* Extend Himbaechel API with gfx drawing methods
* Add bel drawing in example uarch
* changed API and added tile wire id in db
* extend API so we can distinguish CLK wires
* added bit more wires
* less horrid way of handling gfx ids
* loop wire range
* removed not needed brackets
* bump database version to 5
* Removed not used GfxFlags
* Gowin. FFs placement.
* Allow clusters to be created from FFs and LUTs;
* Immediately create pass-through LUTs from free LUTs adjacent to FF - at the same time ensure alternating use of LUT inputs;
* In case of constant networks, such pass-through LUTs are disconnected from networks altogether;
* Allow FF to be placed directly into SSRAM slides - this is useful when using synchronous reading.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix aux name creation
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Use I3 for pass-trough LUTs
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix the port check for connectivity.
What happens is that it's not enough to check for a network, we also
need to make sure that the network is functional: has src and sinks.
And the style edits - they get automatically when I make sure to run
clang-format10.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix the port check for connectivity.
What happens is that it's not enough to check for a network, we also
need to make sure that the network is functional: has src and sinks
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Implement the EMCU primitive.
Add support for the GW1NSR-4C's embedded Cortex-M3 processor. Since it
uses flash in its own way, we disable additional flash processing for
this case.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix merge.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Add DHCEN primitive.
This primitive allows you to dynamically turn off and turn on the
networks of high-speed clocks.
This is done tracking the routes to the sinks and if the route passes
through a special HCLK MUX (this may be the input MUX or the output MUX,
as well as the interbank MUX), then the control signal of this MUX is
used.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Change the DHCEN binding
Use the entire PIP instead of a wire - avoids normalisation and may also
be useful in the future when calculating clock stuff.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
Some Clocks PIPS were not created due to a check for the presence of a
delay class, now all wires are attributed to the class so that there is
no longer any need for this check.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Implement the UserFlash primitive
Some Gowin chips have embedded flash memory accessible from the fabric.
Here we add primitives that allow access to this memory.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Gowin. Fix cell creation
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
---------
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
* Himbaechel Gowin: Add support for CLKDIV and CLKDIV2
* Himbaechel Gowin: Add support for CLKDIV and CLKDIV2
* Gowin Himbaechel: HCLK Bug fixes and corrections
DQCE and DCS primitives are added.
DQCE allows the internal logic to enable or disable the clock network in
the quadrant. When clock network is disabled, all logic drivern by this
clock is no longer toggled, thus reducing the total power consumtion of
the device.
DCS allows you to select one of four sources for two clock wires (6 and 7).
Wires 6 and 7 have not been used up to this point.
Since "hardware" primitives operate strictly in their own quadrants,
user-specified primitives are converted into one or more "hardware"
primitives as needed.
Also:
- minor edits to make the most of helper functions like connectPorts()
- when creating bases, the corresponding constants are assigned to the
VCC and GND wires, but for now huge nodes are used because, for an
unknown reason, the constants mechanism makes large examples
inoperable. So for now we remain on the nodes.
Compatible with older Apicula databases.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
It was not taken into account that there are only 6 ALUs per cell. As a
result, on complex designs where ALUs and LUT-based memory are involved
and there are many LUTs (like in the RISCV emulator), there were
sometimes false positives about placement conflicts.
Signed-off-by: YRabbit <rabbit@yrabbit.cyou>