Merge pull request #44 from YosysHQ/improve_timing_spec

Speed up budget allocator using topographical ordering and update cell timing API
This commit is contained in:
David Shah 2018-08-08 19:23:47 +02:00 committed by GitHub
commit cd4e761bb7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 378 additions and 144 deletions

View File

@ -291,6 +291,19 @@ struct CellInfo : ArchCellInfo
// parent.[xyz] := 0 when (constr_parent == nullptr)
};
enum TimingPortClass
{
TMG_CLOCK_INPUT, // Clock input to a sequential cell
TMG_GEN_CLOCK, // Generated clock output (PLL, DCC, etc)
TMG_REGISTER_INPUT, // Input to a register, with an associated clock (may also have comb. fanout too)
TMG_REGISTER_OUTPUT, // Output from a register
TMG_COMB_INPUT, // Combinational input, no paths end here
TMG_COMB_OUTPUT, // Combinational output, no paths start here
TMG_STARTPOINT, // Unclocked primary startpoint, such as an IO cell output
TMG_ENDPOINT, // Unclocked primary endpoint, such as an IO cell input
TMG_IGNORE, // Asynchronous to all clocks, "don't care", and should be ignored (false path) for analysis
};
struct DeterministicRNG
{
uint64_t rngstate;
@ -440,7 +453,7 @@ struct BaseCtx
const Context *getCtx() const { return reinterpret_cast<const Context *>(this); }
template<typename T> const char *nameOf(const T *obj)
template <typename T> const char *nameOf(const T *obj)
{
if (obj == nullptr)
return "";

View File

@ -236,7 +236,10 @@ class SAPlacer
temp = post_legalise_temp;
diameter *= post_legalise_dia_scale;
ctx->shuffle(autoplaced);
assign_budget(ctx);
// Legalisation is a big change so force a slack redistribution here
if (ctx->slack_redist_iter > 0)
assign_budget(ctx, true /* quiet */);
} else if (ctx->slack_redist_iter > 0 && iter % ctx->slack_redist_iter == 0) {
assign_budget(ctx, true /* quiet */);
}

