placer1: Rework to use new criticality-based weighted cost function

Signed-off-by: David Shah <dave@ds0.me>
This commit is contained in:
David Shah 2018-12-07 16:45:14 +00:00
parent 3e40f0b9c3
commit f8f89cea71

View File

@ -42,6 +42,19 @@
#include "place_common.h" #include "place_common.h"
#include "timing.h" #include "timing.h"
#include "util.h" #include "util.h"
namespace std {
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, std::size_t>>
{
std::size_t
operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, std::size_t> &idp) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
boost::hash_combine(seed, hash<std::size_t>()(idp.second));
return seed;
}
};
}
NEXTPNR_NAMESPACE_BEGIN NEXTPNR_NAMESPACE_BEGIN
@ -51,7 +64,8 @@ class SAPlacer
struct BoundingBox struct BoundingBox
{ {
int x0 = 0, x1 = 0, y0 = 0, y1 = 0; int x0 = 0, x1 = 0, y0 = 0, y1 = 0;
bool includes(int x, int y) const { return x >= x0 && x <= x1 && y >= y0 && y <= y1; } bool is_inside_inc(int x, int y) const { return x >= x0 && x <= x1 && y >= y0 && y <= y1; }
bool touches_bounds(int x, int y) const { return x == x0 || x == x1 || y == y0 || y == y1; }
wirelen_t hpwl() const { return wirelen_t((x1 - x0) + (y1 - y0)); } wirelen_t hpwl() const { return wirelen_t((x1 - x0) + (y1 - y0)); }
}; };
@ -86,20 +100,10 @@ class SAPlacer
} }
diameter = std::max(max_x, max_y) + 1; diameter = std::max(max_x, max_y) + 1;
costs.resize(ctx->nets.size()); build_port_index();
old_udata.reserve(ctx->nets.size());
decltype(NetInfo::udata) n = 0;
for (auto &net : ctx->nets) {
old_udata.emplace_back(net.second->udata);
net.second->udata = n++;
}
} }
~SAPlacer() ~SAPlacer() {}
{
for (auto &net : ctx->nets)
net.second->udata = old_udata[net.second->udata];
}
bool place() bool place()
{ {
@ -179,18 +183,19 @@ class SAPlacer
auto saplace_start = std::chrono::high_resolution_clock::now(); auto saplace_start = std::chrono::high_resolution_clock::now();
log_info("Running simulated annealing placer.\n"); log_info("Running simulated annealing placer.\n");
// Calculate metric after initial placement // Invoke timing analysis to obtain criticalities
curr_metric = 0; get_criticalities(ctx, &net_crit);
curr_tns = 0;
for (auto &net : ctx->nets) { // Calculate costs after initial placement
wirelen_t wl = get_net_metric(ctx, net.second.get(), MetricType::COST, curr_tns); setup_costs();
costs[net.second->udata] = CostChange{wl, -1}; curr_wirelen_cost = total_wirelen_cost();
curr_metric += wl; curr_timing_cost = total_timing_cost();
} last_wirelen_cost = curr_wirelen_cost;
last_timing_cost = curr_timing_cost;
double avg_metric = curr_metric(), min_metric = curr_metric();
int n_no_progress = 0; int n_no_progress = 0;
wirelen_t min_metric = curr_metric;
double avg_metric = curr_metric;
temp = 10000; temp = 10000;
// Main simulated annealing loop // Main simulated annealing loop
@ -199,9 +204,9 @@ class SAPlacer
improved = false; improved = false;
if (iter % 5 == 0 || iter == 1) if (iter % 5 == 0 || iter == 1)
log_info(" at iteration #%d: temp = %f, cost = " log_info(" at iteration #%d: temp = %f, timing cost = "
"%.0f, est tns = %.02fns\n", "%.0f, wirelen = %.0f est tns = %.02fns\n",
iter, temp, double(curr_metric), curr_tns); iter, temp, double(curr_timing_cost), double(curr_wirelen_cost), curr_tns);
for (int m = 0; m < 15; ++m) { for (int m = 0; m < 15; ++m) {
