Add new iCE40 delay estimator and delay predictor

Signed-off-by: Clifford Wolf <clifford@clifford.at>
This commit is contained in:
Clifford Wolf 2018-08-04 19:50:49 +02:00
parent 67347573c2
commit f6b3333a7d
5 changed files with 341 additions and 119 deletions

View File

@ -639,64 +639,6 @@ std::vector<GroupId> Arch::getGroupGroups(GroupId group) const
// -----------------------------------------------------------------------
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
const auto &driver = net_info->driver;
auto driver_loc = getBelLocation(driver.cell->bel);
auto sink_loc = getBelLocation(sink.cell->bel);
if (driver.port == id_cout) {
if (driver_loc.y == sink_loc.y)
return 0;
return 250;
}
#if 1
int xd = sink_loc.x - driver_loc.x, yd = sink_loc.y - driver_loc.y;
int xscale = 120, yscale = 120, offset = 0;
// if (chip_info->wire_data[src.index].type == WIRE_TYPE_SP4_VERT) {
// yd = yd < -4 ? yd + 4 : (yd < 0 ? 0 : yd);
// offset = 500;
// }
if (driver.port == id_o)
offset += 330;
if (sink.port == id_i0 || sink.port == id_i1 || sink.port == id_i2 || sink.port == id_i3)
offset += 260;
return xscale * abs(xd) + yscale * abs(yd) + offset;
#else
float model1_param_offset = 902.1066988;
float model1_param_norm1 = 169.80428447;
float model1_param_norm2 = -503.28635487;
float model1_param_norm3 = 402.96583807;
float model2_param_offset = -1.09578873e+03;
float model2_param_linear = 5.01094876e-01;
float model2_param_sqrt = 4.71761281e+01;
float dx = fabsf(sink_loc.x - driver_loc.x);
float dy = fabsf(sink_loc.y - driver_loc.y);
float norm1 = dx + dy;
float dx2 = dx * dx;
float dy2 = dy * dy;
float norm2 = sqrtf(dx2 + dy2);
float dx3 = dx2 * dx;
float dy3 = dy2 * dy;
float norm3 = powf(dx3 + dy3, 1.0/3.0);
float v = model1_param_offset;
v += model1_param_norm1 * norm1;
v += model1_param_norm2 * norm2;
v += model1_param_norm3 * norm3;
return model2_param_offset + model2_param_linear * v + model2_param_sqrt * sqrtf(v);
#endif
}
delay_t Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t budget) const
{
const auto &driver = net_info->driver;

View File

@ -120,9 +120,8 @@ NPNR_PACKED_STRUCT(struct WireInfoPOD {
int32_t fast_delay;
int32_t slow_delay;
int8_t x, y;
int8_t x, y, z;
WireType type;
int8_t padding_0;
});
NPNR_PACKED_STRUCT(struct PackagePinPOD {

View File

@ -1123,8 +1123,8 @@ for wire, info in enumerate(wireinfo):
bba.u8(info["x"], "x")
bba.u8(info["y"], "y")
bba.u8(0, "z") # FIXME
bba.u8(wiretypes[wire_type(info["name"])], "type")
bba.u8(0, "padding")
for wire in range(num_wires):
if len(wire_segments[wire]):

