Refactor timing.cc into Timing class

This commit is contained in:
Eddie Hung 2018-08-03 22:39:25 -07:00
parent 80e6b17ec9
commit ecb264d002
4 changed files with 114 additions and 103 deletions

View File

@ -272,7 +272,7 @@ class SAPlacer
} }
} }
} }
timing_analysis(ctx, true /* print_fmax */); timing_analysis(ctx);
ctx->unlock(); ctx->unlock();
return true; return true;
} }

View File

@ -933,7 +933,7 @@ bool router1(Context *ctx, const Router1Cfg &cfg)
#ifndef NDEBUG #ifndef NDEBUG
ctx->check(); ctx->check();
#endif #endif
timing_analysis(ctx, true /* print_fmax */, true /* print_path */); timing_analysis(ctx, true /* print_path */);
ctx->unlock(); ctx->unlock();
return true; return true;
} catch (log_execution_error_exception) { } catch (log_execution_error_exception) {

View File

@ -26,100 +26,114 @@
NEXTPNR_NAMESPACE_BEGIN NEXTPNR_NAMESPACE_BEGIN
typedef std::list<const PortRef *> PortRefList; typedef std::vector<const PortRef*> PortRefVector;
static delay_t follow_net(Context *ctx, NetInfo *net, int path_length, delay_t slack, bool update, delay_t &min_slack, struct Timing
PortRefList *current_path, PortRefList *crit_path);
// Follow a path, returning budget to annotate
static delay_t follow_user_port(Context *ctx, PortRef &user, int path_length, delay_t slack, bool update,
delay_t &min_slack, PortRefList *current_path, PortRefList *crit_path)
{ {
delay_t value; Context *ctx;
if (ctx->getPortClock(user.cell, user.port) != IdString()) { bool update;
// At the end of a timing path (arguably, should check setup time delay_t min_slack;
// here too) PortRefVector current_path;
value = slack / path_length; PortRefVector *crit_path;
if (slack < min_slack) {
min_slack = slack; Timing(Context *ctx, bool update, PortRefVector *crit_path = nullptr): ctx(ctx), update(update), min_slack(1.0e12 / ctx->target_freq), crit_path(crit_path) {}
delay_t follow_net(NetInfo *net, int path_length, delay_t slack)
{
delay_t net_budget = slack / (path_length + 1);
for (auto &usr : net->users) {
if (crit_path) if (crit_path)
*crit_path = *current_path; current_path.push_back(&usr);
// If budget override is less than existing budget, then do not increment path length
int pl = path_length + 1;
auto budget = ctx->getBudgetOverride(net, usr, net_budget);
if (budget < net_budget) {
net_budget = budget;
pl = std::max(1, path_length);
}
auto delay = ctx->getNetinfoRouteDelay(net, usr);
net_budget = std::min(
net_budget, follow_user_port(usr, pl, slack - delay));
if (update)
usr.budget = std::min(usr.budget, delay + net_budget);
if (crit_path)
current_path.pop_back();
} }
} else { return net_budget;
// Default to the path ending here, if no further paths found }
value = slack / path_length;
// Follow outputs of the user // Follow a path, returning budget to annotate
for (auto port : user.cell->ports) { delay_t follow_user_port(PortRef &user, int path_length, delay_t slack)
if (port.second.type == PORT_OUT) { {
DelayInfo comb_delay; delay_t value;
// Look up delay through this path if (ctx->getPortClock(user.cell, user.port) != IdString()) {
bool is_path = ctx->getCellDelay(user.cell, user.port, port.first, comb_delay); // At the end of a timing path (arguably, should check setup time
if (is_path) { // here too)
NetInfo *net = port.second.net; value = slack / path_length;
if (net) { if (slack < min_slack) {
delay_t path_budget = follow_net(ctx, net, path_length, slack - comb_delay.maxDelay(), update, min_slack = slack;
min_slack, current_path, crit_path); if (crit_path)
value = std::min(value, path_budget); *crit_path = current_path;
}
} else {
// Default to the path ending here, if no further paths found
value = slack / path_length;
// Follow outputs of the user
for (auto port : user.cell->ports) {
if (port.second.type == PORT_OUT) {
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(user.cell, user.port, port.first, comb_delay);
if (is_path) {
NetInfo *net = port.second.net;
if (net) {
delay_t path_budget = follow_net(net, path_length, slack - comb_delay.maxDelay());
value = std::min(value, path_budget);
}
} }
} }
} }
} }
return value;
} }
return value;
}
static delay_t follow_net(Context *ctx, NetInfo *net, int path_length, delay_t slack, bool update, delay_t &min_slack, delay_t walk_paths()
PortRefList *current_path, PortRefList *crit_path) {
{ delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
delay_t net_budget = slack / (path_length + 1);
for (auto &usr : net->users) { // Go through all clocked drivers and distribute the available path
if (crit_path) // slack evenly into the budget of every sink on the path
current_path->push_back(&usr); for (auto &cell : ctx->cells) {
// If budget override is less than existing budget, then do not increment path length for (auto port : cell.second->ports) {
int pl = path_length + 1; if (port.second.type == PORT_OUT) {
auto budget = ctx->getBudgetOverride(net, usr, net_budget); IdString clock_domain = ctx->getPortClock(cell.second.get(), port.first);