// Loop through all automatically placed cells // Loop through all automatically placed cells
@ -215,8 +220,8 @@ class SAPlacer
} }
} }
if (curr_metric < min_metric) { if (curr_metric() < min_metric) {
min_metric = curr_metric; min_metric = curr_metric();
improved = true; improved = true;
} }
@ -227,8 +232,9 @@ class SAPlacer
n_no_progress++; n_no_progress++;
if (temp <= 1e-3 && n_no_progress >= 5) { if (temp <= 1e-3 && n_no_progress >= 5) {
if (iter % 5 != 0) log_info(" at iteration #%d: temp = %f, timing cost = "
log_info(" at iteration #%d: temp = %f, cost = %f\n", iter, temp, double(curr_metric)); "%.0f, wirelen = %.0f est tns = %.02fns\n",
iter, temp, double(curr_timing_cost), double(curr_wirelen_cost), curr_tns);
break; break;
} }
@ -238,8 +244,8 @@ class SAPlacer
double upper = 0.6, lower = 0.4; double upper = 0.6, lower = 0.4;
if (curr_metric < 0.95 * avg_metric && curr_metric > 0) { if (curr_metric() < 0.95 * avg_metric && curr_metric > 0) {
avg_metric = 0.8 * avg_metric + 0.2 * curr_metric; avg_metric = 0.8 * avg_metric + 0.2 * curr_metric();
} else { } else {
if (Raccept >= 0.8) { if (Raccept >= 0.8) {
temp *= 0.7; temp *= 0.7;
@ -281,16 +287,14 @@ class SAPlacer
assign_budget(ctx, true /* quiet */); assign_budget(ctx, true /* quiet */);
} }
// Invoke timing analysis to obtain criticalities
get_criticalities(ctx, &net_crit);
// Need to rebuild costs after criticalities change
setup_costs();
// Recalculate total metric entirely to avoid rounding errors // Recalculate total metric entirely to avoid rounding errors
// accumulating over time // accumulating over time
curr_metric = 0; curr_wirelen_cost = total_wirelen_cost();
curr_tns = 0; curr_timing_cost = total_timing_cost();
for (auto &net : ctx->nets) {
wirelen_t wl = get_net_metric(ctx, net.second.get(), MetricType::COST, curr_tns);
costs[net.second->udata] = CostChange{wl, -1};
curr_metric += wl;
}
// Let the UI show visualization updates. // Let the UI show visualization updates.
ctx->yield(); ctx->yield();
} }
@ -381,8 +385,7 @@ class SAPlacer
// Attempt a SA position swap, return true on success or false on failure // Attempt a SA position swap, return true on success or false on failure
bool try_swap_position(CellInfo *cell, BelId newBel) bool try_swap_position(CellInfo *cell, BelId newBel)
{ {
static std::vector<NetInfo *> updates; moveChange.reset();
updates.clear();
BelId oldBel = cell->bel; BelId oldBel = cell->bel;
CellInfo *other_cell = ctx->getBoundBelCell(newBel); CellInfo *other_cell = ctx->getBoundBelCell(newBel);
if (other_cell != nullptr && other_cell->belStrength > STRENGTH_WEAK) { if (other_cell != nullptr && other_cell->belStrength > STRENGTH_WEAK) {
@ -392,31 +395,16 @@ class SAPlacer
int new_dist; int new_dist;
if (other_cell != nullptr) if (other_cell != nullptr)
old_dist += get_constraints_distance(ctx, other_cell); old_dist += get_constraints_distance(ctx, other_cell);
wirelen_t new_metric = 0, delta; double delta = 0;
ctx->unbindBel(oldBel); ctx->unbindBel(oldBel);
if (other_cell != nullptr) { if (other_cell != nullptr) {
ctx->unbindBel(newBel); ctx->unbindBel(newBel);
} }
for (const auto &port : cell->ports) { add_move_cell(moveChange, cell, oldBel);
if (port.second.net != nullptr) {
auto &cost = costs[port.second.net->udata];
if (cost.new_cost == 0)
continue;
cost.new_cost = 0;
updates.emplace_back(port.second.net);
}
}
if (other_cell != nullptr) { if (other_cell != nullptr) {
