Decoupled critical path report generation from its printing

Signed-off-by: Maciej Kurc <mkurc@antmicro.com>
This commit is contained in:
Maciej Kurc 2021-09-10 14:04:41 +02:00
parent 12adbb81b1
commit d8571b6c00

View File

@ -640,6 +640,30 @@ struct CriticalPath
typedef dict<ClockPair, CriticalPath> CriticalPathMap; typedef dict<ClockPair, CriticalPath> CriticalPathMap;
struct CriticalPathSegment
{
enum class Type {
LOGIC,
ROUTING
};
std::pair<CellInfo*,IdString> from;
std::pair<CellInfo*,IdString> to;
Type type;
const NetInfo* net;
delay_t delay;
delay_t budget;
};
typedef std::vector<CriticalPathSegment> CriticalPathSegments;
struct CriticalPathReport
{
ClockPair clock_pair;
CriticalPathSegments segments;
delay_t period;
};
typedef dict<ClockPair, CriticalPathReport> CriticalPathReportMap;
struct NetSinkTiming struct NetSinkTiming
{ {
ClockPair clock_pair; ClockPair clock_pair;
@ -1141,9 +1165,101 @@ void assign_budget(Context *ctx, bool quiet)
void write_timing_report( void write_timing_report(
Context* ctx, Context* ctx,
const std::string& file_name, const std::string& file_name,
const std::map<IdString, CriticalPathReport> clock_reports,
const std::vector<CriticalPathReport> xclock_reports,
const DetailedNetTimings& detailed_net_timings const DetailedNetTimings& detailed_net_timings
); );
CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, const PortRefVector &crit_path) {
CriticalPathReport report;
report.clock_pair = clocks;
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
int port_clocks;
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
const CellInfo* last_cell = front->cell;
IdString last_port = front_driver.port;
int clock_start = -1;
if (portClass == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
if (clknet != nullptr && clknet->name == clocks.start.clock &&
clockInfo.edge == clocks.start.edge) {
last_port = clockInfo.clock_port;
clock_start = i;
break;
}
}
}
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
DelayQuad comb_delay;
if (clock_start != -1) {
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
comb_delay = clockInfo.clockToQ;
clock_start = -1;
} else if (last_port == driver.port) {
// Case where we start with a STARTPOINT etc
comb_delay = DelayQuad(0);
} else {
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
}
CriticalPathSegment seg_logic;
seg_logic.type = CriticalPathSegment::Type::LOGIC;
seg_logic.delay = comb_delay.maxDelay();
seg_logic.budget = 0;
seg_logic.from = std::make_pair(const_cast<CellInfo*>(last_cell), last_port);
seg_logic.to = std::make_pair(driver_cell, driver.port);
seg_logic.net = nullptr;
report.segments.push_back(seg_logic);
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
CriticalPathSegment seg_route;
seg_route.type = CriticalPathSegment::Type::ROUTING;
seg_route.delay = net_delay;
seg_route.budget = sink->budget;
seg_route.from = std::make_pair(driver_cell, driver.port);
seg_route.to = std::make_pair(sink_cell, sink->port);
seg_route.net = net;
report.segments.push_back(seg_route);
last_cell = sink_cell;
last_port = sink->port;
}
int clockCount = 0;
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay();
CriticalPathSegment seg_logic;
seg_logic.type = CriticalPathSegment::Type::LOGIC;
seg_logic.delay = setup;
seg_logic.budget = 0;
seg_logic.from = std::make_pair(nullptr, IdString());
seg_logic.to = std::make_pair(const_cast<CellInfo*>(last_cell), last_port);
seg_logic.net = nullptr;
report.segments.push_back(seg_logic);
}
return report;
}
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool write_report) void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool write_report)
{ {
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) { auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
@ -1164,11 +1280,17 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr, Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
print_histogram ? &slack_histogram : nullptr, write_report ? &detailed_net_timings : nullptr); print_histogram ? &slack_histogram : nullptr, write_report ? &detailed_net_timings : nullptr);
timing.walk_paths(); timing.walk_paths();
std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports;
bool report_critical_paths = print_path || print_fmax || write_report;
std::map<IdString, CriticalPathReport> clock_reports;
std::vector<CriticalPathReport> xclock_reports;
std::map<IdString, double> clock_fmax; std::map<IdString, double> clock_fmax;
std::vector<ClockPair> xclock_paths;
std::set<IdString> empty_clocks; // set of clocks with no interior paths std::set<IdString> empty_clocks; // set of clocks with no interior paths
if (print_path || print_fmax) {
if (report_critical_paths) {
for (auto path : crit_paths) { for (auto path : crit_paths) {
const ClockEvent &a = path.first.start; const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end; const ClockEvent &b = path.first.end;
@ -1187,8 +1309,9 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
else else
Fmax = 500 / ctx->getDelayNS(path.second.path_delay); Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) { if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) {
clock_reports[a.clock] = path;
clock_fmax[a.clock] = Fmax; clock_fmax[a.clock] = Fmax;
clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports);
clock_reports[a.clock].period = path.second.path_period;
} }
} }
@ -1197,14 +1320,21 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
const ClockEvent &b = path.first.end; const ClockEvent &b = path.first.end;
