okami: new Viaduct arch

This commit is contained in:
Lofty 2022-02-24 20:29:43 +00:00
parent 440d7e394e
commit fbb02e2860
7 changed files with 638 additions and 1 deletions

View File

@ -1,4 +1,4 @@
set(VIADUCT_UARCHES "example")
set(VIADUCT_UARCHES "example" "okami")
foreach(uarch ${VIADUCT_UARCHES})
aux_source_directory(${family}/viaduct/${uarch} UARCH_FILES)
foreach(target ${family_targets})

View File

@ -0,0 +1,14 @@
X(LUT4)
X(DFF)
X(CLK)
X(D)
X(F)
X(Q)
X(INBUF)
X(OUTBUF)
X(I)
X(EN)
X(O)
X(IOB)
X(PAD)
X(INIT)

View File

@ -0,0 +1,546 @@
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
* Copyright (C) 2022 Lofty <dan.ravensloft@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include "viaduct_api.h"
#include "viaduct_helpers.h"
#define GEN_INIT_CONSTIDS
#define VIADUCT_CONSTIDS "viaduct/okami/constids.inc"
#include "viaduct_constids.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct OkamiImpl : ViaductAPI
{
~OkamiImpl(){};
void init(Context *ctx) override
{
init_uarch_constids(ctx);
ViaductAPI::init(ctx);
h.init(ctx);
init_wires();
init_bels();
init_pips();
}
void pack() override
{
// Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis
const pool<CellTypePort> top_ports{
CellTypePort(id_INBUF, id_PAD),
CellTypePort(id_OUTBUF, id_PAD),
};
h.remove_nextpnr_iobs(top_ports);
// Replace constants with LUTs
const dict<IdString, Property> vcc_params = {{id_INIT, Property(0xFFFF, 16)}};
const dict<IdString, Property> gnd_params = {{id_INIT, Property(0x0000, 16)}};
h.replace_constants(CellTypePort(id_LUT4, id_F), CellTypePort(id_LUT4, id_F), vcc_params, gnd_params);
// Constrain directly connected LUTs and FFs together to use dedicated resources
int lutffs = h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1,
false);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
void prePlace() override { assign_cell_info(); }
bool isBelLocationValid(BelId bel) const override
{
Loc l = ctx->getBelLocation(bel);
if (is_io(l.x, l.y)) {
return true;
} else {
return slice_valid(l.x, l.y, l.z / 2);
}
}
private:
ViaductHelpers h;
// Configuration
// Grid size including IOBs at edges
const int M = 32;
const int X = M, Y = M;
// SLICEs per tile
const int N = 8;
// LUT input count
const int K = 4;
// Number of tile input buses
const int InputMuxCount = 10; // >= 6 for attosoc; >= 10 for arbiter
// Number of output wires in a direction
const int OutputMuxCount = 8; // >= 5 for attosoc; >= 8 for arbiter
// For fast wire lookups
struct TileWires
{
std::vector<WireId> clk, q, f, d;
std::vector<WireId> slice_inputs;
std::vector<WireId> slice_outputs;
std::vector<WireId> tile_inputs_north, tile_inputs_east, tile_inputs_south, tile_inputs_west;
std::vector<WireId> tile_outputs_north, tile_outputs_east, tile_outputs_south, tile_outputs_west;
std::vector<WireId> pad;
};
std::vector<std::vector<TileWires>> wires_by_tile;
// Create wires to attach to bels and pips
void init_wires()
{
NPNR_ASSERT(X >= 3);
NPNR_ASSERT(Y >= 3);
NPNR_ASSERT(K >= 2);
NPNR_ASSERT(N >= 1);
NPNR_ASSERT(InputMuxCount >= OutputMuxCount);
log_info("Creating wires...\n");
wires_by_tile.resize(Y);
for (int y = 0; y < Y; y++) {
auto &row_wires = wires_by_tile.at(y);
row_wires.resize(X);
for (int x = 0; x < X; x++) {
auto &w = row_wires.at(x);
for (int z = 0; z < N; z++) {
// Clock input
w.clk.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("CLK%d", z))), ctx->id("CLK"), x, y));
// FF input
w.d.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("D%d", z))), ctx->id("D"), x, y));
// FF and LUT outputs
w.q.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("Q%d", z))), ctx->id("Q"), x, y));
