/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 gatecat * Copyright (C) 2021 William D. Jones * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "bitstream.h" #include #include #include #include #include #include #include "config.h" #include "log.h" #include "util.h" #define fmt_str(x) (static_cast(std::ostringstream() << x).str()) NEXTPNR_NAMESPACE_BEGIN // These seem simple enough to do inline for now. namespace BaseConfigs { void config_empty_lcmxo2_256(ChipConfig &cc); void config_empty_lcmxo2_640(ChipConfig &cc); void config_empty_lcmxo2_1200(ChipConfig &cc); void config_empty_lcmxo2_2000(ChipConfig &cc); void config_empty_lcmxo2_4000(ChipConfig &cc); void config_empty_lcmxo2_7000(ChipConfig &cc); void config_empty_lcmxo3_1300(ChipConfig &cc); void config_empty_lcmxo3_2100(ChipConfig &cc); void config_empty_lcmxo3_4300(ChipConfig &cc); void config_empty_lcmxo3_6900(ChipConfig &cc); void config_empty_lcmxo3_9400(ChipConfig &cc); } // namespace BaseConfigs namespace { struct MachXO2Bitgen { explicit MachXO2Bitgen(Context *ctx) : ctx(ctx) {}; Context *ctx; ChipConfig cc; // Convert an absolute wire name to a relative Trellis one std::string get_trellis_wirename(Location loc, WireId wire) { std::string basename = ctx->tile_info(wire)->wire_data[wire.index].name.get(); std::string prefix2 = basename.substr(0, 2); std::string prefix7 = basename.substr(0, 7); int max_col = ctx->chip_info->width - 1; // Handle MachXO2's wonderful naming quirks for wires in left/right tiles, whose // relative coords push them outside the bounds of the chip. // Indents are based on wires proximity/purpose. auto is_pio_wire = [](std::string name) { // clang-format off return (name.find("DI") != std::string::npos || name.find("JDI") != std::string::npos || name.find("PADD") != std::string::npos || name.find("INDD") != std::string::npos || name.find("IOLDO") != std::string::npos || name.find("IOLTO") != std::string::npos || // JCE0-3, JCLK0-3, JLSR0-3 connect to PIO wires named JCEA-D, JCLKA-D, JLSRA-D. name.find("JCEA") != std::string::npos || name.find("JCEB") != std::string::npos || name.find("JCEC") != std::string::npos || name.find("JCED") != std::string::npos || name.find("JCLKA") != std::string::npos || name.find("JCLKB") != std::string::npos || name.find("JCLKC") != std::string::npos || name.find("JCLKD") != std::string::npos || name.find("JLSRA") != std::string::npos || name.find("JLSRB") != std::string::npos || name.find("JLSRC") != std::string::npos || name.find("JLSRD") != std::string::npos || name.find("JONEG") != std::string::npos || name.find("JOPOS") != std::string::npos || name.find("JTS") != std::string::npos || name.find("JIN") != std::string::npos || name.find("JIP") != std::string::npos || // Connections to global mux name.find("JINCK") != std::string::npos); // clang-format on }; if (prefix2 == "G_" || prefix7 == "BRANCH_") return basename; if (prefix2 == "L_" || prefix2 == "R_") { if (loc.x == 0 || loc.x == (ctx->getGridDimX() - 1)) return "G_" + basename.substr(2); return basename; } if (prefix2 == "U_" || prefix2 == "D_") { // We needded to keep U_ and D_ prefixes to generate the routing // graph connections properly, but in truth they are not relevant // outside of the center row of tiles as far as the database is // concerned. So convert U_/D_ prefixes back to G_ if not in the // center row. if (ctx->is_spine_row(loc.y)) return basename; else return "G_" + basename.substr(2); } if (loc == wire.location) { // TODO: JINCK is not currently handled by this. if (is_pio_wire(basename)) { if (wire.location.x == 0) { std::string pio_name = "W1_" + basename; if (ctx->verbose) log_info("PIO wire %s was adjusted by W1 to form Trellis name %s.\n", ctx->nameOfWire(wire), pio_name.c_str()); return pio_name; } else if (wire.location.x == max_col) { std::string pio_name = "E1_" + basename; if (ctx->verbose) log_info("PIO wire %s was adjusted by E1 to form Trellis name %s.