* Fix truncation of output seed value from 64 bits to 32 bits (int
instead of uint64) when written to json file.
* Fix input seed value conversion when --seed option is used.
* Remove input seed value scrambling (use of rngseed()) when --seed
or --randomize-seed option is used since the output seed value will
be the scrambled value and not the seed that was actually supplied
or generated.
* Gowin. Implement the EMCU primitive.
Add support for the GW1NSR-4C's embedded Cortex-M3 processor. Since it
uses flash in its own way, we disable additional flash processing for
this case.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix merge.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Add DHCEN primitive.
This primitive allows you to dynamically turn off and turn on the
networks of high-speed clocks.
This is done tracking the routes to the sinks and if the route passes
through a special HCLK MUX (this may be the input MUX or the output MUX,
as well as the interbank MUX), then the control signal of this MUX is
used.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Change the DHCEN binding
Use the entire PIP instead of a wire - avoids normalisation and may also
be useful in the future when calculating clock stuff.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
Some Clocks PIPS were not created due to a check for the presence of a
delay class, now all wires are attributed to the class so that there is
no longer any need for this check.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Implement the UserFlash primitive
Some Gowin chips have embedded flash memory accessible from the fabric.
Here we add primitives that allow access to this memory.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix cell creation
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Himbaechel Gowin: Add support for CLKDIV and CLKDIV2
* Himbaechel Gowin: Add support for CLKDIV and CLKDIV2
* Gowin Himbaechel: HCLK Bug fixes and corrections
DQCE and DCS primitives are added.
DQCE allows the internal logic to enable or disable the clock network in
the quadrant. When clock network is disabled, all logic drivern by this
clock is no longer toggled, thus reducing the total power consumtion of
the device.
DCS allows you to select one of four sources for two clock wires (6 and 7).
Wires 6 and 7 have not been used up to this point.
Since "hardware" primitives operate strictly in their own quadrants,
user-specified primitives are converted into one or more "hardware"
primitives as needed.
Also:
- minor edits to make the most of helper functions like connectPorts()
- when creating bases, the corresponding constants are assigned to the
VCC and GND wires, but for now huge nodes are used because, for an
unknown reason, the constants mechanism makes large examples
inoperable. So for now we remain on the nodes.
Compatible with older Apicula databases.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
It was not taken into account that there are only 6 ALUs per cell. As a
result, on complex designs where ALUs and LUT-based memory are involved
and there are many LUTs (like in the RISCV emulator), there were
sometimes false positives about placement conflicts.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
The statement in the Gowin documentation that in the reading mode
"READ_MODE=0" the output register is not used and the OCE signal is
ignored is not confirmed by practice - if the OCE was left unconnected
or connected to the constant network, then a change in output data was
observed even with CE=0, as well as the absence of such at CE=1.
Synchronizing CE and OCE helps and the memory works properly in complex
systems such as RISC-V emulation and i8080 emulation (with 32K RAM and
16K BSRAM based ROM), but there is no theoretical basis for this fix, so
it is a hack.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
For pROM(X9) primitives in images generated by Gowin IDE, there is an
interesting recommunication of inputs depending on the data bit depth.
For example, in some cases, a high logical level may be applied to the
Write Enable input, which, let’s say, is not entirely usual for Read
Only memory.
Here we will do similar manipulations.
In addition, several minor bug fixes are included:
- Fixed bit numbering for non-X9 series primitives.
- Fixed decoder generation for BLKSEL - do not assume unused inputs are
connected to GND.
- Use default values for BSRAM parameters - don't assume their
mandatory presence.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
As the board on the GW1N-1 chip becomes a rarity, its replacement is the
Tangnano1k board with the GW1NZ-1 chip. This chip has a unique mechanism
for turning off power to important things such as OSC, PLL, etc.
Here we introduce a primitive that allows energy saving to be controlled
dynamically.
We also bring the names of some functions to uniformity.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
In the images generated by Gowin IDE, the signals for dynamic BSRAM
block selection (BLKSEL[2:0]) are not always connected directly to the
ports - some chips add LUT2, LUT3 or LUT4 to turn these signals into
Clock Enable. Apparently there are chips with an error in the operation
of these ports.
Here we make such a decoder instead of using ports directly.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
It seems that the internal registers on the BSRAM output pins in
READ_MODE=1'b1 (pipeline) mode do not function properly because in the
images generated by Gowin IDE an external register is added to each pin,
and the BSRAM itself switches to READ_MODE=1'b0 (bypass) mode .
This is observed on Tangnano9k and Tangnano20k boards.
Here we repeat this fix.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
Add description of BSRAM harness
In some cases, Gowin IDE adds a number of LUTs and DFFs to the BSRAM. Here we are trying to add similar elements.
More details with pictures: https://github.com/YosysHQ/apicula/blob/master/doc/bsram-fix.md
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
When multiplying 36 bits by 36 bits using four 18x18 multipliers, the
sign bits of the higher 18-bit parts of the multipliers were correctly
switched, but what was incorrect was leaving the sign bits of the lower
parts of the multipliers uninitialized. They now connect to VSS.
Addresses https://github.com/YosysHQ/apicula/issues/242
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>