Initial LUT rotation logic.

Signed-off-by: Keith Rothman <537074+litghost@users.noreply.github.com>
This commit is contained in:
Keith Rothman 2021-02-24 14:02:21 -08:00
parent 9cbfd0b967
commit cfa449c3f3
8 changed files with 741 additions and 7 deletions

View File

@ -70,6 +70,8 @@ template <typename Storage = std::vector<uint8_t>> class DynamicBitarray
size_t size() const { return storage.size() * bits_per_value(); }
void clear() { return storage.clear(); }
private:
Storage storage;
};

View File

@ -158,6 +158,7 @@ Arch::Arch(ArchArgs args) : args(args)
int tile_type_index = 0;
size_t max_tag_count = 0;
for (const TileTypeInfoPOD &tile_type : chip_info->tile_types) {
max_tag_count = std::max(max_tag_count, tile_type.tags.size());
@ -192,6 +193,50 @@ Arch::Arch(ArchArgs args) : args(args)
}
}
// Initially LutElement vectors for each tile type.
tile_type_index = 0;
lut_elements.resize(chip_info->tile_types.size());
for (const TileTypeInfoPOD &tile_type : chip_info->tile_types) {
std::vector<LutElement> &elements = lut_elements[tile_type_index++];
elements.reserve(tile_type.lut_elements.size());
for (auto &lut_element : tile_type.lut_elements) {
elements.emplace_back();
LutElement &element = elements.back();
element.width = lut_element.width;
for (auto &lut_bel : lut_element.lut_bels) {
auto result = element.lut_bels.emplace(IdString(lut_bel.name), LutBel());
NPNR_ASSERT(result.second);
LutBel &lut = result.first->second;
lut.low_bit = lut_bel.low_bit;
lut.high_bit = lut_bel.high_bit;
lut.pins.reserve(lut_bel.pins.size());
for (size_t i = 0; i < lut_bel.pins.size(); ++i) {
IdString pin(lut_bel.pins[i]);
lut.pins.push_back(pin);
lut.pin_to_index[pin] = i;
}
}
element.compute_pin_order();
}
}
// Map lut cell types to their LutCellPOD
for (const LutCellPOD &lut_cell : chip_info->cell_map->lut_cells) {
IdString cell_type(lut_cell.cell);
auto result = lut_cells.emplace(cell_type, &lut_cell);
NPNR_ASSERT(result.second);
}
raw_bin_constant = std::regex("[01]+", std::regex_constants::ECMAScript | std::regex_constants::optimize);
verilog_bin_constant =
std::regex("([0-9]+)'b([01]+)", std::regex_constants::ECMAScript | std::regex_constants::optimize);
verilog_hex_constant =
std::regex("([0-9]+)'h([0-9a-fA-F]+)", std::regex_constants::ECMAScript | std::regex_constants::optimize);
default_tags.resize(max_tag_count);
}
@ -603,6 +648,7 @@ bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay
bool Arch::pack()
{
decode_lut_cells();
merge_constant_nets();
pack_ports();
return true;
@ -666,11 +712,71 @@ bool Arch::route()
} else {
log_error("FPGA interchange architecture does not support router '%s'\n", router.c_str());
}
if (result) {
result = route_vcc_to_unused_lut_pins();
}
getCtx()->attrs[getCtx()->id("step")] = std::string("route");
archInfoToAttributes();
return result;
}
bool Arch::route_vcc_to_unused_lut_pins() {
std::string router = str_or_default(settings, id("router"), defaultRouter);
// Fixup LUT vcc pins.
IdString vcc_net_name(chip_info->constants->vcc_net_name);
for (BelId bel : getBels()) {
CellInfo *cell = getBoundBelCell(bel);
if (cell == nullptr) {
continue;
}
if (cell->lut_cell.vcc_pins.empty()) {
continue;
}
for (auto bel_pin : cell->lut_cell.vcc_pins) {
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
WireId lut_pin_wire = getBelPinWire(bel, bel_pin);
auto iter = wire_to_net.find(lut_pin_wire);
if (iter != wire_to_net.end()) {
if (iter->second != nullptr) {
// This pin is now used by a route through.
continue;
}
}
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
cell->cell_bel_pins[bel_pin].push_back(bel_pin);
connectPort(vcc_net_name, cell->name, bel_pin);
cell->const_ports.emplace(bel_pin);
} else {
NPNR_ASSERT(result.first->second.net == getNetByAlias(vcc_net_name));
auto result2 = cell->cell_bel_pins.emplace(bel_pin, std::vector<IdString>({bel_pin}));
NPNR_ASSERT(result2.first->second.at(0) == bel_pin);
NPNR_ASSERT(result2.first->second.size() == 1);
}
}
}
if (router == "router1") {
return router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