View File

@ -23,7 +23,7 @@
NEXTPNR_NAMESPACE_BEGIN
#define NUM_FUZZ_ROUTES 100000
#define NUM_FUZZ_ROUTES 1000
void ice40DelayFuzzerMain(Context *ctx)
{
@ -101,20 +101,145 @@ void ice40DelayFuzzerMain(Context *ctx)
}
}
namespace {
struct model_params_t {
int neighbourhood;
int model0_offset;
int model0_norm1;
int model1_offset;
int model1_norm1;
int model1_norm2;
int model1_norm3;
int model2_offset;
int model2_linear;
int model2_sqrt;
int delta_local;
int delta_lutffin;
int delta_sp4;
int delta_sp12;
static const model_params_t &get(ArchArgs args)
{
static const model_params_t model_hx8k = {
588, 129253, 8658,
118333, 23915, -73105, 57696,
-86797, 89, 3706,
-316, -575, -158, -296
};
static const model_params_t model_lp8k = {
867, 206236, 11043,
191910, 31074, -95972, 75739,
-309793, 30, 11056,
-474, -856, -363, -536
};
static const model_params_t model_up5k = {
1761, 305798, 16705,
296830, 24430, -40369, 33038,
-162662, 94, 4705,
-1099, -1761, -418, -838
};
if (args.type == ArchArgs::HX1K || args.type == ArchArgs::HX8K)
return model_hx8k;
if (args.type == ArchArgs::LP384 || args.type == ArchArgs::LP1K || args.type == ArchArgs::LP8K)
return model_lp8k;
if (args.type == ArchArgs::UP5K)
return model_up5k;
NPNR_ASSERT(0);
}
};
} // namespace
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
NPNR_ASSERT(src != WireId());
int x1 = chip_info->wire_data[src.index].x;
int y1 = chip_info->wire_data[src.index].y;
int z1 = chip_info->wire_data[src.index].z;
int type = chip_info->wire_data[src.index].type;
NPNR_ASSERT(dst != WireId());
int x2 = chip_info->wire_data[dst.index].x;
int y2 = chip_info->wire_data[dst.index].y;
int z2 = chip_info->wire_data[dst.index].z;
int xd = x2 - x1, yd = y2 - y1;
int xscale = 120, yscale = 120, offset = 0;
int dx = abs(x2 - x1);
int dy = abs(y2 - y1);
return xscale * abs(xd) + yscale * abs(yd) + offset;
const model_params_t &p = model_params_t::get(args);
delay_t v = p.neighbourhood;
if (dx > 1 || dy > 1)
v = (p.model0_offset + p.model0_norm1 * (dx + dy)) / 128;
if (type == WireInfoPOD::WIRE_TYPE_LOCAL)
v += p.delta_local;
if (type == WireInfoPOD::WIRE_TYPE_LUTFF_IN || type == WireInfoPOD::WIRE_TYPE_LUTFF_IN_LUT)
v += (z1 == z2) ? p.delta_lutffin : 1000;
if (type == WireInfoPOD::WIRE_TYPE_SP4_V || type == WireInfoPOD::WIRE_TYPE_SP4_H)
v += p.delta_sp4;
if (type == WireInfoPOD::WIRE_TYPE_SP12_V || type == WireInfoPOD::WIRE_TYPE_SP12_H)
v += p.delta_sp12;
return v;
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
const auto &driver = net_info->driver;
auto driver_loc = getBelLocation(driver.cell->bel);
auto sink_loc = getBelLocation(sink.cell->bel);
if (driver.port == id_cout) {
if (driver_loc.y == sink_loc.y)
return 0;
return 250;
}
int dx = abs(sink_loc.x - driver_loc.x);
int dy = abs(sink_loc.y - driver_loc.y);
const model_params_t &p = model_params_t::get(args);
if (dx <= 1 && dy <= 1)
return p.neighbourhood;
float norm1 = dx + dy;
float dx2 = dx * dx;
float dy2 = dy * dy;
float norm2 = sqrtf(dx2 + dy2);
float dx3 = dx2 * dx;
float dy3 = dy2 * dy;
float norm3 = powf(dx3 + dy3, 1.0/3.0);
// Model #1
float v = p.model1_offset;
v += p.model1_norm1 * norm1;
v += p.model1_norm2 * norm2;
v += p.model1_norm3 * norm3;
v /= 128;
// Model #2
v = p.model2_offset + p.model2_linear * v + p.model2_sqrt * sqrtf(v);
v /= 128;
return v;
}
NEXTPNR_NAMESPACE_END

