Adding support for MacroCells

This commit is contained in:
Maciej Dudek 2021-08-30 11:12:49 +02:00
parent d9a71083e1
commit fdcfe8cd81
5 changed files with 385 additions and 6 deletions

View File

@ -74,10 +74,11 @@ void ExclusiveStateGroup<StateCount, StateType, CountType>::explain_requires(con
log_info("Placing cell %s at bel %s does not violate %s.%s\n", cell.c_str(ctx), ctx->nameOfBel(bel),
object.c_str(ctx), definition.prefix.c_str(ctx));
} else {
log_info("%d\n", state);
log_info("Placing cell %s at bel %s does violates %s.%s, because current state is %s, constraint requires one "
"of:\n",
cell.c_str(ctx), ctx->nameOfBel(bel), object.c_str(ctx), definition.prefix.c_str(ctx),
definition.states.at(state).c_str(ctx));
cell.c_str(ctx), ctx->nameOfBel(bel), object.c_str(ctx), definition.prefix.c_str(ctx), "-1");
// definition.states.at(state).c_str(ctx));
for (const auto required_state : state_range) {
log_info(" - %s\n", definition.states.at(required_state).c_str(ctx));

View File

@ -720,6 +720,7 @@ struct Arch : ArchAPI<ArchRanges>
// Clusters
void pack_cluster();
void prepare_cluster(const ClusterPOD *cluster, uint32_t index);
void prepare_macro_cluster(const ClusterPOD *cluster, uint32_t index);
dict<ClusterId, Cluster> clusters;
// User constraints