return true;
} else {
log_error("FPGA interchange architecture does not support router '%s'\n", router.c_str());
}
}
// -----------------------------------------------------------------------
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const { return {}; }
@ -791,7 +897,20 @@ const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
void Arch::map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants)
{
cell->cell_mapping = mapping;
cell->cell_bel_pins.clear();
if (cell->lut_cell.pins.empty()) {
cell->cell_bel_pins.clear();
} else {
std::vector<IdString> cell_pin_to_remove;
for (auto port_pair : cell->cell_bel_pins) {
if (!cell->lut_cell.lut_pins.count(port_pair.first)) {
cell_pin_to_remove.push_back(port_pair.first);
}
}
for (IdString cell_pin : cell_pin_to_remove) {
NPNR_ASSERT(cell->cell_bel_pins.erase(cell_pin));
}
}
for (IdString const_port : cell->const_ports) {
NPNR_ASSERT(cell->ports.erase(const_port));
}
@ -805,6 +924,11 @@ void Arch::map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants)
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
// Skip assigned LUT pins, as they are already mapped!
if (cell->lut_cell.lut_pins.count(cell_pin) && cell->cell_bel_pins.count(cell_pin)) {
continue;
}
if (cell_pin.str(this) == "GND") {
if (bind_constants) {
PortInfo port_info;
@ -869,11 +993,17 @@ void Arch::map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants)
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
// Skip assigned LUT pins, as they are already mapped!
if (cell->lut_cell.lut_pins.count(cell_pin) && cell->cell_bel_pins.count(cell_pin)) {
continue;
}
if (cell_pin.str(this) == "GND") {
if (bind_constants) {
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
@ -895,6 +1025,7 @@ void Arch::map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants)
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
@ -1135,6 +1266,70 @@ void Arch::report_invalid_bel(BelId bel, CellInfo *cell) const
nameOfBel(bel), mapping);
}
void Arch::read_lut_equation(nextpnr::DynamicBitarray<> *equation, const Property &equation_parameter) const
{
equation->fill(false);
std::string eq_str = equation_parameter.as_string();
std::smatch results;
if (std::regex_match(eq_str, results, raw_bin_constant)) {
size_t bit_idx = 0;
const std::string &bits = results[0];
NPNR_ASSERT(bits.size() <= equation->size());
for (auto bit = bits.rbegin(); bit != bits.rend(); ++bit) {
if (*bit == '0') {
equation->set(bit_idx++, false);
} else {
NPNR_ASSERT(*bit == '1');
equation->set(bit_idx++, true);
}
}
} else if (std::regex_match(eq_str, results, verilog_bin_constant)) {
int iwidth = std::stoi(results[1]);
NPNR_ASSERT(iwidth >= 0);
size_t width = iwidth;
std::string bits = results[2];
NPNR_ASSERT(width <= equation->size());
NPNR_ASSERT(bits.size() <= width);
size_t bit_idx = 0;
for (auto bit = bits.rbegin(); bit != bits.rend(); ++bit) {
if (*bit == '0') {
equation->set(bit_idx++, false);
} else {
NPNR_ASSERT(*bit == '1');
equation->set(bit_idx++, true);
}
}
} else {
NPNR_ASSERT(false);
}
}
void Arch::decode_lut_cells()
{
for (auto &cell_pair : cells) {
CellInfo *cell = cell_pair.second.get();
auto iter = lut_cells.find(cell->type);
if (iter == lut_cells.end()) {
cell->lut_cell.pins.clear();
cell->lut_cell.equation.clear();
continue;
}
const LutCellPOD &lut_cell = *iter->second;
cell->lut_cell.pins.reserve(lut_cell.input_pins.size());
for (uint32_t pin : lut_cell.input_pins) {
cell->lut_cell.pins.push_back(IdString(pin));
cell->lut_cell.lut_pins.emplace(IdString(pin));
}
IdString equation_parameter(lut_cell.parameter);
const Property &equation = cell->params.at(equation_parameter);
cell->lut_cell.equation.resize(1 << cell->lut_cell.pins.size());
read_lut_equation(&cell->lut_cell.equation, equation);
}
}
// Instance constraint templates.
template void Arch::ArchConstraints::bindBel(Arch::ArchConstraints::TagState *, const Arch::ConstraintRange);
template void Arch::ArchConstraints::unbindBel(Arch::ArchConstraints::TagState *, const Arch::ConstraintRange);