\n", ctx->nameOfWire(wire), pio_name.c_str()); return pio_name; } } return basename; } std::string rel_prefix; if (wire.location.y < loc.y) rel_prefix += "N" + std::to_string(loc.y - wire.location.y); if (wire.location.y > loc.y) rel_prefix += "S" + std::to_string(wire.location.y - loc.y); if (wire.location.x > loc.x) rel_prefix += "E" + std::to_string(wire.location.x - loc.x); if (wire.location.x < loc.x) rel_prefix += "W" + std::to_string(loc.x - wire.location.x); return rel_prefix + "_" + basename; } std::vector int_to_bitvector(int val, int size) { std::vector bv; for (int i = 0; i < size; i++) { bv.push_back((val & (1 << i)) != 0); } return bv; } std::vector str_to_bitvector(std::string str, int size) { std::vector bv; bv.resize(size, 0); if (str.substr(0, 2) != "0b") log_error("error parsing value '%s', expected 0b prefix\n", str.c_str()); for (int i = 0; i < int(str.size()) - 2; i++) { char c = str.at((str.size() - i) - 1); NPNR_ASSERT(c == '0' || c == '1'); bv.at(i) = (c == '1'); } return bv; } inline int chtohex(char c) { static const std::string hex = "0123456789ABCDEF"; return hex.find(std::toupper(c)); } std::vector parse_init_str(const Property &p, int length, const char *cellname) { // Parse a string that may be binary or hex std::vector result; result.resize(length, false); if (p.is_string) { std::string str = p.as_string(); NPNR_ASSERT(str.substr(0, 2) == "0x"); // Lattice style hex string if (int(str.length()) > (2 + ((length + 3) / 4))) log_error("hex string value too long, expected up to %d chars and found %d.\n", (2 + ((length + 3) / 4)), int(str.length())); for (int i = 0; i < int(str.length()) - 2; i++) { char c = str.at((str.size() - i) - 1); int nibble = chtohex(c); if (nibble == (int)std::string::npos) log_error("hex string has invalid char '%c' at position %d.\n", c, i); result.at(i * 4) = nibble & 0x1; if (i * 4 + 1 < length) result.at(i * 4 + 1) = nibble & 0x2; if (i * 4 + 2 < length) result.at(i * 4 + 2) = nibble & 0x4; if (i * 4 + 3 < length) result.at(i * 4 + 3) = nibble & 0x8; } } else { result = p.as_bits(); result.resize(length, false); } return result; } inline uint16_t bit_reverse(uint16_t x, int size) { uint16_t y = 0; for (int i = 0; i < size; i++) if (x & (1 << i)) y |= (1 << ((size - 1) - i)); return y; } // Get the PIC tile corresponding to a PIO bel std::string get_pic_tile(BelId bel) { static const std::set pio_t = {"PIC_T0", "PIC_T0_256", "PIC_TS0"}; static const std::set pio_b = {"PIC_B0", "PIC_B0_256", "PIC_BS0_256"}; static const std::set pio_l = {"PIC_L0", "PIC_L1", "PIC_L2", "PIC_L3", "PIC_LS0", "PIC_L0_VREF3", "PIC_L0_VREF4", "PIC_L0_VREF5", "PIC_L1_VREF3", "PIC_L1_VREF4", "PIC_L1_VREF5", "PIC_L2_VREF4", "PIC_L2_VREF5", "PIC_L3_VREF4", "PIC_L3_VREF5", "LLC0PIC", "LLC1PIC", "LLC0PIC_VREF3", "LLC3PIC_VREF3", "ULC3PIC"}; static const std::set pio_r = {"PIC_R0", "PIC_R1", "PIC_RS0", "PIC_R0_256", "PIC_R1_640", "PIC_RS0_256", "LRC1PIC1", "LRC1PIC2", "URC1PIC"}; std::string pio_name = ctx->tile_info(bel)->bel_data[bel.index].name.get(); if (bel.location.y == 0) { return ctx->get_tile_by_type_loc(0, bel.location.x, pio_t); } else if (bel.location.y == ctx->chip_info->height - 1) { return ctx->get_tile_by_type_loc(bel.location.y, bel.location.x, pio_b); } else if (bel.location.x == 0) { return ctx->get_tile_by_type_loc(bel.location.y, 0, pio_l); } else if (bel.location.x == ctx->chip_info->width - 1) { return ctx->get_tile_by_type_loc(bel.location.y, bel.location.x, pio_r); } else { NPNR_ASSERT_FALSE("bad PIO location"); } } // Get the list of tiles corresponding to a blockram std::vector get_bram_tiles(BelId bel) { std::vector tiles; Loc loc = ctx->getBelLocation(bel); static const std::set ebr0 = {"EBR0", "EBR0_END", "EBR0_10K", "EBR0_END_10K"}; static