View File

@ -40,7 +40,8 @@ enum ClusterWireNodeState
enum ExpansionDirection
{
CLUSTER_UPHILL_DIR = 0,
CLUSTER_DOWNHILL_DIR = 1
CLUSTER_DOWNHILL_DIR = 1,
CLUSTER_BOTH_DIR = 2
};
struct ClusterWireNode
@ -370,6 +371,330 @@ static bool check_cluster_cells_compatibility(CellInfo *old_cell, CellInfo *new_
return true;
}
bool reduce(uint32_t x, uint32_t y, const ClusterPOD *cluster, dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> &domain, Context *ctx){
bool change = false;
std::vector<CellInfo *> remove_cell;
uint32_t counter = 0;
for (const auto &connection : cluster->connection_graph[x].connections){
if(connection.target_idx == y)
break;
counter ++;
}
for (const auto &x_cell : domain[x]){
if (ctx->verbose)
log_info("Testing cell %s\n", x_cell->name.c_str(ctx));
bool found = false;
for (const auto &y_cell : domain[y]){
if (ctx->verbose)
log_info(" - Y candidate: %s\n", y_cell->name.c_str(ctx));
for (const auto edge : cluster->connection_graph[x].connections[counter].edges){
if (!x_cell->ports.count(IdString(edge.cell_pin)) || !y_cell->ports.count(IdString(edge.other_cell_pin)))
break;
const auto x_net = x_cell->ports[IdString(edge.cell_pin)].net;
const auto y_net = y_cell->ports[IdString(edge.other_cell_pin)].net;
if (x_net != y_net)
break;
bool x_driver = x_net->driver.cell == x_cell;
bool y_driver = y_net->driver.cell == y_cell;
if ((edge.dir != 0 || !y_driver) && (edge.dir != 1 || !x_driver) && (edge.dir != 2 || y_driver || x_driver))
break;
found = true;
}
if (found){
log_info(" - Works for %s\n", y_cell->name.c_str(ctx));
break;
}
}
if (!found)
remove_cell.push_back(x_cell);
}
for (const auto &cell : remove_cell){
domain[x].erase(cell);
change = true;
}
return change;
}
void binary_constraint_check(const ClusterPOD *cluster,
std::queue<std::pair<uint32_t, uint32_t>> &workqueue,
dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> &idx_to_cells, Context *ctx){
while (!workqueue.empty()){
std::pair<uint32_t, uint32_t> arc = workqueue.front();
workqueue.pop();
uint32_t x,y;
x = arc.first; y = arc.second;
if (ctx->verbose)
log_info("Checking pair %d:%d\n", x, y);
if (reduce(x, y, cluster, idx_to_cells, ctx)){
for (const auto &connection : cluster->connection_graph[arc.first].connections)
if (connection.target_idx != y)
workqueue.push(std::pair<uint32_t, uint32_t>(arc.first, connection.target_idx));
}
}
}
bool back_solver(const ClusterPOD *cluster,
dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> &idx_to_cells, Context *ctx){
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
std::queue<uint32_t> prep;
for (const auto &arc : idx_to_cells){
if (arc.second.size() == 0)
return false;
if (arc.second.size()>1){
for (const auto &cell : arc.second){
auto copy_idx_to_cells(idx_to_cells);
copy_idx_to_cells[arc.first].clear();
for (uint32_t idx : possible_idx[cell]){
copy_idx_to_cells[idx].erase(cell);
prep.push(idx);
}
copy_idx_to_cells[arc.first].insert(cell);
std::queue<std::pair<uint32_t, uint32_t>> workqueue;
while(!prep.empty()){
uint32_t idx = prep.front(); prep.pop();
for (const auto &connection : cluster->connection_graph[idx].connections)
if (arc.first != connection.target_idx)
workqueue.push(std::pair<uint32_t, uint32_t>(arc.first, connection.target_idx));
}
binary_constraint_check(cluster, workqueue, copy_idx_to_cells, ctx);
if (back_solver(cluster, copy_idx_to_cells, ctx)){
idx_to_cells = std::move(copy_idx_to_cells);
return true;
}
}
}
}
return true;
}
void Arch::prepare_macro_cluster( const ClusterPOD *cluster, uint32_t index)
{
Context *ctx = getCtx();
IdString cluster_name(cluster->name);
pool<IdString> cluster_cell_types;
for (auto cell_type : cluster->root_cell_types)
cluster_cell_types.insert(IdString(cell_type));
// Find cluster roots for each macro only ones
dict<IdString, CellInfo *> roots;
for (auto &cell : cells){
CellInfo *ci = cell.second.get();
if(ci->macro_parent == IdString())
continue;
if(ci->cluster != ClusterId())
continue;
if (!cluster_cell_types.count(ci->type))
continue;
if(roots.count(ci->macro_parent))
continue;
// Simple check based on cell type counting
dict<IdString, uint32_t> cells_in_macro, counter;
pool<IdString> cell_types;
for (auto &cell_type : cluster->required_cells){
cells_in_macro[IdString(cell_type.name)] = cell_type.count;
cell_types.insert(IdString(cell_type.name));
}
for (auto &node_cell : macro_to_cells[ci->macro_parent]){
auto cell_type = node_cell->type;
if(!counter.count(cell_type))
counter[cell_type] = 0;
counter[cell_type]++;
cell_types.insert(cell_type);
}
bool failed = false;
for(auto cell_type : cell_types){
if(ctx->verbose && cells_in_macro.count(cell_type))
log_info("Required: %s %d\n", cell_type.c_str(ctx), cells_in_macro[cell_type]);
if(ctx->verbose && cells_in_macro.count(cell_type))
log_info("Have: %s %d\n", cell_type.c_str(ctx), counter[cell_type]);
if(!cells_in_macro.count(cell_type) || !counter.count(cell_type) || cells_in_macro[cell_type] != counter[cell_type])
failed = true;
if(failed && ctx->verbose)