w.f.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("F%d", z))), ctx->id("F"), x, y));
// LUT inputs
for (int i = 0; i < K; i++)
w.slice_inputs.push_back(
ctx->addWire(h.xy_id(x, y, ctx->id(stringf("L%dI%d", z, i))), ctx->id("I"), x, y));
w.slice_outputs.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("SLICEOUT[%d]", z))),
ctx->id("SLICEOUT"), x, y));
}
// Tile inputs
for (int tile_input = 0; tile_input < InputMuxCount; tile_input++) {
w.tile_inputs_north.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEINN[%d]", tile_input))), ctx->id("TILEINN"), x, y));
w.tile_inputs_east.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEINE[%d]", tile_input))), ctx->id("TILEINE"), x, y));
w.tile_inputs_south.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEINS[%d]", tile_input))), ctx->id("TILEINS"), x, y));
w.tile_inputs_west.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEINW[%d]", tile_input))), ctx->id("TILEINW"), x, y));
}
// Tile outputs
for (int tile_output = 0; tile_output < OutputMuxCount; tile_output++) {
w.tile_outputs_north.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEOUTN[%d]", tile_output))), ctx->id("TILEOUTN"), x, y));
w.tile_outputs_east.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEOUTE[%d]", tile_output))), ctx->id("TILEOUTE"), x, y));
w.tile_outputs_south.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEOUTS[%d]", tile_output))), ctx->id("TILEOUTS"), x, y));
w.tile_outputs_west.push_back(ctx->addWire(
h.xy_id(x, y, ctx->id(stringf("TILEOUTW[%d]", tile_output))), ctx->id("TILEOUTW"), x, y));
}
// Pad wires for IO
if (is_io(x, y) && x != y)
for (int z = 0; z < 2; z++)
w.pad.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("PAD%d", z))), id_PAD, x, y));
}
}
}
bool is_io(int x, int y) const
{
// IO are on the edges of the device
return (x == 0) || (x == (X - 1)) || (y == 0) || (y == (Y - 1));
}
// Create IO bels in an IO tile
void add_io_bels(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
for (int z = 0; z < 2; z++) {
BelId b = ctx->addBel(h.xy_id(x, y, ctx->id(stringf("IO%d", z))), id_IOB, Loc(x, y, z), false, false);
ctx->addBelInout(b, id_PAD, w.pad.at(z));
ctx->addBelInput(b, id_I, w.slice_inputs.at(z * K + 0));
ctx->addBelInput(b, id_EN, w.slice_inputs.at(z * K + 1));
ctx->addBelOutput(b, id_O, w.slice_outputs.at(z));
}
}
PipId add_pip(Loc loc, WireId src, WireId dst, delay_t delay = 0.05)
{
IdStringList name = IdStringList::concat(ctx->getWireName(dst), ctx->getWireName(src));
return ctx->addPip(name, ctx->id("PIP"), src, dst, delay, loc);
}
// Create LUT and FF bels in a logic tile
void add_slice_bels(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
for (int z = 0; z < N; z++) {
// Create LUT bel
BelId lut = ctx->addBel(h.xy_id(x, y, ctx->id(stringf("SLICE%d_LUT", z))), id_LUT4, Loc(x, y, z * 2), false,
false);
for (int k = 0; k < K; k++)
ctx->addBelInput(lut, ctx->id(stringf("I[%d]", k)), w.slice_inputs.at(z * K + k));
ctx->addBelOutput(lut, id_F, w.f.at(z));
// FF data can come from LUT output or LUT I3
add_pip(Loc(x, y, 0), w.f.at(z), w.d.at(z));
add_pip(Loc(x, y, 0), w.slice_inputs.at(z * K + (K - 1)), w.d.at(z));
// Create DFF bel
BelId dff = ctx->addBel(h.xy_id(x, y, ctx->id(stringf("SLICE%d_FF", z))), id_DFF, Loc(x, y, z * 2 + 1),
false, false);
ctx->addBelInput(dff, id_CLK, w.clk.at(z));
ctx->addBelInput(dff, id_D, w.d.at(z));
ctx->addBelOutput(dff, id_Q, w.q.at(z));
}
}
// Create bels according to tile type
void init_bels()
{
log_info("Creating bels...\n");
for (int y = 0; y < Y; y++) {
for (int x = 0; x < X; x++) {
if (is_io(x, y)) {
if (x == y)
continue; // don't put IO in corners
add_io_bels(x, y);
} else {
add_slice_bels(x, y);
}
}