View File

@ -28,6 +28,7 @@
#include <iostream>
#include <regex>
#include "constraints.h"
#include "dedicated_interconnect.h"
#include "site_router.h"
@ -69,7 +70,8 @@ NPNR_PACKED_STRUCT(struct BelInfoPOD {
int16_t site;
int16_t site_variant; // some sites have alternative types
int16_t category;
int16_t synthetic;
int8_t synthetic;
int8_t lut_element;
RelPtr<int32_t> pin_map; // Index into CellMapPOD::cell_bel_map
});
@ -119,6 +121,18 @@ NPNR_PACKED_STRUCT(struct ConstraintTagPOD {
RelSlice<int32_t> states; // constid
});
NPNR_PACKED_STRUCT(struct LutBelPOD {
uint32_t name; // constid
RelSlice<int32_t> pins; // constid
uint32_t low_bit;
uint32_t high_bit;
});
NPNR_PACKED_STRUCT(struct LutElementPOD {
int32_t width;
RelSlice<LutBelPOD> lut_bels;
});
NPNR_PACKED_STRUCT(struct TileTypeInfoPOD {
int32_t name; // Tile type constid
@ -130,6 +144,8 @@ NPNR_PACKED_STRUCT(struct TileTypeInfoPOD {
RelSlice<ConstraintTagPOD> tags;
RelSlice<LutElementPOD> lut_elements;
RelSlice<int32_t> site_types; // constid
});
@ -190,12 +206,20 @@ NPNR_PACKED_STRUCT(struct CellBelMapPOD {
RelSlice<CellConstraintPOD> constraints;
});
NPNR_PACKED_STRUCT(struct LutCellPOD {
int32_t cell; // constid
RelSlice<int32_t> input_pins; // constids
int32_t parameter;
});
NPNR_PACKED_STRUCT(struct CellMapPOD {
// Cell names supported in this arch.
RelSlice<int32_t> cell_names; // constids
RelSlice<int32_t> cell_bel_buckets; // constids
RelSlice<CellBelMapPOD> cell_bel_map;
RelSlice<LutCellPOD> lut_cells;
});
NPNR_PACKED_STRUCT(struct PackagePinPOD {
@ -1362,6 +1386,7 @@ struct Arch : ArchAPI<ArchRanges>
void place_iobufs(WireId pad_wire, NetInfo *net, const std::unordered_set<CellInfo *> &tightly_attached_bels,
std::unordered_set<CellInfo *> *placed_cells);
void pack_ports();
void decode_lut_cells();
bool pack() override;
bool place() override;
bool route() override;
@ -1706,6 +1731,14 @@ struct Arch : ArchAPI<ArchRanges>
std::vector<IdString> no_pins;
IdString gnd_cell_pin;
IdString vcc_cell_pin;
std::vector<std::vector<LutElement>> lut_elements;
std::unordered_map<IdString, const LutCellPOD *> lut_cells;
std::regex raw_bin_constant;
std::regex verilog_bin_constant;
std::regex verilog_hex_constant;
void read_lut_equation(nextpnr::DynamicBitarray<> *equation, const Property &equation_parameter) const;
bool route_vcc_to_unused_lut_pins();
};
NEXTPNR_NAMESPACE_END

View File

@ -22,6 +22,8 @@
#error Include "archdefs.h" via "nextpnr.h" only.
#endif
#include "luts.h"
NEXTPNR_NAMESPACE_BEGIN
#include <cstdint>
@ -107,6 +109,7 @@ struct ArchCellInfo
int32_t cell_mapping;
std::unordered_map<IdString, std::vector<IdString>> cell_bel_pins;
std::unordered_set<IdString> const_ports;
LutCell lut_cell;
};
NEXTPNR_NAMESPACE_END