const std::set ebr1 = {"EBR1", "EBR1_10K"}; static const std::set ebr2 = {"EBR2", "EBR2_END", "EBR2_10K", "EBR2_END_10K"}; tiles.push_back(ctx->get_tile_by_type_loc(loc.y, loc.x, ebr0)); tiles.push_back(ctx->get_tile_by_type_loc(loc.y, loc.x + 1, ebr1)); tiles.push_back(ctx->get_tile_by_type_loc(loc.y, loc.x + 2, ebr2)); static const std::set cib_ebr0 = { "CIB_EBR0", "CIB_EBR0_10K", "CIB_EBR0_END0", "CIB_EBR0_END0_10K", "CIB_EBR0_END0_DLL3", "CIB_EBR0_END0_DLL5", "CIB_EBR0_END1", "CIB_EBR0_END2_DLL3", "CIB_EBR0_END2_DLL45"}; static const std::set cib_ebr1 = {"CIB_EBR1", "CIB_EBR1_10K"}; static const std::set cib_ebr2 = {"CIB_EBR2", "CIB_EBR2_10K", "CIB_EBR2_END0", "CIB_EBR2_END1", "CIB_EBR2_END1_10K", "CIB_EBR2_END1_SP"}; tiles.push_back(ctx->get_tile_by_type_loc(loc.y, loc.x, cib_ebr0)); tiles.push_back(ctx->get_tile_by_type_loc(loc.y, loc.x + 1, cib_ebr1)); tiles.push_back(ctx->get_tile_by_type_loc(loc.y, loc.x + 2, cib_ebr2)); return tiles; } // Get the list of tiles corresponding to a PLL std::vector get_pll_tiles(BelId bel) { std::string name = ctx->tile_info(bel)->bel_data[bel.index].name.get(); std::vector tiles; Loc loc = ctx->getBelLocation(bel); if (name == "LPLL") { tiles.push_back(ctx->get_tile_by_type_loc(loc.y - 1, loc.x - 1, "GPLL_L0")); } else if (name == "RPLL") { tiles.push_back(ctx->get_tile_by_type_loc(loc.y + 1, loc.x - 1, "GPLL_R0")); } else { NPNR_ASSERT_FALSE_STR("bad PLL loc " + name); } return tiles; } void set_pip(ChipConfig &cc, PipId pip) { std::string tile = ctx->get_pip_tilename(pip); std::string tile_type = ctx->chip_info->tiletype_names[ctx->tile_info(pip)->pip_data[pip.index].tile_type].get(); std::string source = get_trellis_wirename(pip.location, ctx->getPipSrcWire(pip)); std::string sink = get_trellis_wirename(pip.location, ctx->getPipDstWire(pip)); cc.tiles[tile].add_arc(sink, source); // Special case pips whose config bits are spread across tiles. if (source == "G_PCLKCIBVIQT0" && sink == "G_VPRXCLKI0") { if (tile_type == "CENTER7") { cc.tiles[ctx->get_tile_by_type("CENTER8")].add_arc(sink, source); } else if (tile_type == "CENTER8") { cc.tiles[ctx->get_tile_by_type("CENTER7")].add_arc(sink, source); } else { NPNR_ASSERT_FALSE("Tile does not contain special-cased pip"); } } } unsigned permute_lut(CellInfo *cell, pool &used_phys_pins, unsigned orig_init) { std::array, 4> phys_to_log; const std::array ports{id_A, id_B, id_C, id_D}; for (unsigned i = 0; i < 4; i++) { WireId pin_wire = ctx->getBelPinWire(cell->bel, ports[i]); for (PipId pip : ctx->getPipsUphill(pin_wire)) { if (!ctx->getBoundPipNet(pip)) continue; unsigned lp = ctx->tile_info(pip)->pip_data[pip.index].lutperm_flags; if (!is_lutperm_pip(lp)) { // non-permuting phys_to_log[i].push_back(i); } else { // permuting unsigned from_pin = lutperm_in(lp); unsigned to_pin = lutperm_out(lp); NPNR_ASSERT(to_pin == i); phys_to_log[from_pin].push_back(i); } } } for (unsigned i = 0; i < 4; i++) if (!phys_to_log.at(i).empty()) used_phys_pins.insert(ports.at(i)); if (cell->combInfo.flags & ArchCellInfo::COMB_CARRY) { // Insert dummy entries to ensure we keep the split between the two halves of a CCU2 for (unsigned i = 0; i < 4; i++) { if (!phys_to_log.at(i).empty()) continue; for (unsigned j = 2 * (i / 2); j < 2 * ((i / 2) + 1); j++) { if (!ctx->getBoundWireNet(ctx->getBelPinWire(cell->bel, ports[j]))) phys_to_log.at(i).push_back(j); } } } unsigned permuted_init = 0; for (unsigned i = 0; i < 16; i++) { unsigned log_idx = 0; for (unsigned j = 0; j < 4; j++) { if ((i >> j) & 0x1) { for (auto log_pin : phys_to_log[j]) log_idx |= (1 << log_pin); } } if ((orig_init >> log_idx) & 0x1) permuted_init |= (1 << i); } return permuted_init; } std::string intstr_or_default(const dict &ct, const IdString &key, std::string def = "0") { auto found = ct.find(key); if (found == ct.end()) return