}
}
// Create PIPs inside a tile; following an example synthetic routing pattern
void add_io_pips(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
Loc loc(x, y, 0);
const uint16_t tile_input_config[8] = {
0b0000'0000'0000'0001, 0b0000'0000'0000'0001, 0b0000'0000'0000'0001, 0b0000'0000'0000'0001,
0b0000'0000'0000'0010, 0b0000'0000'0000'0010, 0b0000'0000'0000'0010, 0b0000'0000'0000'0010,
};
// Tile inputs
for (int tile_input = 0; tile_input < InputMuxCount; tile_input++) {
auto &dst = w.tile_inputs_north.at(tile_input);
// North
for (int step = 1; step <= 4; step++) {
if (y - step <= 0 || x == 0 || x == X - 1)
break;
auto &w = wires_by_tile.at(y - step).at(x);
for (int tile_output = 0; tile_output < OutputMuxCount; tile_output++)
if ((1 << tile_input) & tile_input_config[tile_output])
add_pip(loc, w.tile_outputs_north.at(tile_output), dst);
}
}
for (int tile_input = 0; tile_input < InputMuxCount; tile_input++) {
auto &dst = w.tile_inputs_east.at(tile_input);
// East
for (int step = 1; step <= 4; step++) {
if (x - step <= 0 || y == 0 || y == Y - 1)
break;
auto &w = wires_by_tile.at(y).at(x - step);
for (int tile_output = 0; tile_output < OutputMuxCount; tile_output++)
if ((1 << tile_input) & tile_input_config[tile_output])
add_pip(loc, w.tile_outputs_east.at(tile_output), dst);
}
}
for (int tile_input = 0; tile_input < InputMuxCount; tile_input++) {
auto &dst = w.tile_inputs_south.at(tile_input);
// South
for (int step = 1; step <= 4; step++) {
if (y + step >= Y || x == 0 || x == X - 1)
break;
auto &w = wires_by_tile.at(y + step).at(x);
for (int tile_output = 0; tile_output < OutputMuxCount; tile_output++)
if ((1 << tile_input) & tile_input_config[tile_output])
add_pip(loc, w.tile_outputs_south.at(tile_output), dst);
}
}
for (int tile_input = 0; tile_input < InputMuxCount; tile_input++) {
auto &dst = w.tile_inputs_west.at(tile_input);
// West
for (int step = 1; step <= 4; step++) {
if (x + step >= X || y == 0 || y == Y - 1)
break;
auto &w = wires_by_tile.at(y).at(x + step);
for (int tile_output = 0; tile_output < OutputMuxCount; tile_output++)
if ((1 << tile_input) & tile_input_config[tile_output])
add_pip(loc, w.tile_outputs_west.at(tile_output), dst);
}
}
// Tile outputs
for (int tile_output = 0; tile_output < OutputMuxCount; tile_output++) {
for (int z = 0; z < 2; z++) {
WireId src = w.slice_outputs.at(z);
// O output
if (y == 0)
add_pip(loc, src, w.tile_outputs_north.at(tile_output));
if (x == 0)
add_pip(loc, src, w.tile_outputs_east.at(tile_output));
if (y == Y - 1)
add_pip(loc, src, w.tile_outputs_south.at(tile_output));
if (x == X - 1)
add_pip(loc, src, w.tile_outputs_west.at(tile_output));
}
}
// Pad inputs
for (const auto &src : w.tile_inputs_north) {
for (int z = 0; z < 2; z++) {
// I input
add_pip(loc, src, w.slice_inputs.at(z * K + 0));
// EN input
add_pip(loc, src, w.slice_inputs.at(z * K + 1));
}
}
for (const auto &src : w.tile_inputs_east) {
for (int z = 0; z < 2; z++) {
// I input
add_pip(loc, src, w.slice_inputs.at(z * K + 0));
// EN input
add_pip(loc, src, w.slice_inputs.at(z * K + 1));
}
}
for (const auto &src : w.tile_inputs_south) {
for (int z = 0; z < 2; z++) {
// I input
add_pip(loc, src, w.slice_inputs.at(z * K + 0));
// EN input
add_pip(loc, src, w.slice_inputs.at(z * K + 1));
}
}
for (const auto &src : w.tile_inputs_west) {
for (int z = 0; z < 2; z++) {
// I input
add_pip(loc, src, w.slice_inputs.at(z * K + 0));
// EN input
add_pip(loc, src, w.slice_inputs.at(z * K + 1));
}
}
}
void add_slice_pips(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
Loc loc(x, y, 0);
const uint16_t tile_input_config[8] = {0b1010'1010'1010'1010, 0b0101'0101'0101'0101, 0b0110'0110'0110'0110,