370
fpga_interchange/luts.cc Normal file
View File

@ -0,0 +1,370 @@
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "nextpnr.h"
#include "luts.h"
#include "log.h"
NEXTPNR_NAMESPACE_BEGIN
bool rotate_and_merge_lut_equation(std::vector<LogicLevel> * result,
const LutBel & lut_bel,
const nextpnr::DynamicBitarray<> &old_equation,
const std::vector<int32_t> &pin_map,
uint32_t used_pins) {
// pin_map maps pin indicies from the old pin to the new pin.
// So a reversal of a LUT4 would have a pin map of:
// pin_map[0] = 3;
// pin_map[1] = 2;
// pin_map[2] = 1;
// pin_map[3] = 0;
size_t bel_width = 1 << lut_bel.pins.size();
for(size_t bel_address = 0; bel_address < bel_width; ++bel_address) {
bool address_reachable = true;
size_t cell_address = 0;
for(size_t bel_pin_idx = 0; bel_pin_idx < lut_bel.pins.size(); ++bel_pin_idx) {
// This address line is 0, so don't translate this bit to the cell
// address.
if((bel_address & (1 << bel_pin_idx)) == 0) {
// This pin is unused, so the line will be tied high, this
// address is unreachable.
if((used_pins & (1 << bel_pin_idx)) == 0) {
address_reachable = false;
break;
}
continue;
}
auto cell_pin_idx = pin_map[bel_pin_idx];
// Is this BEL pin used for this cell?
if(cell_pin_idx < 0) {
// This BEL pin is not used for the LUT cell, skip
continue;
}
cell_address |= (1 << cell_pin_idx);
}
if(!address_reachable) {
continue;
}
bel_address += lut_bel.low_bit;
if(old_equation.get(cell_address)) {
if((*result)[bel_address] == LL_Zero) {
// Output equation has a conflict!
return false;
}
(*result)[bel_address] = LL_One;
} else {
if((*result)[bel_address] == LL_One) {
// Output equation has a conflict!
return false;
}
(*result)[bel_address] = LL_Zero;
}
}
return true;
}
static constexpr bool kCheckOutputEquation = true;
struct LutPin {
struct LutPinUser {
size_t cell_idx;
size_t cell_pin_idx;
};
const NetInfo * net = nullptr;
std::vector<LutPinUser> users;
int32_t min_pin = -1;
int32_t max_pin = -1;
void add_user(const LutBel & lut_bel, size_t cell_idx, size_t cell_pin_idx) {
if(min_pin < 0) {
min_pin = lut_bel.min_pin;
max_pin = lut_bel.max_pin;
}
min_pin = std::max(min_pin, lut_bel.min_pin);
max_pin = std::min(max_pin, lut_bel.max_pin);
users.emplace_back();
users.back().cell_idx = cell_idx;
users.back().cell_pin_idx = cell_pin_idx;
}
bool operator < (const LutPin & other) const {
return max_pin < other.max_pin;
}
};
bool LutMapper::remap_luts(const Context *ctx) {
std::unordered_map<NetInfo*, LutPin> lut_pin_map;
std::vector<const LutBel*> lut_bels;
lut_bels.resize(cells.size());
for(size_t cell_idx = 0; cell_idx < cells.size(); ++cell_idx) {
const CellInfo * cell = cells[cell_idx];
#ifdef DEBUG_LUT_ROTATION
log_info("Mapping %s %s eq = %s at %s\n", cell->type.c_str(ctx), cell->name.c_str(ctx), cell->params.at(ctx->id("INIT")).c_str(), ctx->nameOfBel(cell->bel));
#endif
auto & bel_data = bel_info(ctx->chip_info, cell->bel);
IdString bel_name(bel_data.name);
auto & lut_bel = element.lut_bels.at(bel_name);
lut_bels[cell_idx] = &lut_bel;
for(size_t pin_idx = 0; pin_idx < cell->lut_cell.pins.size(); ++pin_idx) {
IdString lut_pin_name = cell->lut_cell.pins[pin_idx];
const PortInfo & port_info = cell->ports.at(lut_pin_name);
NPNR_ASSERT(port_info.net != nullptr);
auto result = lut_pin_map.emplace(port_info.net, LutPin());