def; else { if (found->second.is_string) return found->second.as_string(); else return std::to_string(found->second.as_int64()); } }; void write_comb(CellInfo *ci) { pool used_phys_pins; BelId bel = ci->bel; std::string tname = ctx->get_tile_by_type_loc(bel.location.y, bel.location.x, "PLC"); int z = ctx->tile_info(bel)->bel_data[bel.index].z >> Arch::lc_idx_shift; std::string slice = std::string("SLICE") + "ABCD"[z / 2]; std::string lc = std::to_string(z % 2); std::string mode = str_or_default(ci->params, id_MODE, "LOGIC"); if (mode == "RAMW_BLOCK") return; int lut_init = int_or_default(ci->params, id_INITVAL); cc.tiles[tname].add_enum(slice + ".MODE", mode); cc.tiles[tname].add_word(slice + ".K" + lc + ".INIT", int_to_bitvector(permute_lut(ci, used_phys_pins, lut_init), 16)); if (mode == "CCU2") { cc.tiles[tname].add_enum(slice + ".CCU2.INJECT1_" + lc, str_or_default(ci->params, id_CCU2_INJECT1, "YES")); } else { // Don't interfere with cascade mux wiring cc.tiles[tname].add_enum(slice + ".CCU2.INJECT1_" + lc, "_NONE_"); } if (mode == "DPRAM" && slice == "SLICEA" && lc == "0") { cc.tiles[tname].add_enum(slice + ".WREMUX", str_or_default(ci->params, id_WREMUX, "WRE")); std::string wckmux = str_or_default(ci->params, id_WCKMUX, "WCK"); wckmux = (wckmux == "WCK") ? "CLK" : wckmux; cc.tiles[tname].add_enum("CLK2.CLKMUX", wckmux); } } void write_ff(CellInfo *ci) { BelId bel = ci->bel; std::string tname = ctx->get_tile_by_type_loc(bel.location.y, bel.location.x, "PLC"); int z = ctx->tile_info(bel)->bel_data[bel.index].z >> Arch::lc_idx_shift; std::string slice = std::string("SLICE") + "ABCD"[z / 2]; std::string lc = std::to_string(z % 2); cc.tiles[tname].add_enum(slice + ".GSR", str_or_default(ci->params, id_GSR, "ENABLED")); cc.tiles[tname].add_enum(slice + ".REGMODE", str_or_default(ci->params, id_REGMODE, "FF")); cc.tiles[tname].add_enum(slice + ".REG" + lc + ".SD", intstr_or_default(ci->params, id_SD, "0")); cc.tiles[tname].add_enum(slice + ".REG" + lc + ".REGSET", str_or_default(ci->params, id_REGSET, "RESET")); cc.tiles[tname].add_enum(slice + ".CEMUX", str_or_default(ci->params, id_CEMUX, "1")); std::string lsr = std::string("LSR") + "0123"[z / 2]; if (ci->getPort(id_LSR)) { cc.tiles[tname].add_enum(lsr + ".LSRMUX", str_or_default(ci->params, id_LSRMUX, "LSR")); cc.tiles[tname].add_enum(lsr + ".SRMODE", str_or_default(ci->params, id_SRMODE, "LSR_OVER_CE")); cc.tiles[tname].add_enum(lsr + ".LSRONMUX", str_or_default(ci->params, id_LSRONMUX, "LSRMUX")); } else { cc.tiles[tname].add_enum(lsr + ".LSRONMUX", "0"); } if (ci->getPort(id_CLK)) { std::string clk = std::string("CLK") + "0123"[z / 2]; cc.tiles[tname].add_enum(clk + ".CLKMUX", str_or_default(ci->params, id_CLKMUX, "0")); } } void write_io(CellInfo *ci) { BelId bel = ci->bel; std::string pio = ctx->tile_info(bel)->bel_data[bel.index].name.get(); std::string iotype = str_or_default(ci->attrs, id_IO_TYPE, "LVCMOS33"); std::string dir = str_or_default(ci->params, id_DIR, "INPUT"); std::string pic_tile = get_pic_tile(bel); cc.tiles[pic_tile].add_enum(pio + ".BASE_TYPE", dir + "_" + iotype); } void write_dcc(CellInfo *ci) { static const std::set dcc = {"CENTERB", "CENTER4", "CENTER9"}; const NetInfo *cen = ci->getPort(id_CE); if (cen != nullptr) { std::string belname = ctx->tile_info(ci->bel)->bel_data[ci->bel.index].name.get(); std::string dcc_tile = ctx->get_tile_by_type_loc(ci->bel.location.y - 2, ci->bel.location.x, dcc); cc.tiles[dcc_tile].add_enum(belname + ".MODE", "DCCA"); } } void write_bram(CellInfo *ci) { TileGroup tg; tg.tiles = get_bram_tiles(ci->bel); std::string ebr = "EBR"; if (ci->ramInfo.is_pdp) { tg.config.add_enum(ebr + ".MODE", "PDPW8KC"); tg.config.add_enum(ebr + ".PDPW8KC.DATA_WIDTH_R", intstr_or_default(ci->params, id_DATA_WIDTH_B, "18")); tg.config.add_enum(ebr + ".FIFO8KB.DATA_WIDTH_W", "18"); // default