0b1001'1001'1001'1001, 0b0011'0011'0011'0011, 0b1100'1100'1100'1100,
0b1111'0000'1111'0000, 0b0000'1111'0000'1111};
// Slice input selector
for (int lut = 0; lut < N; lut++) {
for (int lut_input = 0; lut_input < K; lut_input++) {
for (const auto &tile_input : w.tile_inputs_north) // Tile input bus
add_pip(loc, tile_input, w.slice_inputs.at(lut * K + lut_input));
for (const auto &tile_input : w.tile_inputs_east) // Tile input bus
add_pip(loc, tile_input, w.slice_inputs.at(lut * K + lut_input));
for (const auto &tile_input : w.tile_inputs_south) // Tile input bus
add_pip(loc, tile_input, w.slice_inputs.at(lut * K + lut_input));
for (const auto &tile_input : w.tile_inputs_west) // Tile input bus
add_pip(loc, tile_input, w.slice_inputs.at(lut * K + lut_input));
for (const auto &slice_output : w.slice_outputs) // Slice output bus
add_pip(loc, slice_output, w.slice_inputs.at(lut * K + lut_input));
}
for (const auto &tile_input : w.tile_inputs_north) // Clock selector
add_pip(loc, tile_input, w.clk.at(lut));
for (const auto &tile_input : w.tile_inputs_east) // Clock selector
add_pip(loc, tile_input, w.clk.at(lut));
for (const auto &tile_input : w.tile_inputs_south) // Clock selector
add_pip(loc, tile_input, w.clk.at(lut));
for (const auto &tile_input : w.tile_inputs_west) // Clock selector
add_pip(loc, tile_input, w.clk.at(lut));
}
// Slice output selector
for (int slice_output = 0; slice_output < N; slice_output++) {
add_pip(loc, w.f.at(slice_output), w.slice_outputs.at(slice_output)); // LUT output
add_pip(loc, w.q.at(slice_output), w.slice_outputs.at(slice_output)); // DFF output
}
// Tile input selector
for (int step = 1; step <= 4; step++) {
if (y + step < Y) // South
for (size_t tile_input_index = 0; tile_input_index < w.tile_inputs_north.size(); tile_input_index++)
for (size_t tile_output_index = 0;
tile_output_index < wires_by_tile.at(y + step).at(x).tile_outputs_south.size();
tile_output_index++)
if ((1 << tile_input_index) & tile_input_config[tile_output_index])
add_pip(loc, wires_by_tile.at(y + step).at(x).tile_outputs_south.at(tile_output_index),
w.tile_inputs_north.at(tile_input_index));
if (x + step < X) // West
for (size_t tile_input_index = 0; tile_input_index < w.tile_inputs_east.size(); tile_input_index++)
for (size_t tile_output_index = 0;
tile_output_index < wires_by_tile.at(y).at(x + step).tile_outputs_west.size();
tile_output_index++)
if ((1 << tile_input_index) & tile_input_config[tile_output_index])
add_pip(loc, wires_by_tile.at(y).at(x + step).tile_outputs_west.at(tile_output_index),
w.tile_inputs_east.at(tile_input_index));
if (y - step >= 0) // North
for (size_t tile_input_index = 0; tile_input_index < w.tile_inputs_south.size(); tile_input_index++)
for (size_t tile_output_index = 0;
tile_output_index < wires_by_tile.at(y - step).at(x).tile_outputs_north.size();
tile_output_index++)
if ((1 << tile_input_index) & tile_input_config[tile_output_index])
add_pip(loc, wires_by_tile.at(y - step).at(x).tile_outputs_north.at(tile_output_index),
w.tile_inputs_south.at(tile_input_index));
if (x - step >= 0) // East
for (size_t tile_input_index = 0; tile_input_index < w.tile_inputs_west.size(); tile_input_index++)
for (size_t tile_output_index = 0;
tile_output_index < wires_by_tile.at(y).at(x - step).tile_outputs_east.size();
tile_output_index++)
if ((1 << tile_input_index) & tile_input_config[tile_output_index])
add_pip(loc, wires_by_tile.at(y).at(x - step).tile_outputs_east.at(tile_output_index),
w.tile_inputs_west.at(tile_input_index));
}
// Tile output selector
for (const auto &slice_output : w.slice_outputs) {
for (const auto &tile_output : w.tile_outputs_north)