if (a.clock == b.clock && a.clock != ctx->id("$async$")) if (a.clock == b.clock && a.clock != ctx->id("$async$"))
continue; continue;
xclock_paths.push_back(path.first);
auto &crit_path = crit_paths.at(path.first).ports;
xclock_reports.push_back(build_critical_path_report(ctx, path.first, crit_path));
xclock_reports.back().period = path.second.path_period;
} }
if (clock_reports.empty()) { if (clock_reports.empty()) {
log_info("No Fmax available; no interior timing paths found in design.\n"); log_info("No Fmax available; no interior timing paths found in design.\n");
} }
std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) { std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPathReport &ra, const CriticalPathReport &rb) {
const auto& a = ra.clock_pair;
const auto& b = rb.clock_pair;
if (a.start.clock.str(ctx) < b.start.clock.str(ctx)) if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
return true; return true;
if (a.start.clock.str(ctx) > b.start.clock.str(ctx)) if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
@ -1223,124 +1353,86 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
}); });
} }
// Print critical paths
if (print_path) { if (print_path) {
static auto print_net_source = [](Context *ctx, NetInfo *net) {
// Check if this net is annotated with a source list
auto sources = net->attrs.find(ctx->id("src"));
if (sources == net->attrs.end()) {
// No sources for this net, can't print anything
return;
}
// Sources are separated by pipe characters. auto print_path_report = [ctx](const CriticalPathReport& report) {
// There is no guaranteed ordering on sources, so we just print all
auto sourcelist = sources->second.as_string();
std::vector<std::string> source_entries;
size_t current = 0, prev = 0;
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
prev = current + 1;
}
// Ensure we emplace the final entry
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
// Iterate and print our source list at the correct indentation level
log_info(" Defined in:\n");
for (auto entry : source_entries) {
log_info(" %s\n", entry.c_str());
}
};
auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) {
delay_t total = 0, logic_total = 0, route_total = 0; delay_t total = 0, logic_total = 0, route_total = 0;
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
int port_clocks;
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
IdString last_port = front_driver.port;
int clock_start = -1;
if (portClass == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
if (clknet != nullptr && clknet->name == clocks.start.clock &&
clockInfo.edge == clocks.start.edge) {
last_port = clockInfo.clock_port;
clock_start = i;
break;
}
}
}
log_info("curr total\n"); log_info("curr total\n");
for (auto sink : crit_path) { for (const auto& segment : report.segments) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port); total += segment.delay;
auto net = port.net;
auto &driver = net->driver; if (segment.type == CriticalPathSegment::Type::LOGIC) {
auto driver_cell = driver.cell; logic_total += segment.delay;
DelayQuad comb_delay; if (segment.from.first != nullptr) {
if (clock_start != -1) { log_info("%4.1f %4.1f Source %s.%s\n",
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start); ctx->getDelayNS(segment.delay),
comb_delay = clockInfo.clockToQ; ctx->getDelayNS(total),
clock_start = -1; segment.from.first->name.c_str(ctx),
} else if (last_port == driver.port) { segment.from.second.c_str(ctx)
// Case where we start with a STARTPOINT etc );
comb_delay = DelayQuad(0); }
} else { else {
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay); log_info("%4.1f %4.1f Setup %s.%s\n",
} ctx->getDelayNS(segment.delay),
total += comb_delay.maxDelay(); ctx->getDelayNS(total),
logic_total += comb_delay.maxDelay(); segment.to.first->name.c_str(ctx),
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total), segment.to.second.c_str(ctx)
driver_cell->name.c_str(ctx), driver.port.c_str(ctx)); );
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
total += net_delay;
route_total += net_delay;
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
if (ctx->verbose) {
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, *sink, 0);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictDelay(net, *sink)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
#ifdef ARCH_ECP5
if (net->is_global)
break;
#endif
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
cursor = ctx->getPipSrcWire(pip);
} }
} }
if (!ctx->disable_critical_path_source_print) {
print_net_source(ctx, net); if (segment.type == CriticalPathSegment::Type::ROUTING) {
route_total += segment.delay;
auto driver_loc = ctx->getBelLocation(segment.from.first->bel);
auto sink_loc = ctx->getBelLocation(segment.to.first->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n",
ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total),
segment.net->name.c_str(ctx),
ctx->getDelayNS(segment.budget),
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y
);
log_info(" Sink %s.%s\n",
segment.to.first->name.c_str(ctx),
segment.to.second.c_str(ctx)
);
if (ctx->verbose) {
PortRef sink;
sink.cell = segment.to.first;
sink.port = segment.to.second;
sink.budget = segment.budget;
auto net = segment.net;
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, sink, 0);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictDelay(net, sink)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
#ifdef ARCH_ECP5
if (net->is_global)
break;
#endif