for PDPW8KC } else { tg.config.add_enum(ebr + ".MODE", "DP8KC"); tg.config.add_enum(ebr + ".DP8KC.DATA_WIDTH_A", intstr_or_default(ci->params, id_DATA_WIDTH_A, "18")); tg.config.add_enum(ebr + ".DP8KC.DATA_WIDTH_B", intstr_or_default(ci->params, id_DATA_WIDTH_B, "18")); tg.config.add_enum(ebr + ".DP8KC.WRITEMODE_A", str_or_default(ci->params, id_WRITEMODE_A, "NORMAL")); tg.config.add_enum(ebr + ".DP8KC.WRITEMODE_B", str_or_default(ci->params, id_WRITEMODE_B, "NORMAL")); } auto csd_a = str_to_bitvector(str_or_default(ci->params, id_CSDECODE_A, "0b000"), 3), csd_b = str_to_bitvector(str_or_default(ci->params, id_CSDECODE_B, "0b000"), 3); tg.config.add_enum(ebr + ".REGMODE_A", str_or_default(ci->params, id_REGMODE_A, "NOREG")); tg.config.add_enum(ebr + ".REGMODE_B", str_or_default(ci->params, id_REGMODE_B, "NOREG")); tg.config.add_enum(ebr + ".RESETMODE", str_or_default(ci->params, id_RESETMODE, "SYNC")); tg.config.add_enum(ebr + ".ASYNC_RESET_RELEASE", str_or_default(ci->params, id_ASYNC_RESET_RELEASE, "SYNC")); tg.config.add_enum(ebr + ".GSR", str_or_default(ci->params, id_GSR, "DISABLED")); tg.config.add_word(ebr + ".WID", int_to_bitvector(int_or_default(ci->attrs, id_WID, 0), 9)); // Invert CSDECODE bits to emulate inversion muxes on CSA/CSB signals for (auto &port : {std::make_pair("CSA", std::ref(csd_a)), std::make_pair("CSB", std::ref(csd_b))}) { for (int bit = 0; bit < 3; bit++) { std::string sig = port.first + std::to_string(bit); if (str_or_default(ci->params, ctx->id(sig + "MUX"), sig) == "INV") port.second.at(bit) = !port.second.at(bit); } } tg.config.add_enum(ebr + ".CLKAMUX", str_or_default(ci->params, id_CLKAMUX, "CLKA")); tg.config.add_enum(ebr + ".CLKBMUX", str_or_default(ci->params, id_CLKBMUX, "CLKB")); tg.config.add_enum(ebr + ".RSTAMUX", str_or_default(ci->params, id_RSTAMUX, "RSTA")); tg.config.add_enum(ebr + ".RSTBMUX", str_or_default(ci->params, id_RSTBMUX, "RSTB")); if (!ci->ramInfo.is_pdp) { tg.config.add_enum(ebr + ".WEAMUX", str_or_default(ci->params, id_WEAMUX, "WEA")); tg.config.add_enum(ebr + ".WEBMUX", str_or_default(ci->params, id_WEBMUX, "WEB")); } tg.config.add_enum(ebr + ".CEAMUX", str_or_default(ci->params, id_CEAMUX, "CEA")); tg.config.add_enum(ebr + ".CEBMUX", str_or_default(ci->params, id_CEBMUX, "CEB")); tg.config.add_enum(ebr + ".OCEAMUX", str_or_default(ci->params, id_OCEAMUX, "OCEA")); tg.config.add_enum(ebr + ".OCEBMUX", str_or_default(ci->params, id_OCEBMUX, "OCEB")); std::reverse(csd_a.begin(), csd_a.end()); std::reverse(csd_b.begin(), csd_b.end()); tg.config.add_word(ebr + ".CSDECODE_A", csd_a); tg.config.add_word(ebr + ".CSDECODE_B", csd_b); std::vector init_data; init_data.resize(1024, 0x0); // INIT_00 .. INIT_1F for (int i = 0; i <= 0x1F; i++) { IdString param = ctx->idf("INITVAL_%02X", i); auto value = parse_init_str(get_or_default(ci->params, param, Property(0)), 320, ci->name.c_str(ctx)); for (int j = 0; j < 16; j++) { // INIT parameter consists of 16 18-bit words with 2-bit padding int ofs = 20 * j; for (int k = 0; k < 18; k++) { if (value.at(ofs + k)) init_data.at(i * 32 + j * 2 + (k / 9)) |= (1 << (k % 9)); } } } int wid = int_or_default(ci->attrs, id_WID, 0); NPNR_ASSERT(!cc.bram_data.count(wid)); cc.bram_data[wid] = init_data; cc.tilegroups.push_back(tg); } void write_pll(CellInfo *ci) { TileGroup tg; tg.tiles = get_pll_tiles(ci->bel); tg.config.add_enum("MODE", "EHXPLLJ"); tg.config.add_word("CLKI_DIV", int_to_bitvector(int_or_default(ci->params, id_CLKI_DIV, 1) - 1, 7)); tg.config.add_word("CLKFB_DIV", int_to_bitvector(int_or_default(ci->params, id_CLKFB_DIV, 1) - 1, 7)); tg.config.add_enum("CLKOP_ENABLE", str_or_default(ci->params, id_CLKOP_ENABLE, "ENABLED")); tg.config.add_enum("CLKOS_ENABLE", str_or_default(ci->params, id_CLKOS_ENABLE, "ENABLED")); tg.config.add_enum("CLKOS2_ENABLE", str_or_default(ci->params, id_CLKOS2_ENABLE, "ENABLED")); tg.config.add_enum("CLKOS3_ENABLE", str_or_default(ci->params, id_CLKOS3_ENABLE, "ENABLED")); for (std::string out : {"CLKOP", "CLKOS", "CLKOS2", "CLKOS3"}) { tg.config.add_word(out + "_DIV", int_to_bitvector(int_or_default(ci->params, ctx->id(out + "_DIV"), 8) - 1, 7)); tg.config.add_word(out + "_CPHASE", int_to_bitvector(int_or_default(ci->params, ctx->id(out + "_CPHASE"), 0), 7)); tg.config.add_word(out + "_FPHASE", int_to_bitvector(int_or_default(ci->params, ctx->id(out + "_FPHASE"), 0), 3)); } tg.config.add_enum("FEEDBK_PATH", str_or_default(ci->params, id_FEEDBK_PATH, "CLKOP")); tg.config.add_enum("CLKOP_TRIM_POL", str_or_default(ci->params, id_CLKOP_TRIM_POL, "RISING")); tg.config.add_enum("CLKOP_TRIM_DELAY", intstr_or_default(ci->params, id_CLKOP_TRIM_DELAY, "0")); tg.config.add_enum("CLKOS_TRIM_POL", str_or_default(ci->params, id_CLKOS_TRIM_POL, "RISING")); tg.config.add_enum("CLKOS_TRIM_DELAY", intstr_or_default(ci->params, id_CLKOS_TRIM_DELAY, "0")); tg.config.add_enum("VCO_BYPASS_A0", str_or_default(ci->params, id_VCO_BYPASS_A0, "DISABLED")); tg.config.add_enum("VCO_BYPASS_B0", str_or_default(ci->params, id_VCO_BYPASS_B0, "DISABLED")); tg.config.add_enum("VCO_BYPASS_C0", str_or_default(ci->params, id_VCO_BYPASS_C0, "DISABLED")); tg.config.add_enum("VCO_BYPASS_D0", str_or_default(ci->params, id_VCO_BYPASS_D0, "DISABLED")); tg.config.add_word("PREDIVIDER_MUXA1", int_to_bitvector(int_or_default(ci->attrs, id_PREDIVIDER_MUXA1, 0), 2)); tg.config.add_word("PREDIVIDER_MUXB1", int_to_bitvector(int_or_default(ci->attrs, id_PREDIVIDER_MUXB1, 0), 2)); tg.config.add_word("PREDIVIDER_MUXC1", int_to_bitvector(int_or_default(ci->attrs, id_PREDIVIDER_MUXC1, 0), 2)); tg.config.add_word("PREDIVIDER_MUXD1", int_to_bitvector(int_or_default(ci->attrs, id_PREDIVIDER_MUXD1, 0), 2)); tg.config.add_enum("OUTDIVIDER_MUXA2", str_or_default(ci->params, id_OUTDIVIDER_MUXA2, ci->getPort(id_CLKOP) ? "DIVA" : "REFCLK")); tg.config.add_enum("OUTDIVIDER_MUXB2", str_or_default(ci->params, id_OUTDIVIDER_MUXB2, ci->getPort(id_CLKOP) ? "DIVB" : "REFCLK")); tg.config.add_enum("OUTDIVIDER_MUXC2", str_or_default(ci->params, id_OUTDIVIDER_MUXC2, ci->getPort(id_CLKOP) ? "DIVC" : "REFCLK")); tg.config.add_enum("OUTDIVIDER_MUXD2", str_or_default(ci->params, id_OUTDIVIDER_MUXD2, ci->getPort(id_CLKOP) ? "DIVD" : "REFCLK")); tg.config.add_word("PLL_LOCK_MODE", int_to_bitvector(int_or_default(ci->params, id_PLL_LOCK_MODE, 0), 3)); tg.config.add_enum("STDBY_ENABLE", str_or_default(ci->params, id_STDBY_ENABLE, "DISABLED")); tg.config.add_enum("REFIN_RESET", str_or_default(ci->params, id_REFIN_RESET, "DISABLED")); tg.config.add_enum("SYNC_ENABLE", str_or_default(ci->params, id_SYNC_ENABLE, "DISABLED")); tg.config.add_enum("INT_LOCK_STICKY", str_or_default(ci->params, id_INT_LOCK_STICKY, "ENABLED")); tg.config.add_enum("DPHASE_SOURCE", str_or_default(ci->params, id_DPHASE_SOURCE, "DISABLED")); tg.config.add_enum("PLLRST_ENA", str_or_default(ci->params, id_PLLRST_ENA, "DISABLED")); tg.config.add_enum("INTFB_WAKE", str_or_default(ci->params, id_INTFB_WAKE, "DISABLED")); tg.config.add_enum("PLLRST_ENA", str_or_default(ci->params, id_PLLRST_ENA, "DISABLED")); tg.config.add_enum("MRST_ENA", str_or_default(ci->params, id_MRST_ENA, "DISABLED")); tg.config.add_enum("DCRST_ENA", str_or_default(ci->params, id_DCRST_ENA, "DISABLED")); tg.config.add_enum("DDRST_ENA", str_or_default(ci->params, id_DDRST_ENA, "DISABLED")); tg.config.add_word("KVCO", int_to_bitvector(int_or_default(ci->attrs, id_KVCO, 0), 3)); tg.config.add_word("LPF_CAPACITOR", int_to_bitvector(int_or_default(ci->attrs, id_LPF_CAPACITOR, 0), 2)); tg.config.add_word("LPF_RESISTOR", int_to_bitvector(int_or_default(ci->attrs, id_LPF_RESISTOR, 0), 7)); tg.config.add_word("ICP_CURRENT", int_to_bitvector(int_or_default(ci->attrs, id_ICP_CURRENT, 