32_t &next)
{
int32_t curr_x = base % chip->width;
int32_t curr_y = base / chip->width;
int32_t new_x = curr_x + rel_x;
int32_t new_y = curr_y + rel_y;
if (new_x < 0 || new_x >= chip->width)
return false;
if (new_y < 0 || new_y >= chip->height)
return false;
next = new_y * chip->width + new_x;
return true;
}
inline WireId chip_canonical_wire(const DatabasePOD *db, const ChipInfoPOD *chip, int32_t tile, uint16_t index)
{
WireId wire{tile, index};
// `tile` is the primary location for the wire, so ID is already canonical
if (chip_wire_data(db, chip, wire).flags & WIRE_PRIMARY)
return wire;
// Not primary; find the primary location which forms the canonical ID
auto &nd = chip_nh_data(db, chip, wire);
auto &wn = nd.wire_neighbours[index];
for (size_t i = 0; i < wn.num_nwires; i++) {
auto &nw = wn.neigh_wires[i];
if (nw.arc_flags & LOGICAL_TO_PRIMARY) {
if (chip_rel_tile(chip, tile, nw.rel_x, nw.rel_y, wire.tile)) {
wire.index = nw.wire_index;
break;
}
}
}
return wire;
}
inline bool chip_wire_is_primary(const DatabasePOD *db, const ChipInfoPOD *chip, int32_t tile, uint16_t index)
{
WireId wire{tile, index};
// `tile` is the primary location for the wire, so ID is already canonical
if (chip_wire_data(db, chip, wire).flags & WIRE_PRIMARY)
return true;
// Not primary; find the primary location which forms the canonical ID
auto &nd = chip_nh_data(db, chip, wire);
auto &wn = nd.wire_neighbours[index];
for (size_t i = 0; i < wn.num_nwires; i++) {
auto &nw = wn.neigh_wires[i];
if (nw.arc_flags & LOGICAL_TO_PRIMARY) {
if (chip_rel_tile(chip, tile, nw.rel_x, nw.rel_y, wire.tile)) {
return false;
}
}
}
return true;
}
} // namespace
// -----------------------------------------------------------------------
struct BelIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
BelIterator operator++()
{
cursor_index++;
while (cursor_tile < int(chip->num_tiles) &&
cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_bels)) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
BelIterator operator++(int)
{
BelIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const BelIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const BelIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
BelId operator*() const
{
BelId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct BelRange
{
BelIterator b, e;
BelIterator begin() const { return b; }
BelIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct WireIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile = 0;
WireIterator operator++()
{
// Iterate over nodes first, then tile wires that aren't nodes
do {
cursor_index++;
while (cursor_tile < int(chip->num_tiles) &&
cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_wires)) {
cursor_index = 0;
cursor_tile++;
}
} while (cursor_tile < int(chip->num_tiles) && !chip_wire_is_primary(db, chip, cursor_tile, cursor_index));
return *this;
}
WireIterator operator++(int)
{
WireIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const WireIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const WireIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
WireId operator*() const
{
WireId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct WireRange
{
WireIterator b, e;
WireIterator begin() const { return b; }
WireIterator end() const { return e; }
};
// Iterate over all neighour wires for a wire
struct TileWireIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
WireId baseWire;
int cursor = -1;
void operator++()
{
auto &wn = chip_nh_data(db, chip, baseWire).wire_neighbours[baseWire.index];
int32_t tile;
do
cursor++;
while (cursor < int(wn.num_nwires) &&
((wn.neigh_wires[cursor].arc_flags & LOGICAL_TO_PRIMARY) ||
!chip_rel_tile(chip, baseWire.tile, wn.neigh_wires[cursor].rel_x, wn.neigh_wires[cursor].rel_y, tile)));
}
bool operator!=(const TileWireIterator &other) const { return cursor != other.cursor; }
// Returns a *denormalised* identifier that may be a non-primary wire (and thus should _not_ be used
// as a WireId in general as it will break invariants)
WireId operator*() const
{
if (cursor == -1) {
return baseWire;
} else {
auto &nw = chip_nh_data(db, chip, baseWire).wire_neighbours[baseWire.index].neigh_wires[cursor];