View File

@ -1,12 +1,17 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ../nextpnr-ice40 --hx8k --tmfuzz > tmfuzz_hx8k.txt
# ../nextpnr-ice40 --lp8k --tmfuzz > tmfuzz_lp8k.txt
# ../nextpnr-ice40 --up5k --tmfuzz > tmfuzz_up5k.txt
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
device = "hx8k"
# device = "lp8k"
# device = "up5k"
sel_src_type = "LUTFF_OUT"
sel_dst_type = "LUTFF_IN_LUT"
@ -15,10 +20,17 @@ sel_dst_type = "LUTFF_IN_LUT"
src_dst_pairs = defaultdict(lambda: 0)
delay_data = list()
all_delay_data = list()
delay_map_sum = np.zeros((41, 41))
delay_map_sum2 = np.zeros((41, 41))
delay_map_count = np.zeros((41, 41))
same_tile_delays = list()
neighbour_tile_delays = list()
type_delta_data = dict()
with open("tmfuzz_%s.txt" % device, "r") as f:
for line in f:
line = line.split()
@ -35,10 +47,23 @@ with open("tmfuzz_%s.txt" % device, "r") as f:
delay = int(line[5])
estdelay = int(line[6])
all_delay_data.append((delay, estdelay))
src_dst_pairs[src_type, dst_type] += 1
dx = dst_xy[0] - src_xy[0]
dy = dst_xy[1] - src_xy[1]
if src_type == sel_src_type and dst_type == sel_dst_type:
delay_data.append((delay, estdelay))
if dx == 0 and dy == 0:
same_tile_delays.append(delay)
elif abs(dx) <= 1 and abs(dy) <= 1:
neighbour_tile_delays.append(delay)
else:
delay_data.append((delay, estdelay, dx, dy, 0, 0, 0))
relx = 20 + dst_xy[0] - src_xy[0]
rely = 20 + dst_xy[1] - src_xy[1]
@ -47,11 +72,27 @@ with open("tmfuzz_%s.txt" % device, "r") as f:
delay_map_sum2[relx, rely] += delay*delay
delay_map_count[relx, rely] += 1
if dst_type == sel_dst_type:
if src_type not in type_delta_data:
type_delta_data[src_type] = list()
type_delta_data[src_type].append((dx, dy, delay))
delay_data = np.array(delay_data)
all_delay_data = np.array(all_delay_data)
max_delay = np.max(delay_data[:, 0:2])
mean_same_tile_delays = np.mean(neighbour_tile_delays)
mean_neighbour_tile_delays = np.mean(neighbour_tile_delays)
print("Avg same tile delay: %.2f (%.2f std, N=%d)" % \
(mean_same_tile_delays, np.std(same_tile_delays), len(same_tile_delays)))
print("Avg neighbour tile delay: %.2f (%.2f std, N=%d)" % \
(mean_neighbour_tile_delays, np.std(neighbour_tile_delays), len(neighbour_tile_delays)))
#%% Apply simple low-weight bluring to fill gaps
for i in range(1):
for i in range(0):
neigh_sum = np.zeros((41, 41))
neigh_sum2 = np.zeros((41, 41))
neigh_count = np.zeros((41, 41))
@ -84,8 +125,14 @@ print()
#%% Plot estimate vs actual delay
plt.figure()
plt.plot(delay_data[:,0], delay_data[:,1], ".")
plt.figure(figsize=(8, 3))
plt.title("Estimate vs Actual Delay")
plt.plot(all_delay_data[:, 0], all_delay_data[:, 1], ".")
plt.plot(delay_data[:, 0], delay_data[:, 1], ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Estimated Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
#%% Plot delay heatmap and std dev heatmap
@ -101,7 +148,65 @@ plt.imshow(delay_map_std)
plt.colorbar()
plt.show()
#%% Linear least-squares fits of delayEstimate models
#%% Generate Model #0
def nonlinearPreprocessor0(dx, dy):
dx, dy = abs(dx), abs(dy)
values = [1.0]
values.append(dx + dy)
return np.array(values)
A = np.zeros((41*41, len(nonlinearPreprocessor0(0, 0))))
b = np.zeros(41*41)
index = 0
for x in range(41):
for y in range(41):
if delay_map_count[x, y] > 0:
A[index, :] = nonlinearPreprocessor0(x-20, y-20)
b[index] = delay_map[x, y]
index += 1
model0_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #0 parameters:", model0_params)
model0_map = np.zeros((41, 41))
for x in range(41):
for y in range(41):
v = np.dot(model0_params, nonlinearPreprocessor0(x-20, y-20))
model0_map[x, y] = v
plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #0 Delay Map")
plt.imshow(model0_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #0 Error Map")
plt.imshow(model0_map - delay_map)
plt.colorbar()
plt.show()
for i in range(delay_data.shape[0]):
dx = delay_data[i, 2]
dy = delay_data[i, 3]
delay_data[i, 4] = np.dot(model0_params, nonlinearPreprocessor0(dx, dy))
plt.figure(figsize=(8, 3))
plt.title("Model #0 vs Actual Delay")
plt.plot(delay_data[:, 0], delay_data[:, 4], ".")
plt.plot(delay_map.flat, model0_map.flat, ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #0 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model0_map)**2)))
print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 4])**2)))
print()