0), 5)); tg.config.add_word("FREQ_LOCK_ACCURACY", int_to_bitvector(int_or_default(ci->attrs, id_FREQ_LOCK_ACCURACY, 0), 2)); tg.config.add_word("GMC_GAIN", int_to_bitvector(int_or_default(ci->attrs, id_GMC_GAIN, 0), 3)); tg.config.add_word("GMC_TEST", int_to_bitvector(int_or_default(ci->attrs, id_GMC_TEST, 14), 4)); tg.config.add_word("MFG1_TEST", int_to_bitvector(int_or_default(ci->attrs, id_MFG1_TEST, 0), 3)); tg.config.add_word("MFG2_TEST", int_to_bitvector(int_or_default(ci->attrs, id_MFG2_TEST, 0), 3)); tg.config.add_word("MFG_FORCE_VFILTER", int_to_bitvector(int_or_default(ci->attrs, id_MFG_FORCE_VFILTER, 0), 1)); tg.config.add_word("MFG_ICP_TEST", int_to_bitvector(int_or_default(ci->attrs, id_MFG_ICP_TEST, 0), 1)); tg.config.add_word("MFG_EN_UP", int_to_bitvector(int_or_default(ci->attrs, id_MFG_EN_UP, 0), 1)); tg.config.add_word("MFG_FLOAT_ICP", int_to_bitvector(int_or_default(ci->attrs, id_MFG_FLOAT_ICP, 0), 1)); tg.config.add_word("MFG_GMC_PRESET", int_to_bitvector(int_or_default(ci->attrs, id_MFG_GMC_PRESET, 0), 1)); tg.config.add_word("MFG_LF_PRESET", int_to_bitvector(int_or_default(ci->attrs, id_MFG_LF_PRESET, 0), 1)); tg.config.add_word("MFG_GMC_RESET", int_to_bitvector(int_or_default(ci->attrs, id_MFG_GMC_RESET, 0), 1)); tg.config.add_word("MFG_LF_RESET", int_to_bitvector(int_or_default(ci->attrs, id_MFG_LF_RESET, 0), 1)); tg.config.add_word("MFG_LF_RESGRND", int_to_bitvector(int_or_default(ci->attrs, id_MFG_LF_RESGRND, 0), 1)); tg.config.add_word("MFG_GMCREF_SEL", int_to_bitvector(int_or_default(ci->attrs, id_MFG_GMCREF_SEL, 0), 2)); tg.config.add_word("MFG_ENABLE_FILTEROPAMP", int_to_bitvector(int_or_default(ci->attrs, id_MFG_ENABLE_FILTEROPAMP, 0), 1)); tg.config.add_enum("CLOCK_ENABLE_PORTS", str_or_default(ci->params, id_DDRST_ENA, "DISABLED")); tg.config.add_enum("PLL_EXPERT", str_or_default(ci->params, id_PLL_EXPERT, "DISABLED")); tg.config.add_enum("PLL_USE_WB", str_or_default(ci->params, id_PLL_USE_WB, "DISABLED")); tg.config.add_enum("FRACN_ENABLE", str_or_default(ci->params, id_FRACN_ENABLE, "DISABLED")); tg.config.add_word("FRACN_DIV", int_to_bitvector(int_or_default(ci->attrs, id_FRACN_DIV, 0), 16)); tg.config.add_word("FRACN_ORDER", int_to_bitvector(int_or_default(ci->attrs, id_FRACN_ORDER, 0), 2)); cc.tilegroups.push_back(tg); } void run() { IdString base_id = ctx->id(ctx->chip_info->device_name.get()); if (base_id == ctx->id("LCMXO2-256")) BaseConfigs::config_empty_lcmxo2_256(cc); else if (base_id == ctx->id("LCMXO2-640")) BaseConfigs::config_empty_lcmxo2_640(cc); else if (base_id == ctx->id("LCMXO2-1200")) BaseConfigs::config_empty_lcmxo2_1200(cc); else if (base_id == ctx->id("LCMXO2-2000")) BaseConfigs::config_empty_lcmxo2_2000(cc); else if (base_id == ctx->id("LCMXO2-4000")) BaseConfigs::config_empty_lcmxo2_4000(cc); else if (base_id == ctx->id("LCMXO2-7000")) BaseConfigs::config_empty_lcmxo2_7000(cc); else if (base_id == ctx->id("LCMXO3-1300")) BaseConfigs::config_empty_lcmxo3_1300(cc); else if (base_id == ctx->id("LCMXO3-2100")) BaseConfigs::config_empty_lcmxo3_2100(cc); else if (base_id == ctx->id("LCMXO3-4300") || base_id == ctx->id("LCMXO3D-4300")) BaseConfigs::config_empty_lcmxo3_4300(cc); else if (base_id == ctx->id("LCMXO3-6900")) BaseConfigs::config_empty_lcmxo3_6900(cc); else if (base_id == ctx->id("LCMXO3-9400") || base_id == ctx->id("LCMXO3D-9400")) BaseConfigs::config_empty_lcmxo3_9400(cc); else NPNR_ASSERT_FALSE("Unsupported device type"); cc.chip_name = ctx->chip_info->device_name.get(); cc.chip_variant = ctx->device_name; cc.metadata.push_back("Part: " + ctx->getChipName()); if (cc.chip_variant.find("LCMXO3L-") != std::string::npos) { // XO3L have this set but not XO3LF cc.tiles["PT5:CFG1"].add_unknown(5, 36); } if (cc.chip_variant.find("LCMXO3D-") != std::string::npos) { cc.tiles["PT5:CFG1"].add_unknown(5, 36); cc.tiles["PT6:CFG2"].add_unknown(5, 37); } // Add all set, configurable pips to the config for (auto pip : ctx->getPips()) { if (ctx->getBoundPipNet(pip) != nullptr) { if (ctx->get_pip_class(pip) == 0) { // ignore fixed pips set_pip(cc, pip); } } } // TODO: Bank Voltages // Configure slices for (auto &cell : ctx->cells) { CellInfo *ci = cell.second.get(); if (ci->bel == BelId()) { log_warning("found unplaced cell '%s' during bitstream gen. Not writing to bitstream.