add_pip(loc, slice_output, tile_output);
for (const auto &tile_output : w.tile_outputs_east)
add_pip(loc, slice_output, tile_output);
for (const auto &tile_output : w.tile_outputs_south)
add_pip(loc, slice_output, tile_output);
for (const auto &tile_output : w.tile_outputs_west)
add_pip(loc, slice_output, tile_output);
}
for (const auto &tile_input : w.tile_inputs_north) {
for (const auto &tile_output : w.tile_outputs_north)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_east)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_south)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_west)
add_pip(loc, tile_input, tile_output);
}
for (const auto &tile_input : w.tile_inputs_east) {
for (const auto &tile_output : w.tile_outputs_north)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_east)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_south)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_west)
add_pip(loc, tile_input, tile_output);
}
for (const auto &tile_input : w.tile_inputs_south) {
for (const auto &tile_output : w.tile_outputs_north)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_east)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_south)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_west)
add_pip(loc, tile_input, tile_output);
}
for (const auto &tile_input : w.tile_inputs_west) {
for (const auto &tile_output : w.tile_outputs_north)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_east)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_south)
add_pip(loc, tile_input, tile_output);
for (const auto &tile_output : w.tile_outputs_west)
add_pip(loc, tile_input, tile_output);
}
}
void init_pips()
{
log_info("Creating pips...\n");
for (int y = 0; y < Y; y++)
for (int x = 0; x < X; x++) {
if (is_io(x, y)) {
add_io_pips(x, y);
} else {
add_slice_pips(x, y);
}
}
}
// Validity checking
struct OkamiCellInfo
{
const NetInfo *lut_f = nullptr, *ff_d = nullptr;
bool lut_i3_used = false;
};
std::vector<OkamiCellInfo> fast_cell_info;
void assign_cell_info()
{
fast_cell_info.resize(ctx->cells.size());
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
auto &fc = fast_cell_info.at(ci->flat_index);
if (ci->type == id_LUT4) {
fc.lut_f = ci->getPort(id_F);
fc.lut_i3_used = (ci->getPort(ctx->id(stringf("I[%d]", K - 1))) != nullptr);
} else if (ci->type == id_DFF) {
fc.ff_d = ci->getPort(id_D);
}
}
}
bool slice_valid(int x, int y, int z) const
{
const CellInfo *lut = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2)));
const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2 + 1)));
if (!lut || !ff)
return true; // always valid if only LUT or FF used
const auto &lut_data = fast_cell_info.at(lut->flat_index);
const auto &ff_data = fast_cell_info.at(ff->flat_index);
// In our example arch; the FF D can either be driven from LUT F or LUT I3
// so either; FF D must equal LUT F or LUT I3 must be unused
if (ff_data.ff_d == lut_data.lut_f && lut_data.lut_f->users.size() == 1)
return true;
// Can't route FF and LUT output separately
return false;
}
// Bel bucket functions
IdString getBelBucketForCellType(IdString cell_type) const override
{
if (cell_type.in(id_INBUF, id_OUTBUF))
return id_IOB;
return cell_type;
}
bool isValidBelForCellType(IdString cell_type, BelId bel) const override
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_IOB)
return cell_type.in(id_INBUF, id_OUTBUF);
else
return (bel_type == cell_type);
}
};
struct OkamiArch : ViaductArch
{
OkamiArch() : ViaductArch("okami"){};
std::unique_ptr<ViaductAPI> create(const dict<std::string, std::string> &args)
{
return std::make_unique<OkamiImpl>();
}
} exampleArch;
} // namespace
NEXTPNR_NAMESPACE_END