log_info("Cell count stage failed, for sure not this cluster\n");
if(failed)
break;
}
if(failed){
roots[ci->macro_parent] = nullptr;
continue;
}
// Arc consistency
dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> idx_to_cells;
// First singular constraints, like used cell type and used_cell ports
for (auto &cell : macro_to_cells[ci->macro_parent])
for (auto &node : cluster->connection_graph)
if (IdString(node.cell_type) == cell->type)
if (node.idx != 0 && cell->name != ci->name ||
node.idx == 0 && cell->name == ci->name ){
idx_to_cells[node.idx].insert(cell);
}
for (auto &arc : idx_to_cells){
std::vector<CellInfo *> remove_cell;
pool<IdString> used_ports;
for (const auto &port : cluster->connection_graph[arc.first].used_ports)
used_ports.insert(IdString(port.name));
for (const auto &cell : arc.second){
uint32_t count = 0;
for (const auto &port : cell->ports){
if (!used_ports.count(port.first)){
remove_cell.push_back(cell);
break;
}
count++;
}
if (count != used_ports.size()){
remove_cell.push_back(cell);
break;
}
}
for (const auto &cell : remove_cell){
arc.second.erase(cell);
}
}
if (ctx->verbose){
log_info("After mono constraints are applied\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto arc : possible_idx){
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
// Solve for binary constraints
std::queue<std::pair<uint32_t, uint32_t>> workqueue;
for (const auto &arc : idx_to_cells)
for (const auto &connection : cluster->connection_graph[arc.first].connections)
workqueue.push(std::pair<uint32_t, uint32_t>(arc.first, connection.target_idx));
binary_constraint_check(cluster, workqueue, idx_to_cells, ctx);
for (const auto &arc : idx_to_cells){
if (arc.second.size() == 0){
if (ctx->verbose)
log_info("AC-3 failed\n");
failed = true;
break;
}
}
if (failed)
continue;
if (ctx->verbose){
log_info("After AC-3\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto arc : possible_idx){
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
bool change = false;
std::queue<std::pair<uint32_t, CellInfo *>> removequeue;
// Keep assigning cells to indices that only map to single cell
// Remove this cell from other mappings and recheck binary constraints
// Fail if there is no cell for idx or cell has no idx assign
do{
change = false;
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
pool<uint32_t> changed_idxs;
for (const auto &arc : idx_to_cells){
if (arc.second.size() == 0){
failed = true;
break;
}
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
}
if(failed)
break;
for (auto &cell : macro_to_cells[ci->macro_parent])
if (possible_idx[cell].size() == 0){
failed = true;
break;
}
if(failed)
break;
for (const auto &arc : idx_to_cells){
if (arc.second.size() == 1)
for (const auto &idx : possible_idx[*arc.second.begin()])
if (idx != arc.first)
removequeue.push(std::pair<uint32_t, CellInfo*>(idx, *arc.second.begin()));
}
while(!removequeue.empty()){
auto t = removequeue.front(); removequeue.pop();
uint32_t idx = t.first;
CellInfo *cell = t.second;
idx_to_cells[idx].erase(cell);
change = true;
changed_idxs.insert(idx);
}
for (const uint32_t &idx : changed_idxs)
for (const auto &connection : cluster->connection_graph[idx].connections)
workqueue.push(std::pair<uint32_t, uint32_t>(idx, connection.target_idx));
binary_constraint_check(cluster, workqueue, idx_to_cells, ctx);
}while(change);
if(failed){
if(ctx->verbose)
log_info("Single cell mapping failed\n");
continue;
}
if (ctx->verbose){
log_info("After mapping indices with single cell\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto arc : possible_idx){
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
// At this point all indices that cloud only be mapped to single cell are mapped
// Next step is to run solver with backtracing to solve for other idx<->cell mappings
if (ctx->verbose)
log_info("Back solver\n");
if(!back_solver(cluster, idx_to_cells, ctx)){
if(ctx->verbose)
log_info("Back solver failed\n");
continue;
}
if (ctx->verbose){
log_info("Final mapping after back solver\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto arc : possible_idx){
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
}
}
void Arch::prepare_cluster(const ClusterPOD *cluster, uint32_t index)
{
Context *ctx = getCtx();
@ -383,6 +708,8 @@ void Arch::prepare_cluster(const ClusterPOD *cluster, uint32_t index)
std::vector<CellInfo *> roots;
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
if (ci->macro_parent != IdString())
continue;
if (ci->cluster != ClusterId())
continue;
@ -564,9 +891,17 @@ void Arch::pack_cluster()
dump_clusters(chip_info, ctx);
for (uint32_t i = 0; i < chip_info->clusters.size(); ++i) {
const auto &cluster = chip_info->clusters[i];
if (!chip_info->clusters[i].from_macro){
const auto &cluster = chip_info->clusters[i];
prepare_cluster(&cluster, i);
prepare_cluster(&cluster, i);
} else {
const auto &cluster = chip_info->clusters[i];
if(ctx->verbose)
log_info("%s\n", IdString(cluster.name).c_str(ctx));
prepare_macro_cluster(&cluster, i);
}
}
}