for (const auto &port : other_cell->ports) add_move_cell(moveChange, other_cell, newBel);
if (port.second.net != nullptr) {
auto &cost = costs[port.second.net->udata];
if (cost.new_cost == 0)
continue;
cost.new_cost = 0;
updates.emplace_back(port.second.net);
}
} }
ctx->bindBel(newBel, cell, STRENGTH_WEAK); ctx->bindBel(newBel, cell, STRENGTH_WEAK);
@ -431,22 +419,14 @@ class SAPlacer
goto swap_fail; goto swap_fail;
} }
new_metric = curr_metric;
// Recalculate metrics for all nets touched by the peturbation // Recalculate metrics for all nets touched by the peturbation
for (const auto &net : updates) { compute_cost_changes(moveChange);
auto &c = costs[net->udata];
new_metric -= c.curr_cost;
float temp_tns = 0;
wirelen_t net_new_wl = get_net_metric(ctx, net, MetricType::COST, temp_tns);
new_metric += net_new_wl;
c.new_cost = net_new_wl;
}
new_dist = get_constraints_distance(ctx, cell); new_dist = get_constraints_distance(ctx, cell);
if (other_cell != nullptr) if (other_cell != nullptr)
new_dist += get_constraints_distance(ctx, other_cell); new_dist += get_constraints_distance(ctx, other_cell);
delta = new_metric - curr_metric; delta = lambda * (moveChange.timing_delta / last_timing_cost) +
(1 - lambda) * (double(moveChange.wirelen_delta) / last_wirelen_cost);
delta += (cfg.constraintWeight / temp) * (new_dist - old_dist); delta += (cfg.constraintWeight / temp) * (new_dist - old_dist);
n_move++; n_move++;
// SA acceptance criterea // SA acceptance criterea
@ -458,20 +438,13 @@ class SAPlacer
ctx->unbindBel(newBel); ctx->unbindBel(newBel);
goto swap_fail; goto swap_fail;
} }
curr_metric = new_metric; commit_cost_changes(moveChange);
for (const auto &net : updates) {
auto &c = costs[net->udata];
c = CostChange{c.new_cost, -1};
}
return true; return true;
swap_fail: swap_fail:
ctx->bindBel(oldBel, cell, STRENGTH_WEAK); ctx->bindBel(oldBel, cell, STRENGTH_WEAK);
if (other_cell != nullptr) { if (other_cell != nullptr) {
ctx->bindBel(newBel, other_cell, STRENGTH_WEAK); ctx->bindBel(newBel, other_cell, STRENGTH_WEAK);
} }
for (const auto &net : updates)
costs[net->udata].new_cost = -1;
return false; return false;
} }
@ -572,7 +545,7 @@ class SAPlacer
} }
// Get the total timing cost for the design // Get the total timing cost for the design
double total_delay_cost() double total_timing_cost()
{ {
double cost = 0; double cost = 0;
for (const auto &net : net_arc_tcost) { for (const auto &net : net_arc_tcost) {
@ -583,11 +556,106 @@ class SAPlacer
return cost; return cost;
} }
// Cost-change-related data for a move
struct MoveChangeData
{
std::unordered_set<IdString> bounds_changed_nets;
std::unordered_set<std::pair<IdString, size_t>> changed_arcs;
std::unordered_map<IdString, BoundingBox> new_net_bounds;
std::unordered_map<std::pair<IdString, size_t>, double> new_arc_costs;
wirelen_t wirelen_delta = 0;
double timing_delta = 0;
void reset()
{
bounds_changed_nets.clear();
changed_arcs.clear();
new_net_bounds.clear();
new_arc_costs.clear();
}
} moveChange;
void add_move_cell(MoveChangeData &mc, CellInfo *cell, BelId old_bel)
{
Loc curr_loc = ctx->getBelLocation(cell->bel);
Loc old_loc = ctx->getBelLocation(old_bel);
// Check net bounds
for (const auto &port : cell->ports) {
NetInfo *pn = port.second.net;
if (pn == nullptr)
continue;
if (ignore_net(pn))
continue;
const BoundingBox &curr_bounds = net_bounds[pn->name];