#%% Generate Model #1
def nonlinearPreprocessor1(dx, dy):
dx, dy = abs(dx), abs(dy)
@ -117,6 +222,7 @@ b = np.zeros(41*41)
index = 0
for x in range(41):
for y in range(41):
if delay_map_count[x, y] > 0:
A[index, :] = nonlinearPreprocessor1(x-20, y-20)
b[index] = delay_map[x, y]
index += 1
@ -141,61 +247,111 @@ plt.imshow(model1_map - delay_map)
plt.colorbar()
plt.show()
for i in range(delay_data.shape[0]):
dx = delay_data[i, 2]
dy = delay_data[i, 3]
delay_data[i, 5] = np.dot(model1_params, nonlinearPreprocessor1(dx, dy))
plt.figure(figsize=(8, 3))
plt.title("Model #1 vs Actual Delay")
plt.plot(delay_data[:, 0], delay_data[:, 5], ".")
plt.plot(delay_map.flat, model1_map.flat, ".")
plt.plot([0, 4000], [0, 4000], "k")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #1 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
print("Total RMS error: %f" % np.sqrt(np.mean((delay_map - model1_map)**2)))
print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model1_map)**2)))
print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 5])**2)))
print()
if True:
def nonlinearPreprocessor2(v):
#%% Generate Model #2
def nonlinearPreprocessor2(v):
return np.array([1, v, np.sqrt(v)])
A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
b = np.zeros(41*41)
A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
b = np.zeros(41*41)
index = 0
for x in range(41):
index = 0
for x in range(41):
for y in range(41):
if delay_map_count[x, y] > 0:
A[index, :] = nonlinearPreprocessor2(model1_map[x, y])
b[index] = delay_map[x, y]
index += 1
model2_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #2 parameters:", model2_params)
model2_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #2 parameters:", model2_params)
model2_map = np.zeros((41, 41))
for x in range(41):
model2_map = np.zeros((41, 41))
for x in range(41):
for y in range(41):
v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
v = np.dot(model2_params, nonlinearPreprocessor2(v))
model2_map[x, y] = v
plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #2 Delay Map")
plt.imshow(model2_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #2 Error Map")
plt.imshow(model2_map - delay_map)
plt.colorbar()
plt.show()
plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #2 Delay Map")
plt.imshow(model2_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #2 Error Map")
plt.imshow(model2_map - delay_map)
plt.colorbar()
plt.show()
plt.figure(figsize=(8, 3))
plt.title("Model #2 vs Actual Delay")
plt.plot(delay_map.flat, model2_map.flat, ".")
plt.plot([0, 4000], [0, 4000], "k")
plt.ylabel("Model #2 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
for i in range(delay_data.shape[0]):
dx = delay_data[i, 2]
dy = delay_data[i, 3]
delay_data[i, 6] = np.dot(model2_params, nonlinearPreprocessor2(delay_data[i, 5]))
print("Total RMS error: %f" % np.sqrt(np.mean((delay_map - model2_map)**2)))
print()
plt.figure(figsize=(8, 3))
plt.title("Model #2 vs Actual Delay")
plt.plot(delay_data[:, 0], delay_data[:, 6], ".")
plt.plot(delay_map.flat, model2_map.flat, ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #2 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model2_map)**2)))
print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 6])**2)))
print()
#%% Generate deltas for different source net types
type_deltas = dict()
print("Delay deltas for different src types:")
for src_type in sorted(type_delta_data.keys()):
deltas = list()
for dx, dy, delay in type_delta_data[src_type]:
dx = abs(dx)
dy = abs(dy)
if dx > 1 or dy > 1:
est = model0_params[0] + model0_params[1] * (dx + dy)
else:
est = mean_neighbour_tile_delays
deltas.append(delay - est)
print("%15s: %8.2f (std %6.2f)" % (\
src_type, np.mean(deltas), np.std(deltas)))
type_deltas[src_type] = np.mean(deltas)
#%% Print C defs of model parameters
print("--snip--")
print("%d, %d, %d," % (mean_neighbour_tile_delays, 128 * model0_params[0], 128 * model0_params[1]))
print("%d, %d, %d, %d," % (128 * model1_params[0], 128 * model1_params[1], 128 * model1_params[2], 128 * model1_params[3]))
print("%d, %d, %d," % (128 * model2_params[0], 128 * model2_params[1], 128 * model2_params[2]))
print("%d, %d, %d, %d" % (type_deltas["LOCAL"], type_deltas["LUTFF_IN"], \
(type_deltas["SP4_H"] + type_deltas["SP4_V"]) / 2,
(type_deltas["SP12_H"] + type_deltas["SP12_V"]) / 2))
print("--snap--")