View File

@ -34,7 +34,12 @@ NEXTPNR_NAMESPACE_BEGIN
* kExpectedChipInfoVersion
*/
static constexpr int32_t kExpectedChipInfoVersion = 14;
static constexpr int32_t kExpectedChipInfoVersion = 15;
NPNR_PACKED_STRUCT(struct BelConnectedPinsPOD {
uint32_t pin1;
uint32_t pin2;
});
// Flattened site indexing.
//
@ -80,6 +85,8 @@ NPNR_PACKED_STRUCT(struct BelInfoPOD {
int8_t inverting_pin;
int16_t padding;
RelSlice<BelConnectedPinsPOD> connected_pins;
});
enum BELCategory
@ -416,13 +423,45 @@ NPNR_PACKED_STRUCT(struct ChainablePortPOD {
int16_t avg_y_offset;
});
NPNR_PACKED_STRUCT(struct ClusterRequiredCellPOD{
uint32_t name;
uint32_t count;
});
NPNR_PACKED_STRUCT(struct ClusterUsedPortPOD{
uint32_t name;
});
NPNR_PACKED_STRUCT(struct ClusterEdgePOD{
uint32_t dir;
uint32_t cell_pin;
uint32_t other_cell_pin;
uint32_t other_cell_type;
});
NPNR_PACKED_STRUCT(struct ClusterConnectionsPOD{
uint32_t target_idx;
RelSlice<ClusterEdgePOD> edges;
});
NPNR_PACKED_STRUCT(struct ClusterConnectionGraphPOD{
uint32_t idx;
uint32_t cell_type;
RelSlice<ClusterConnectionsPOD> connections;
RelSlice<ClusterUsedPortPOD> used_ports;
});
NPNR_PACKED_STRUCT(struct ClusterPOD {
uint32_t name;
RelSlice<uint32_t> root_cell_types;
RelSlice<ChainablePortPOD> chainable_ports;
RelSlice<ClusterCellPortPOD> cluster_cells_map;
RelSlice<ClusterRequiredCellPOD> required_cells;
RelSlice<ClusterConnectionGraphPOD> connection_graph;
uint32_t out_of_site_clusters;
uint32_t disallow_other_cells;
uint32_t from_macro;
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {

View File

@ -50,6 +50,7 @@ static IdString derived_name(Context *ctx, IdString base_name, IdString suffix)
void Arch::expand_macros()
{
log_info("Expand macros\n");
// Make up a list of cells, so we don't have modify-while-iterating issues
Context *ctx = getCtx();
std::vector<CellInfo *> cells;
@ -78,6 +79,7 @@ void Arch::expand_macros()
// Get the ultimate root of this macro expansion
IdString parent = (cell->macro_parent == IdString()) ? cell->name : cell->macro_parent;
log_info("%s %s\n", cell->name.c_str(ctx), parent.c_str(ctx));
// Create child instances
for (const auto &inst : macro->cell_insts) {
CellInfo *inst_cell =
@ -86,6 +88,7 @@ void Arch::expand_macros()
inst_cell->params[IdString(param.key)] = IdString(param.value).str(ctx);
}
inst_cell->macro_parent = parent;
log_info(" %s %s\n", inst_cell->name.c_str(ctx), inst_cell->type.c_str(ctx));
next_cells.push_back(inst_cell);
}
// Create and connect nets