LutPin & lut_pin = result.first->second;
lut_pin.net = port_info.net;
lut_pin.add_user(lut_bel, cell_idx, pin_idx);
}
}
if(lut_pin_map.size() > element.pins.size()) {
// Trival conflict, more nets entering element than pins are
// available!
#ifdef DEBUG_LUT_ROTATION
log_info("Trival failure %zu > %zu, %zu %zu\n",
lut_pin_map.size(), element.pins.size(), element.width, element.lut_bels.size());
#endif
return false;
}
std::vector<LutPin> lut_pins;
lut_pins.reserve(lut_pin_map.size());
for(auto lut_pin_pair : lut_pin_map) {
lut_pins.push_back(std::move(lut_pin_pair.second));
}
lut_pin_map.clear();
std::sort(lut_pins.begin(), lut_pins.end());
std::vector<std::vector<size_t>> cell_to_bel_pin_remaps;
std::vector<std::vector<int32_t>> bel_to_cell_pin_remaps;
cell_to_bel_pin_remaps.resize(cells.size());
bel_to_cell_pin_remaps.resize(cells.size());
for(size_t i = 0; i < cells.size(); ++i) {
cell_to_bel_pin_remaps[i].resize(cells[i]->lut_cell.pins.size());
bel_to_cell_pin_remaps[i].resize(lut_bels[i]->pins.size(), -1);
}
uint32_t used_pins = 0;
size_t idx = 0;
std::vector<IdString> net_pins(lut_pins.size());
for(auto &lut_pin : lut_pins) {
size_t net_idx = idx++;
used_pins |= (1 << net_idx);
for(auto cell_pin_idx : lut_pin.users) {
size_t cell_idx = cell_pin_idx.cell_idx;
size_t pin_idx = cell_pin_idx.cell_pin_idx;
IdString bel_pin = lut_bels[cell_idx]->pins[net_idx];
#ifdef DEBUG_LUT_ROTATION
log_info("%s %s %s => %s (%s)\n",
cells[cell_idx]->type.c_str(ctx),
cells[cell_idx]->name.c_str(ctx),
cells[cell_idx]->lut_cell.pins[pin_idx].c_str(ctx),
bel_pin.c_str(ctx),
lut_pin.net->name.c_str(ctx));
#endif
if(net_pins[net_idx] == IdString()) {
net_pins[net_idx] = bel_pin;
} else {
NPNR_ASSERT(net_pins[net_idx] == bel_pin);
}
cell_to_bel_pin_remaps[cell_idx][pin_idx] = net_idx;
bel_to_cell_pin_remaps[cell_idx][net_idx] = pin_idx;
}
}
// Try to see if the equations are mergable!
std::vector<LogicLevel> equation_result;
equation_result.resize(element.width, LL_DontCare);
for(size_t cell_idx = 0; cell_idx < cells.size(); ++cell_idx) {
const CellInfo * cell = cells[cell_idx];
auto & lut_bel = *lut_bels[cell_idx];
if(!rotate_and_merge_lut_equation(&equation_result,
lut_bel, cell->lut_cell.equation, bel_to_cell_pin_remaps[cell_idx], used_pins)) {
#ifdef DEBUG_LUT_ROTATION
log_info("Failed to find a solution!\n");
for(auto *cell : cells) {
log_info("%s %s : %s\b\n",
cell->type.c_str(ctx),
cell->name.c_str(ctx),
cell->params.at(ctx->id("INIT")).c_str());
}
#endif
return false;
}
}
#ifdef DEBUG_LUT_ROTATION
log_info("Found a solution!\n");
#endif
// Sanity check final equation to make sure no assumptions are violated.
if(kCheckOutputEquation) {
for(size_t cell_idx = 0; cell_idx < cells.size(); ++cell_idx) {
CellInfo * cell = cells[cell_idx];
auto & lut_bel = *lut_bels[cell_idx];
std::unordered_map<IdString, IdString> cell_to_bel_map;
for(size_t pin_idx = 0; pin_idx < cell->lut_cell.pins.size(); ++pin_idx) {
size_t bel_pin_idx = cell_to_bel_pin_remaps[cell_idx][pin_idx];
NPNR_ASSERT(bel_pin_idx < lut_bel.pins.size());
cell_to_bel_map[cell->lut_cell.pins[pin_idx]] = lut_bel.pins[bel_pin_idx];
}
check_equation(cell->lut_cell, cell_to_bel_map, lut_bel, equation_result, used_pins);
}
}
// Push new cell -> BEL pin maps out to cells now that equations have been