// If the old location was at the edge of the bounds, or the new location exceeds the bounds,
// an update is needed
if (curr_bounds.touches_bounds(old_loc.x, old_loc.y) || !curr_bounds.is_inside_inc(curr_loc.x, curr_loc.y))
mc.bounds_changed_nets.insert(pn->name);
// Output ports - all arcs change timing
if (port.second.type == PORT_OUT) {
int cc;
TimingPortClass cls = ctx->getPortTimingClass(cell, port.first, cc);
if (cls != TMG_IGNORE)
for (size_t i = 0; i < pn->users.size(); i++)
mc.changed_arcs.insert(std::make_pair(pn->name, i));
} else if (port.second.type == PORT_IN) {
mc.changed_arcs.insert(std::make_pair(pn->name, fast_port_to_user.at(&port.second)));
}
}
}
void compute_cost_changes(MoveChangeData &md)
{
for (const auto &bc : md.bounds_changed_nets) {
wirelen_t old_hpwl = net_bounds.at(bc).hpwl();
auto bounds = get_net_bounds(ctx->nets.at(bc).get());
md.new_net_bounds[bc] = bounds;
md.wirelen_delta += (bounds.hpwl() - old_hpwl);
}
for (const auto &tc : md.changed_arcs) {
double old_cost = net_arc_tcost.at(tc.first).at(tc.second);
double new_cost = get_timing_cost(ctx->nets.at(tc.first).get(), tc.second);
md.new_arc_costs[tc] = new_cost;
md.timing_delta += (new_cost - old_cost);
}
}
void commit_cost_changes(MoveChangeData &md)
{
for (const auto &bc : md.new_net_bounds)
net_bounds[bc.first] = bc.second;
for (const auto &tc : md.new_arc_costs)
net_arc_tcost[tc.first.first].at(tc.first.second) = tc.second;
curr_wirelen_cost += md.wirelen_delta;
curr_timing_cost += md.timing_delta;
}
// Build the cell port -> user index
void build_port_index()
{
for (auto net : sorted(ctx->nets)) {
NetInfo *ni = net.second;
for (size_t i = 0; i < ni->users.size(); i++) {
auto &usr = ni->users.at(i);
fast_port_to_user[&(usr.cell->ports.at(usr.port))] = i;
}
}
}
// Get the combined wirelen/timing metric
inline double curr_metric() { return lambda * curr_timing_cost + (1 - lambda) * curr_wirelen_cost; }
// Map nets to their bounding box (so we can skip recompute for moves that do not exceed the bounds // Map nets to their bounding box (so we can skip recompute for moves that do not exceed the bounds
std::unordered_map<IdString, BoundingBox> net_bounds; std::unordered_map<IdString, BoundingBox> net_bounds;
// Map net arcs to their timing cost (criticality * delay ns) // Map net arcs to their timing cost (criticality * delay ns)
std::unordered_map<IdString, std::vector<double>> net_arc_tcost; std::unordered_map<IdString, std::vector<double>> net_arc_tcost;
// Fast lookup for cell port to net user index
std::unordered_map<const PortInfo *, size_t> fast_port_to_user;
// Wirelength and timing cost at last and current iteration // Wirelength and timing cost at last and current iteration
wirelen_t last_wirelen_cost, curr_wirelen_cost; wirelen_t last_wirelen_cost, curr_wirelen_cost;
double last_timing_cost, curr_timing_cost; double last_timing_cost, curr_timing_cost;
@ -611,14 +679,6 @@ class SAPlacer
const float post_legalise_temp = 10; const float post_legalise_temp = 10;
const float post_legalise_dia_scale = 1.5; const float post_legalise_dia_scale = 1.5;
Placer1Cfg cfg; Placer1Cfg cfg;
struct CostChange
{
wirelen_t curr_cost;
wirelen_t new_cost;
};
std::vector<CostChange> costs;
std::vector<decltype(NetInfo::udata)> old_udata;
}; };
Placer1Cfg::Placer1Cfg(Context *ctx) : Settings(ctx) Placer1Cfg::Placer1Cfg(Context *ctx) : Settings(ctx)