View File

@ -0,0 +1,12 @@
module \$lut (A, Y);
parameter WIDTH = 0;
parameter LUT = 0;
input [WIDTH-1:0] A;
output Y;
localparam rep = 1<<(4-WIDTH);
LUT4 #(.INIT({rep{LUT}})) _TECHMAP_REPLACE_ (.I(A), .F(Y));
endmodule
module \$_DFF_P_ (input D, C, output Q); DFF _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C)); endmodule

View File

@ -0,0 +1,35 @@
module LUT4 #(
parameter [15:0] INIT = 0
) (
input [3:0] I,
output F
);
wire [7:0] s3 = I[3] ? INIT[15:8] : INIT[7:0];
wire [3:0] s2 = I[2] ? s3[ 7:4] : s3[3:0];
wire [1:0] s1 = I[1] ? s2[ 3:2] : s2[1:0];
assign F = I[0] ? s1[1] : s1[0];
endmodule
module DFF (
input CLK, D,
output reg Q
);
initial Q = 1'b0;
always @(posedge CLK)
Q <= D;
endmodule
module INBUF (
input PAD,
output O,
);
assign O = PAD;
endmodule
module OUTBUF (
output PAD,
input I,
);
assign PAD = I;
endmodule

View File

@ -0,0 +1,24 @@
# Usage
# tcl synth_okami.tcl {out.json}
yosys read_verilog -lib [file dirname [file normalize $argv0]]/okami_prims.v
yosys hierarchy -check -top top
yosys proc
yosys flatten
yosys tribuf -logic
yosys deminout
yosys synth -run coarse
yosys memory_map
yosys opt -full
yosys iopadmap -bits -inpad INBUF O:PAD -outpad OUTBUF I:PAD
yosys techmap -map +/techmap.v
yosys opt -fast
yosys dfflegalize -cell \$_DFF_P_ 0
yosys abc -lut 4 -dress
yosys clean
yosys techmap -map [file dirname [file normalize $argv0]]/okami_map.v
yosys clean
yosys hierarchy -check
yosys stat
if {$argc > 0} { yosys write_json [lindex $argv 0] }

View File

@ -0,0 +1,6 @@
#!/usr/bin/env bash
set -ex
# Run synthesis
yosys -p "tcl synth_okami.tcl blinky.json" ../../examples/blinky.v
# Run PnR
${NEXTPNR:-../../../build/nextpnr-generic} --uarch okami --json blinky.json --router router2