// verified!
for(size_t cell_idx = 0; cell_idx < cells.size(); ++cell_idx) {
CellInfo * cell = cells[cell_idx];
auto & lut_bel = *lut_bels[cell_idx];
for(size_t pin_idx = 0; pin_idx < cell->lut_cell.pins.size(); ++pin_idx) {
auto &bel_pins = cell->cell_bel_pins[cell->lut_cell.pins[pin_idx]];
bel_pins.clear();
bel_pins.push_back(lut_bel.pins[cell_to_bel_pin_remaps[cell_idx][pin_idx]]);
}
cell->lut_cell.vcc_pins.clear();
for(size_t bel_pin_idx = 0; bel_pin_idx < lut_bel.pins.size(); ++bel_pin_idx) {
if((used_pins & (1 << bel_pin_idx)) == 0) {
NPNR_ASSERT(bel_to_cell_pin_remaps[cell_idx][bel_pin_idx] == -1);
cell->lut_cell.vcc_pins.emplace(lut_bel.pins[bel_pin_idx]);
}
}
}
return true;
}
void check_equation(
const LutCell & lut_cell,
const std::unordered_map<IdString, IdString> &cell_to_bel_map,
const LutBel & lut_bel,
const std::vector<LogicLevel> &equation,
uint32_t used_pins) {
std::vector<int8_t> pin_map;
pin_map.resize(lut_bel.pins.size(), -1);
NPNR_ASSERT(lut_cell.pins.size() < std::numeric_limits<decltype(pin_map)::value_type>::max());
for(size_t cell_pin_idx = 0; cell_pin_idx < lut_cell.pins.size(); ++cell_pin_idx) {
IdString cell_pin = lut_cell.pins[cell_pin_idx];
IdString bel_pin = cell_to_bel_map.at(cell_pin);
size_t bel_pin_idx = lut_bel.pin_to_index.at(bel_pin);
pin_map[bel_pin_idx] = cell_pin_idx;
}
// Iterate over all BEL addresses in the LUT, and ensure that the original
// LUT equation is respected.
size_t bel_width = 1 << lut_bel.pins.size();
NPNR_ASSERT(lut_bel.low_bit + bel_width == lut_bel.high_bit + 1);
for(size_t bel_address = 0; bel_address < bel_width; ++bel_address) {
LogicLevel level = equation[bel_address + lut_bel.low_bit];
bool address_reachable = true;
size_t cell_address = 0;
for(size_t bel_pin_idx = 0; bel_pin_idx < lut_bel.pins.size(); ++bel_pin_idx) {
// This address line is 0, so don't translate this bit to the cell
// address.
if((bel_address & (1 << bel_pin_idx)) == 0) {
// This pin is unused, so the line will be tied high, this
// address is unreachable.
if((used_pins & (1 << bel_pin_idx)) == 0) {
address_reachable = false;
break;
}
continue;
}
auto cell_pin_idx = pin_map[bel_pin_idx];
// Is this BEL pin used for this cell?
if(cell_pin_idx < 0) {
// This BEL pin is not used for the LUT cell, skip
continue;
}
cell_address |= (1 << cell_pin_idx);
}
if(!address_reachable) {
continue;
}
if(lut_cell.equation.get(cell_address)) {
NPNR_ASSERT(level == LL_One);
} else {
NPNR_ASSERT(level == LL_Zero);
}
}
}
void LutElement::compute_pin_order() {
pins.clear();
pin_to_index.clear();
for(auto & lut_bel_pair : lut_bels) {
auto & lut_bel = lut_bel_pair.second;
for(size_t pin_idx = 0; pin_idx < lut_bel.pins.size(); ++pin_idx) {
IdString pin = lut_bel.pins[pin_idx];
auto result = pin_to_index.emplace(pin, pin_idx);
if(!result.second) {
// Not sure when this isn't true, but check it for now!
NPNR_ASSERT(result.first->second == pin_idx);
}
}
}
pins.resize(pin_to_index.size());
for(auto &pin_pair : pin_to_index) {
pins.at(pin_pair.second) = pin_pair.first;
}
for(auto & lut_bel_pair : lut_bels) {
auto & lut_bel = lut_bel_pair.second;
lut_bel.min_pin = pin_to_index.at(lut_bel.pins.front());
lut_bel.max_pin = pin_to_index.at(lut_bel.pins.back());
}
}
NEXTPNR_NAMESPACE_END