WireId result;
result.index = nw.wire_index;
if (!chip_rel_tile(chip, baseWire.tile, nw.rel_x, nw.rel_y, result.tile))
return WireId();
return result;
}
}
};
// -----------------------------------------------------------------------
struct AllPipIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
AllPipIterator operator++()
{
cursor_index++;
while (cursor_tile < int(chip->num_tiles) &&
cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_pips)) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
AllPipIterator operator++(int)
{
AllPipIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const AllPipIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const AllPipIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
PipId operator*() const
{
PipId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct AllPipRange
{
AllPipIterator b, e;
AllPipIterator begin() const { return b; }
AllPipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct UpDownhillPipIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
bool uphill = false;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = db->loctypes[chip->grid[w.tile].loc_type];
if (cursor < int(uphill ? tile.wires[w.index].num_uphill : tile.wires[w.index].num_downhill))
break;
++twi;
cursor = 0;
}
}
bool operator!=(const UpDownhillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
WireId w = *twi;
ret.tile = w.tile;
auto &tile = db->loctypes[chip->grid[w.tile].loc_type];
ret.index = uphill ? tile.wires[w.index].pips_uh[cursor] : tile.wires[w.index].pips_dh[cursor];
return ret;
}
};
struct UpDownhillPipRange
{
UpDownhillPipIterator b, e;
UpDownhillPipIterator begin() const { return b; }
UpDownhillPipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
const int bba_version =
#include "bba_version.inc"
;
@ -205,52 +530,20 @@ struct Arch : BaseCtx
int getTileBelDimZ(int, int) const { return 256; }
int getTilePipDimZ(int, int) const { return 1; }
template <typename Id> const LocTypePOD &loc_data(Id &id) const
{
return db->loctypes[chip_info->grid[id.tile].loc_type];
}
template <typename Id> const LocTypePOD &loc_data(Id &id) const { return chip_loc_data(db, chip_info, id); }
template <typename Id> const LocNeighourhoodPOD &nh_data(Id &id) const
{
auto &t = chip_info->grid[id.tile];
return db->loctypes[t.loc_type].neighbourhoods[t.neighbourhood_type];
}
template <typename Id> const LocNeighourhoodPOD &nh_data(Id &id) const { return chip_nh_data(db, chip_info, id); }
inline const BelInfoPOD &bel_data(BelId id) const { return loc_data(id).bels[id.index]; }
inline const LocWireInfoPOD &wire_data(WireId &id) const { return loc_data(id).wires[id.index]; }
inline const PipInfoPOD &pip_data(PipId &id) const { return loc_data(id).pips[id.index]; }
inline const BelInfoPOD &bel_data(BelId id) const { return chip_bel_data(db, chip_info, id); }
inline const LocWireInfoPOD &wire_data(WireId &id) const { return chip_wire_data(db, chip_info, id); }
inline const PipInfoPOD &pip_data(PipId &id) const { return chip_pip_data(db, chip_info, id); }
inline bool rel_tile(int32_t base, int16_t rel_x, int16_t rel_y, int32_t &next)
{
int32_t curr_x = base % chip_info->width;
int32_t curr_y = base / chip_info->width;
int32_t new_x = curr_x + rel_x;
int32_t new_y = curr_y + rel_y;
if (new_x < 0 || new_x >= chip_info->width)
return false;
if (new_y < 0 || new_y >= chip_info->height)
return false;
next = new_y * chip_info->width + new_x;
return true;
return chip_rel_tile(chip_info, base, rel_x, rel_y, next);
}
inline const WireId canonical_wire(int32_t tile, uint16_t index)
{
WireId wire{tile, index};
// `tile` is the primary location for the wire, so ID is already canonical
if (wire_data(wire).flags & WIRE_PRIMARY)
return wire;
// Not primary; find the primary location which forms the canonical ID
auto &nd = nh_data(wire);
auto &wn = nd.wire_neighbours[index];
for (size_t i = 0; i < wn.num_nwires; i++) {
auto &nw = wn.neigh_wires[i];
if (nw.arc_flags & LOGICAL_TO_PRIMARY) {
if (rel_tile(tile, nw.rel_x, nw.rel_y, wire.tile)) {
wire.index = nw.wire_index;
break;
}
}
}
return wire;
return chip_canonical_wire(db, chip_info, tile, index);
}
};