View File

@ -20,6 +20,7 @@
#include "timing.h"
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <unordered_map>
#include <utility>
#include "log.h"
@ -36,10 +37,18 @@ struct Timing
bool net_delays;
bool update;
delay_t min_slack;
PortRefVector current_path;
PortRefVector *crit_path;
DelayFrequency *slack_histogram;
struct TimingData
{
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
delay_t max_arrival;
unsigned max_path_length = 0;
delay_t min_remaining_budget;
};
Timing(Context *ctx, bool net_delays, bool update, PortRefVector *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
@ -47,104 +56,256 @@ struct Timing
{
}
delay_t follow_net(NetInfo *net, int path_length, delay_t slack)
delay_t walk_paths()
{
const delay_t default_budget = slack / (path_length + 1);
delay_t net_budget = default_budget;
for (auto &usr : net->users) {
auto delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
if (crit_path)
current_path.push_back(&usr);
// If budget override exists, use that value and do not increment path_length
auto budget = default_budget;
if (ctx->getBudgetOverride(net, usr, budget)) {
if (update)
usr.budget = std::min(usr.budget, budget);
budget = follow_user_port(usr, path_length, slack - budget);
net_budget = std::min(net_budget, budget);
}
else {
budget = follow_user_port(usr, path_length + 1, slack - delay);
net_budget = std::min(net_budget, budget);
if (update)
usr.budget = std::min(usr.budget, delay + budget);
}
if (crit_path)
current_path.pop_back();
}
return net_budget;
}
const auto clk_period = delay_t(1.0e12 / ctx->target_freq);
// Follow a path, returning budget to annotate
delay_t follow_user_port(PortRef &user, int path_length, delay_t slack)
{
delay_t value;
if (ctx->getPortClock(user.cell, user.port) != IdString()) {
// At the end of a timing path (arguably, should check setup time
// here too)
value = slack / path_length;
if (slack < min_slack) {
min_slack = slack;
if (crit_path)
*crit_path = current_path;
// First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
std::vector<NetInfo *> topographical_order;
std::unordered_map<const NetInfo *, TimingData> net_data;
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
std::unordered_map<const PortInfo *, unsigned> port_fanin;
std::vector<IdString> input_ports;
std::vector<const PortInfo *> output_ports;
for (auto &cell : ctx->cells) {
input_ports.clear();
output_ports.clear();
for (auto &port : cell.second->ports) {
if (!port.second.net)
continue;
if (port.second.type == PORT_OUT)
output_ports.push_back(&port.second);
else
input_ports.push_back(port.first);
}
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(slack) * 1000;
(*slack_histogram)[slack_ps]++;
for (auto o : output_ports) {
IdString clockPort;
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clockPort);
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
// start-point
if (portClass == TMG_REGISTER_OUTPUT) {
DelayInfo clkToQ;
ctx->getCellDelay(cell.second.get(), clockPort, o->name, clkToQ);
topographical_order.emplace_back(o->net);
net_data.emplace(o->net, TimingData{clkToQ.maxDelay()});
} else {
// TODO(eddieh): Generated clocks and ignored ports are currently added into the ordering as if it
// was a regular timing start point in order to enable the full topographical order to be computed,
// however these false nets (and their downstream paths) should not be in the final ordering
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
topographical_order.emplace_back(o->net);
net_data.emplace(o->net, TimingData{});
}
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
// the current output port, increment fanin counter
for (auto i : input_ports) {
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
if (is_path)
port_fanin[o]++;
}
}
}
} else {
// Default to the path ending here, if no further paths found
value = slack / path_length;
// Follow outputs of the user
for (auto port : user.cell->ports) {
if (port.second.type == PORT_OUT) {
}
// If these constant nets exist, add them to the topographical ordering too
// TODO(eddieh): Also false paths and should be removed from ordering
auto it = ctx->nets.find(ctx->id("$PACKER_VCC_NET"));
if (it != ctx->nets.end()) {
topographical_order.emplace_back(it->second.get());
net_data.emplace(it->second.get(), TimingData{});
}
it = ctx->nets.find(ctx->id("$PACKER_GND_NET"));
if (it != ctx->nets.end()) {
topographical_order.emplace_back(it->second.get());
net_data.emplace(it->second.get(), TimingData{});
}
std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end());
// Now walk the design, from the start points identified previously, building up a topographical order
while (!queue.empty()) {
const auto net = queue.front();
queue.pop_front();
for (auto &usr : net->users) {
IdString clockPort;
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort);
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
continue;
for (auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, clockPort);
// Skip if this is a clocked output (but allow non-clocked ones)
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
portClass == TMG_GEN_CLOCK)
continue;
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(user.cell, user.port, port.first, comb_delay);
if (is_path) {
NetInfo *net = port.second.net;
if (net) {
delay_t path_budget = follow_net(net, path_length, slack - comb_delay.maxDelay());
value = std::min(value, path_budget);
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
// Decrement the fanin count, and only add to topographical order if all its fanins have already
// been visited
auto it = port_fanin.find(&port.second);
NPNR_ASSERT(it != port_fanin.end());
if (--it->second == 0) {
topographical_order.emplace_back(port.second.net);
queue.emplace_back(port.second.net);
port_fanin.erase(it);
}
}
}
}
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
NPNR_ASSERT(port_fanin.empty());
// Go forwards topographically to find the maximum arrival time and max path length for each net
for (auto net : topographical_order) {
auto &nd = net_data.at(net);
const auto net_arrival = nd.max_arrival;
const auto net_length_plus_one = nd.max_path_length + 1;
nd.min_remaining_budget = clk_period;
for (auto &usr : net->users) {
IdString clockPort;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) {