101
fpga_interchange/luts.h Normal file
View File

@ -0,0 +1,101 @@
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef NEXTPNR_H
#error Include "luts.h" via "nextpnr.h" only.
#endif
#include "dynamic_bitarray.h"
#ifndef LUTS_H
#define LUTS_H
NEXTPNR_NAMESPACE_BEGIN
struct CellInfo;
struct Context;
enum LogicLevel {
LL_Zero,
LL_One,
LL_DontCare
};
struct LutCell {
// LUT cell pins for equation, LSB first.
std::vector<IdString> pins;
std::unordered_set<IdString> lut_pins;
std::unordered_set<IdString> vcc_pins;
nextpnr::DynamicBitarray<> equation;
};
struct LutBel {
// LUT BEL pins to LUT array index.
std::vector<IdString> pins;
std::unordered_map<IdString, size_t> pin_to_index;
// What part of the LUT equation does this LUT output use?
// This assumes contiguous LUT bits.
uint32_t low_bit;
uint32_t high_bit;
int32_t min_pin;
int32_t max_pin;
};
// Work forward from cell definition and cell -> bel pin map and check that
// equation is valid.
void check_equation(
const LutCell & lut_cell,
const std::unordered_map<IdString, IdString> &cell_to_bel_map,
const LutBel & lut_bel,
const std::vector<LogicLevel> &equation,
uint32_t used_pins);
struct LutElement {
size_t width;
std::unordered_map<IdString, LutBel> lut_bels;
void compute_pin_order();
std::vector<IdString> pins;
std::unordered_map<IdString, size_t> pin_to_index;
};
struct LutMapper {
LutMapper(const LutElement & element) : element(element) {}
const LutElement & element;
std::vector<CellInfo*> cells;
bool remap_luts(const Context *ctx);
};
// Rotate and merge a LUT equation into an array of levels.
//
// If a conflict arises, return false and result is in an indeterminate state.
bool rotate_and_merge_lut_equation(std::vector<LogicLevel> * result,
const LutBel & lut_bel,
const nextpnr::DynamicBitarray<> &old_equation,
const std::vector<size_t> &pin_map,
uint32_t used_pins);
NEXTPNR_NAMESPACE_END
#endif /* LUTS_H */

View File

@ -747,17 +747,42 @@ bool SiteRouter::checkSiteRouting(const Context *ctx, const TileStatus &tile_sta
return site_ok;
}
}
//
// FIXME: Populate "consumed_wires" with all VCC/GND tied in the site.
// This will allow route_site to leverage site local constant sources.
//
// FIXME: Handle case where a constant is requested, but use of an
// inverter is possible. This is the place to handle "bestConstant"
// (e.g. route VCC's over GND's, etc).
//
// FIXME: Enable some LUT rotation!
// Default cell/bel pin map always uses high pins, which will generate
// conflicts where there are none!!!
auto tile_type_idx = ctx->chip_info->tiles[tile].type;
const std::vector<LutElement> &lut_elements = ctx->lut_elements.at(tile_type_idx);
std::vector<LutMapper> lut_mappers;
lut_mappers.reserve(lut_elements.size());
for (size_t i = 0; i < lut_elements.size(); ++i) {
lut_mappers.push_back(LutMapper(lut_elements[i]));
}
for (CellInfo *cell : cells_in_site) {
if (cell->lut_cell.pins.empty()) {
continue;
}
BelId bel = cell->bel;
const auto &bel_data = bel_info(ctx->chip_info, bel);
if (bel_data.lut_element != -1) {
lut_mappers[bel_data.lut_element].cells.push_back(cell);
}
}
for (LutMapper lut_mapper : lut_mappers) {
if (lut_mapper.cells.empty()) {
continue;
}
if (!lut_mapper.remap_luts(ctx)) {
return false;
}
}
SiteInformation site_info(ctx, cells_in_site);

View File

@ -22,6 +22,9 @@
#error Include "site_router.h" via "nextpnr.h" only.
#endif
#ifndef SITE_ROUTER_H
#define SITE_ROUTER_H
NEXTPNR_NAMESPACE_BEGIN
struct Context;
@ -43,3 +46,5 @@ struct SiteRouter
};
NEXTPNR_NAMESPACE_END
#endif /* SITE_ROUTER_H */