if (budget < net_budget) { if (clock_domain != IdString()) {
net_budget = budget; delay_t slack = default_slack; // TODO: clock constraints
pl = std::max(1, path_length); DelayInfo clkToQ;
} if (ctx->getCellDelay(cell.second.get(), clock_domain, port.first, clkToQ))
auto delay = ctx->getNetinfoRouteDelay(net, usr); slack -= clkToQ.maxDelay();
net_budget = std::min( if (port.second.net)
net_budget, follow_user_port(ctx, usr, pl, slack - delay, update, min_slack, current_path, crit_path)); follow_net(port.second.net, 0, slack);
if (update) }
usr.budget = std::min(usr.budget, delay + net_budget);
if (crit_path)
current_path->pop_back();
}
return net_budget;
}
static delay_t walk_paths(Context *ctx, bool update, PortRefList *crit_path)
{
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
delay_t min_slack = default_slack;
PortRefList current_path;
// Go through all clocked drivers and distribute the available path
// slack evenly into the budget of every sink on the path
for (auto &cell : ctx->cells) {
for (auto port : cell.second->ports) {
if (port.second.type == PORT_OUT) {
IdString clock_domain = ctx->getPortClock(cell.second.get(), port.first);
if (clock_domain != IdString()) {
delay_t slack = default_slack; // TODO: clock constraints
DelayInfo clkToQ;
if (ctx->getCellDelay(cell.second.get(), clock_domain, port.first, clkToQ))
slack -= clkToQ.maxDelay();
if (port.second.net)
follow_net(ctx, port.second.net, 0, slack, update, min_slack, &current_path, crit_path);
} }
} }
} }
return min_slack;
} }
return min_slack; void assign_budget()
} {
// Clear delays to a very high value first
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = default_slack;
}
}
walk_paths();
}
};
void assign_budget(Context *ctx, bool quiet) void assign_budget(Context *ctx, bool quiet)
{ {
@ -128,15 +142,9 @@ void assign_budget(Context *ctx, bool quiet)
log_info("Annotating ports with timing budgets\n"); log_info("Annotating ports with timing budgets\n");
} }
// Clear delays to a very high value first Timing timing(ctx, true /* update */);
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq); timing.assign_budget();
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = default_slack;
}
}
delay_t min_slack = walk_paths(ctx, true, nullptr);
if (!quiet || ctx->verbose) { if (!quiet || ctx->verbose) {
for (auto &net : ctx->nets) { for (auto &net : ctx->nets) {
@ -160,21 +168,24 @@ void assign_budget(Context *ctx, bool quiet)
// dynamically adjust the target frequency to be the currently // dynamically adjust the target frequency to be the currently
// achieved maximum // achieved maximum
if (!ctx->user_freq && ctx->slack_redist_iter > 0) { if (!ctx->user_freq && ctx->slack_redist_iter > 0) {
ctx->target_freq = 1e12 / (default_slack - min_slack); delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
/*if (ctx->verbose)*/ ctx->target_freq = 1e12 / (default_slack - timing.min_slack);
log_info("minimum slack for this assign = %d, target Fmax for next update = %.2f MHz\n", min_slack, if (ctx->verbose)
ctx->target_freq / 1e6); log_info("minimum slack for this assign = %d, target Fmax for next update = %.2f MHz\n", timing.min_slack,
ctx->target_freq / 1e6);
} }
if (!quiet) if (!quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum()); log_info("Checksum: 0x%08x\n", ctx->checksum());
} }
delay_t timing_analysis(Context *ctx, bool print_fmax, bool print_path) void timing_analysis(Context *ctx, bool print_path)
{ {
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq); PortRefVector crit_path;
PortRefList crit_path;
delay_t min_slack = walk_paths(ctx, false, &crit_path); Timing timing(ctx, false /* update */, &crit_path);
auto min_slack = timing.walk_paths();
if (print_path) { if (print_path) {
if (crit_path.empty()) { if (crit_path.empty()) {
log_info("Design contains no timing paths\n"); log_info("Design contains no timing paths\n");
@ -211,9 +222,9 @@ delay_t timing_analysis(Context *ctx, bool print_fmax, bool print_path)
log_break(); log_break();
} }
} }
if (print_fmax)
log_info("estimated Fmax = %.2f MHz\n", 1e6 / (default_slack - min_slack)); delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
return min_slack; log_info("estimated Fmax = %.2f MHz\n", 1e6 / (default_slack - min_slack));
} }
NEXTPNR_NAMESPACE_END NEXTPNR_NAMESPACE_END

View File

@ -27,9 +27,9 @@ NEXTPNR_NAMESPACE_BEGIN
// Evenly redistribute the total path slack amongst all sinks on each path // Evenly redistribute the total path slack amongst all sinks on each path
void assign_budget(Context *ctx, bool quiet = false); void assign_budget(Context *ctx, bool quiet = false);
// Perform timing analysis and return the minimum path slack, // Perform timing analysis and print out the fmax, and optionally the
// optionally, print out the fmax and critical path // critical path
delay_t timing_analysis(Context *ctx, bool print_fmax = false, bool print_path = false); void timing_analysis(Context *ctx, bool print_path = false);
NEXTPNR_NAMESPACE_END NEXTPNR_NAMESPACE_END