} else {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
auto usr_arrival = net_arrival + net_delay;
// Iterate over all output ports on the same cell as the sink
for (auto port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto &data = net_data[port.second.net];
auto &arrival = data.max_arrival;
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
if (!budget_override) { // Do not increment path length if budget overriden since it doesn't
// require a share of the slack
auto &path_length = data.max_path_length;
path_length = std::max(path_length, net_length_plus_one);
}
}
}
}
}
return value;
}
delay_t walk_paths()
{
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
const NetInfo *crit_net = nullptr;
// Go through all clocked drivers and distribute the available path
// slack evenly into the budget of every sink on the path
for (auto &cell : ctx->cells) {
for (auto port : cell.second->ports) {
if (port.second.type == PORT_OUT) {
IdString clock_domain = ctx->getPortClock(cell.second.get(), port.first);
if (clock_domain != IdString()) {
delay_t slack = default_slack; // TODO: clock constraints
DelayInfo clkToQ;
if (ctx->getCellDelay(cell.second.get(), clock_domain, port.first, clkToQ))
slack -= clkToQ.maxDelay();
if (port.second.net)
follow_net(port.second.net, 0, slack);
// Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly
// between all nets on the path
for (auto net : boost::adaptors::reverse(topographical_order)) {
auto &nd = net_data.at(net);
const delay_t net_length_plus_one = nd.max_path_length + 1;
auto &net_min_remaining_budget = nd.min_remaining_budget;
for (auto &usr : net->users) {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
IdString associatedClock;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, associatedClock);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
const auto net_arrival = nd.max_arrival;
auto path_budget = clk_period - (net_arrival + net_delay);
if (update) {
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share);
}
if (path_budget < min_slack) {
min_slack = path_budget;
if (crit_path) {
crit_path->clear();
crit_path->push_back(&usr);
crit_net = net;
}
}
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
(*slack_histogram)[slack_ps]++;
}
} else if (update) {
// Iterate over all output ports on the same cell as the sink
for (const auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto path_budget = net_data.at(port.second.net).min_remaining_budget;
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share);
}
}
}
}
if (crit_path) {
// Walk backwards from the most critical net
while (crit_net) {
const PortInfo *crit_ipin = nullptr;
delay_t max_arrival = std::numeric_limits<delay_t>::min();
// Look at all input ports on its driving cell
for (const auto &port : crit_net->driver.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path =
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
if (!is_path)
continue;
// If input port is influenced by a clock, skip
IdString portClock;
TimingPortClass portClass = ctx->getPortTimingClass(crit_net->driver.cell, port.first, portClock);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT ||
portClass == TMG_IGNORE)
continue;
// And find the fanin net with the latest arrival time
const auto net_arrival = net_data.at(port.second.net).max_arrival;
if (net_arrival > max_arrival) {
max_arrival = net_arrival;
crit_ipin = &port.second;
}
}
if (!crit_ipin)
break;
// Now convert PortInfo* into a PortRef*
for (auto &usr : crit_ipin->net->users) {
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
crit_path->push_back(&usr);
break;
}
}
crit_net = crit_ipin->net;
}
std::reverse(crit_path->begin(), crit_path->end());
}
return min_slack;
}
void assign_budget()
{
// Clear delays to a very high value first
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = default_slack;
usr.budget = std::numeric_limits<delay_t>::max();
}
}
@ -180,16 +341,15 @@ void assign_budget(Context *ctx, bool quiet)
}
}
// For slack redistribution, if user has not specified a frequency
// dynamically adjust the target frequency to be the currently
// achieved maximum
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
// currently achieved maximum
if (ctx->auto_freq && ctx->slack_redist_iter > 0) {
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
ctx->target_freq = 1e12 / (default_slack - timing.min_slack);
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
ctx->target_freq = 1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack);
if (ctx->verbose)
log_info("minimum slack for this assign = %d, target Fmax for next "
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
"update = %.2f MHz\n",
timing.min_slack, ctx->target_freq / 1e6);
ctx->getDelayNS(timing.min_slack), ctx->target_freq / 1e6);
}
if (!quiet)
@ -217,7 +377,9 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_path)
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
auto last_port = ctx->getPortClock(front_driver.cell, front_driver.port);
IdString last_port;
ctx->getPortTimingClass(front_driver.cell, front_driver.port, last_port);
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
@ -227,14 +389,15 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_path)
DelayInfo comb_delay;
ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay);
total += comb_delay.maxDelay();
log_info("%4d %4d Source %s.%s\n", comb_delay.maxDelay(), total, driver_cell->name.c_str(ctx),
driver.port.c_str(ctx));
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total),
driver_cell->name.c_str(ctx), driver.port.c_str(ctx));
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
total += net_delay;
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
log_info("%4d %4d Net %s budget %d (%d,%d) -> (%d,%d)\n", net_delay, total, net->name.c_str(ctx),
sink->budget, driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
last_port = sink->port;
}
@ -242,8 +405,8 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_path)
}
}
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
log_info("estimated Fmax = %.2f MHz\n", 1e6 / (default_slack - min_slack));
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
log_info("estimated Fmax = %.2f MHz\n", 1e3 / ctx->getDelayNS(default_slack - min_slack));
if (print_histogram && slack_histogram.size() > 0) {
constexpr unsigned num_bins = 20;