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
cursor = ctx->getPipSrcWire(pip);
}
}
} }
last_port = sink->port;
}
int clockCount = 0;
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay();
total += setup;
logic_total += setup;
log_info("%4.1f %4.1f Setup %s.%s\n", ctx->getDelayNS(setup), ctx->getDelayNS(total),
crit_path.back()->cell->name.c_str(ctx), crit_path.back()->port.c_str(ctx));
} }
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total)); log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
}; };
@ -1348,24 +1440,24 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
for (auto &clock : clock_reports) { for (auto &clock : clock_reports) {
log_break(); log_break();
std::string start = std::string start =
clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge"); clock.second.clock_pair.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
std::string end = std::string end =
clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge"); clock.second.clock_pair.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(), log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str()); end.c_str());
auto &crit_path = clock.second.second.ports; auto &report = clock.second;
print_path_report(clock.second.first, crit_path); print_path_report(report);
} }
for (auto &xclock : xclock_paths) { for (auto &report : xclock_reports) {
log_break(); log_break();
std::string start = format_event(xclock.start); std::string start = format_event(report.clock_pair.start);
std::string end = format_event(xclock.end); std::string end = format_event(report.clock_pair.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str()); log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
auto &crit_path = crit_paths.at(xclock).ports; print_path_report(report);
print_path_report(xclock, crit_path);
} }
} }
if (print_fmax) { if (print_fmax) {
log_break(); log_break();
unsigned max_width = 0; unsigned max_width = 0;
@ -1401,17 +1493,20 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
log_break(); log_break();
int start_field_width = 0, end_field_width = 0; int start_field_width = 0, end_field_width = 0;
for (auto &xclock : xclock_paths) { for (auto &report : xclock_reports) {
start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width); start_field_width = std::max((int)format_event(report.clock_pair.start).length(), start_field_width);
end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width); end_field_width = std::max((int)format_event(report.clock_pair.end).length(), end_field_width);
} }
for (auto &xclock : xclock_paths) { for (auto &report : xclock_reports) {
const ClockEvent &a = xclock.start; const ClockEvent &a = report.clock_pair.start;
const ClockEvent &b = xclock.end; const ClockEvent &b = report.clock_pair.end;
auto &path = crit_paths.at(xclock); delay_t path_delay = 0;
for (const auto& segment : report.segments) {
path_delay += segment.delay;
}
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width); auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay)); log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path_delay));
} }
log_break(); log_break();
} }
@ -1455,14 +1550,20 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
} }
if (!report_file.empty()) { if (!report_file.empty()) {
log_info("\nWriting timing analysis report...\n"); log_break();
write_timing_report(ctx, report_file, detailed_net_timings); log_info("Writing timing analysis report...\n");
write_timing_report(ctx, report_file,
clock_reports,
xclock_reports,
detailed_net_timings);
} }
} }
void write_timing_report( void write_timing_report(
Context* ctx, Context* ctx,
const std::string& file_name, const std::string& file_name,
const std::map<IdString, CriticalPathReport> clock_reports,
const std::vector<CriticalPathReport> xclock_reports,
const DetailedNetTimings& detailed_net_timings const DetailedNetTimings& detailed_net_timings
) )
{ {
@ -1486,11 +1587,39 @@ void write_timing_report(
return value; return value;
}; };
// auto report_critical_path = [ctx](const ClockPair &clocks, const PortRefVector &path) {
// }
// Open the file // Open the file
FILE* fp = fopen(file_name.c_str(), "w"); FILE* fp = fopen(file_name.c_str(), "w");
NPNR_ASSERT(fp != nullptr); NPNR_ASSERT(fp != nullptr);
// Detailed net timing analysis // Critical paths
auto critPathsJson = Json::array();
for (auto &report : clock_reports) {
critPathsJson.push_back(Json::object({
{"from", event_name(report.second.clock_pair.start)},
{"to", event_name(report.second.clock_pair.end)},
{"path", Json()}
}));
//auto &crit_path = clock.second.second.ports;
//print_path_report(clock.second.first, crit_path);
}
// Cross-domain paths
for (auto &report : xclock_reports) {
critPathsJson.push_back(Json::object({
{"from", event_name(report.clock_pair.start)},
{"to", event_name(report.clock_pair.end)},
{"path", Json()}
}));
// auto &crit_path = crit_paths.at(xclock).ports;
// print_path_report(xclock, crit_path);
}
// Detailed per-net timing analysis
auto detailedNetTimingsJson = Json::array(); auto detailedNetTimingsJson = Json::array();
for (const auto& it : detailed_net_timings) { for (const auto& it : detailed_net_timings) {
const NetInfo* net = it.first; const NetInfo* net = it.first;
@ -1524,6 +1653,7 @@ void write_timing_report(
} }
auto analysisJson = Json::object({ auto analysisJson = Json::object({
{"critical_paths", Json(critPathsJson)},
{"detailed_net_timings", Json(detailedNetTimingsJson)} {"detailed_net_timings", Json(detailedNetTimingsJson)}
}); });