View File

@ -455,13 +455,11 @@ Cell Delay Methods
Returns the delay for the specified path through a cell in the `&delay` argument. The method returns
false if there is no timing relationship from `fromPort` to `toPort`.
### IdString getPortClock(const CellInfo \*cell, IdString port) const
### TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockPort) const
Returns the clock input port for the specified output port.
### bool isClockPort(const CellInfo \*cell, IdString port) const
Returns true if the specified port is a clock input.
Return the _timing port class_ of a port. This can be a register or combinational input or output; clock input or
output; general startpoint or endpoint; or a port ignored for timing purposes. For register ports, clockPort is set
to the associated clock port.
Placer Methods
--------------

View File

@ -375,7 +375,6 @@ BelId Arch::getPioByFunctionName(const std::string &name) const
}
std::vector<PortPin> Arch::getBelPins(BelId bel) const
{
std::vector<PortPin> ret;
NPNR_ASSERT(bel != BelId());
@ -496,9 +495,10 @@ bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort
return false;
}
IdString Arch::getPortClock(const CellInfo *cell, IdString port) const { return IdString(); }
bool Arch::isClockPort(const CellInfo *cell, IdString port) const { return false; }
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockPort) const
{
return TMG_IGNORE;
}
std::vector<std::pair<std::string, std::string>> Arch::getTilesAtLocation(int row, int col)
{

View File

@ -828,10 +828,8 @@ struct Arch : BaseCtx
// Get the delay through a cell from one port to another, returning false
// if no path exists
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const;
// Get the associated clock to a port, or empty if the port is combinational
IdString getPortClock(const CellInfo *cell, IdString port) const;
// Return true if a port is a clock
bool isClockPort(const CellInfo *cell, IdString port) const;
// Get the port class, also setting clockPort if applicable
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockPort) const;
// Return true if a port is a net
bool isGlobalNet(const NetInfo *net) const;

View File

@ -435,9 +435,11 @@ bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort
return false;
}
IdString Arch::getPortClock(const CellInfo *cell, IdString port) const { return IdString(); }
bool Arch::isClockPort(const CellInfo *cell, IdString port) const { return false; }
// Get the port class, also setting clockPort if applicable
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockPort) const
{
return TMG_IGNORE;
}
bool Arch::isValidBelForCell(CellInfo *cell, BelId bel) const { return true; }
bool Arch::isBelLocationValid(BelId bel) const { return true; }

View File

@ -215,8 +215,8 @@ struct Arch : BaseCtx
DecalXY getGroupDecal(GroupId group) const;
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const;
IdString getPortClock(const CellInfo *cell, IdString port) const;
bool isClockPort(const CellInfo *cell, IdString port) const;
// Get the port class, also setting clockPort if applicable
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockPort) const;
bool isValidBelForCell(CellInfo *cell, BelId bel) const;
bool isBelLocationValid(BelId bel) const;

View File

@ -27,6 +27,7 @@
#include "placer1.h"
#include "router1.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
// -----------------------------------------------------------------------
@ -106,7 +107,9 @@ BelType Arch::belTypeFromId(IdString type) const
void IdString::initialize_arch(const BaseCtx *ctx)
{
#define X(t) initialize_add(ctx, #t, PIN_##t);
#include "portpins.inc"
#undef X
}
@ -291,7 +294,8 @@ BelId Arch::getBelByLocation(Loc loc) const
BelRange Arch::getBelsByTile(int x, int y) const
{
// In iCE40 chipdb bels at the same tile are consecutive and dense z ordinates are used
// In iCE40 chipdb bels at the same tile are consecutive and dense z ordinates
// are used
BelRange br;
br.b.cursor = Arch::getBelByLocation(Loc(x, y, 0)).index;
@ -645,23 +649,27 @@ bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay
auto sink_loc = getBelLocation(sink.cell->bel);
if (driver_loc.y == sink_loc.y)
budget = 0;
else switch (args.type) {
else
switch (args.type) {
#ifndef ICE40_HX1K_ONLY
case ArchArgs::HX8K:
#endif
case ArchArgs::HX1K:
budget = 190; break;
budget = 190;
break;
#ifndef ICE40_HX1K_ONLY
case ArchArgs::LP384:
case ArchArgs::LP1K:
case ArchArgs::LP8K:
budget = 290; break;
budget = 290;
break;
case ArchArgs::UP5K:
budget = 560; break;
budget = 560;
break;
#endif
default:
log_error("Unsupported iCE40 chip type.\n");
}
}
return true;
}
return false;
@ -883,27 +891,76 @@ bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort
return false;
}
IdString Arch::getPortClock(const CellInfo *cell, IdString port) const
// Get the port class, also setting clockPort to associated clock if applicable
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockPort) const
{
if (cell->type == id_icestorm_lc && cell->lcInfo.dffEnable) {
if (port != id_lo && port != id_cin && port != id_cout)
return id_clk;
if (cell->type == id_icestorm_lc) {
if (port == id_clk)
return TMG_CLOCK_INPUT;
if (port == id_cin)
return TMG_COMB_INPUT;
if (port == id_cout || port == id_lo)
return TMG_COMB_OUTPUT;
if (cell->lcInfo.dffEnable) {
clockPort = id_clk;
if (port == id_o)
return TMG_REGISTER_OUTPUT;
else
return TMG_REGISTER_INPUT;
} else {
if (port == id_o)
return TMG_COMB_OUTPUT;
else
return TMG_COMB_INPUT;
}
} else if (cell->type == id_icestorm_ram) {
if (port.str(this)[0] == 'R')
return id_rclk;
else
return id_wclk;
}
return IdString();
}
bool Arch::isClockPort(const CellInfo *cell, IdString port) const
{
if (cell->type == id("ICESTORM_LC") && port == id("CLK"))
return true;
if (cell->type == id("ICESTORM_RAM") && (port == id("RCLK") || (port == id("WCLK"))))
return true;
return false;
if (port == id_rclk || port == id_wclk)
return TMG_CLOCK_INPUT;
if (port.str(this)[0] == 'R')
clockPort = id_rclk;
else
clockPort = id_wclk;
if (cell->ports.at(port).type == PORT_OUT)
return TMG_REGISTER_OUTPUT;
else
return TMG_REGISTER_INPUT;
} else if (cell->type == id("ICESTORM_DSP") || cell->type == id("ICESTORM_SPRAM")) {
clockPort = id_clk;
if (port == id_clk)
return TMG_CLOCK_INPUT;
else if (cell->ports.at(port).type == PORT_OUT)
return TMG_REGISTER_OUTPUT;
else
return TMG_REGISTER_INPUT;
} else if (cell->type == id_sb_io) {
if (port == id("D_IN_0") || port == id("D_IN_1"))
return TMG_STARTPOINT;
if (port == id("D_OUT_0") || port == id("D_OUT_1") || port == id("OUTPUT_ENABLE"))
return TMG_ENDPOINT;
return TMG_IGNORE;
} else if (cell->type == id("ICESTORM_PLL")) {
if (port == id("PLLOUT_A") || port == id("PLLOUT_B"))
return TMG_GEN_CLOCK;
return TMG_IGNORE;
} else if (cell->type == id("ICESTORM_LFOSC")) {
if (port == id("CLKLF"))
return TMG_GEN_CLOCK;
return TMG_IGNORE;
} else if (cell->type == id("ICESTORM_HFOSC")) {
if (port == id("CLKHF"))
return TMG_GEN_CLOCK;
return TMG_IGNORE;
} else if (cell->type == id_sb_gb) {
if (port == id_glb_buf_out)
return TMG_COMB_OUTPUT;
return TMG_COMB_INPUT;
} else if (cell->type == id("SB_WARMBOOT")) {
return TMG_ENDPOINT;
}
log_error("no timing info for port '%s' of cell type '%s'\n", port.c_str(this), cell->type.c_str(this));
}
bool Arch::isGlobalNet(const NetInfo *net) const

View File

@ -400,10 +400,10 @@ struct Arch : BaseCtx
mutable std::unordered_map<Loc, int> bel_by_loc;
std::vector<bool> bel_carry;
std::vector<CellInfo*> bel_to_cell;
std::vector<NetInfo*> wire_to_net;
std::vector<NetInfo*> pip_to_net;
std::vector<NetInfo*> switches_locked;
std::vector<CellInfo *> bel_to_cell;
std::vector<NetInfo *> wire_to_net;
std::vector<NetInfo *> pip_to_net;
std::vector<NetInfo *> switches_locked;
ArchArgs args;
Arch(ArchArgs args);
@ -789,16 +789,15 @@ struct Arch : BaseCtx
// Get the delay through a cell from one port to another, returning false
// if no path exists
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const;
// Get the associated clock to a port, or empty if the port is combinational
IdString getPortClock(const CellInfo *cell, IdString port) const;
// Return true if a port is a clock
bool isClockPort(const CellInfo *cell, IdString port) const;
// Get the port class, also setting clockDomain if applicable
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, IdString &clockDomain) const;
// Return true if a port is a net
bool isGlobalNet(const NetInfo *net) const;
// -------------------------------------------------
// Perform placement validity checks, returning false on failure (all implemented in arch_place.cc)
// Perform placement validity checks, returning false on failure (all
// implemented in arch_place.cc)
// Whether or not a given cell can be placed at a given Bel
// This is not intended for Bel type checks, but finer-grained constraints
@ -812,7 +811,8 @@ struct Arch : BaseCtx
bool logicCellsCompatible(const std::vector<const CellInfo *> &cells) const;
// -------------------------------------------------
// Assign architecure-specific arguments to nets and cells, which must be called between packing or further
// Assign architecure-specific arguments to nets and cells, which must be
// called between packing or further
// netlist modifications, and validity checks
void assignArchInfo();
void assignCellInfo(CellInfo *cell);