\n", ci->name.c_str(ctx)); continue; } BelId bel = ci->bel; if (ci->type == id_TRELLIS_COMB) { write_comb(ci); } else if (ci->type == id_TRELLIS_FF) { write_ff(ci); } else if (ci->type == id_TRELLIS_RAMW) { std::string tname = ctx->get_tile_by_type_loc(bel.location.y, bel.location.x, "PLC"); cc.tiles[tname].add_enum("SLICEC.MODE", "RAMW"); cc.tiles[tname].add_word("SLICEC.K0.INIT", std::vector(16, false)); cc.tiles[tname].add_word("SLICEC.K1.INIT", std::vector(16, false)); } else if (ci->type == id_TRELLIS_IO) { write_io(ci); } else if (ci->type == id_OSCH) { std::string freq = str_or_default(ci->params, id_NOM_FREQ, "2.08"); cc.tiles[ctx->get_tile_by_type("CFG1")].add_enum("OSCH.MODE", "OSCH"); cc.tiles[ctx->get_tile_by_type("CFG1")].add_enum("OSCH.NOM_FREQ", freq); } else if (ci->type == id_OSCJ) { std::string freq = str_or_default(ci->params, id_NOM_FREQ, "2.08"); cc.tiles[ctx->get_tile_by_type("CFG1")].add_enum("OSCJ.MODE", "OSCJ"); cc.tiles[ctx->get_tile_by_type("CFG1")].add_enum("OSCJ.NOM_FREQ", freq); } else if (ci->type == id_DCCA) { write_dcc(ci); } else if (ci->type == id_DP8KC) { write_bram(ci); } else if (ci->type == id_EHXPLLJ) { write_pll(ci); } else if (ci->type == id_GSR) { cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("GSR.GSRMODE", str_or_default(ci->params, id_MODE, "ACTIVE_LOW")); cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("GSR.SYNCMODE", str_or_default(ci->params, id_SYNCMODE, "ASYNC")); } else if (ci->type == id_JTAGF) { cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("JTAG.ER1", str_or_default(ci->params, id_ER1, "ENABLED")); cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("JTAG.ER2", str_or_default(ci->params, id_ER2, "ENABLED")); } else if (ci->type == id_TSALL) { cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("TSALL.MODE", str_or_default(ci->params, id_MODE, "TSALL")); cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("TSALL.TSALL", str_or_default(ci->params, id_TSALL, "TSALL")); } else if (ci->type == id_START) { cc.tiles[ctx->get_tile_by_type("CIB_CFG0")].add_enum( "START.STARTCLK", str_or_default(ci->params, id_STARTCLK, "STARTCLK")); } else if (ci->type == id_CLKDIVC) { Loc loc = ctx->getBelLocation(ci->bel); bool t = loc.y < 2; std::string clkdiv = (t ? "T" : "B") + std::string("CLKDIV") + std::to_string(loc.z); std::string tile = ctx->get_tile_by_type(t ? "PIC_T_DUMMY_VIQ" : "PIC_B_DUMMY_VIQ_VREF"); cc.tiles[tile].add_enum(clkdiv + ".DIV", str_or_default(ci->params, id_DIV, "2.0")); cc.tiles[tile].add_enum(clkdiv + ".GSR", str_or_default(ci->params, id_GSR, "DISABLED")); } else { NPNR_ASSERT_FALSE("unsupported cell type"); } } // Add some SYSCONFIG settings const std::string prefix = "arch.sysconfig."; for (auto &setting : ctx->settings) { std::string key = setting.first.str(ctx); if (key.substr(0, prefix.length()) != prefix) continue; key = key.substr(prefix.length()); std::string value = setting.second.as_string(); if (key == "BACKGROUND_RECONFIG" || key == "ENABLE_TRANSFR" || key == "SDM_PORT") { cc.tiles[ctx->get_tile_by_type("CFG0")].add_enum("SYSCONFIG." + key, value); } else if (key == "I2C_PORT" || key == "MASTER_SPI_PORT" || key == "SLAVE_SPI_PORT") { cc.tiles[ctx->get_tile_by_type("CFG1")].add_enum("SYSCONFIG." + key, value); } else { cc.sysconfig[key] = value; } } } }; } // namespace void write_bitstream(Context *ctx, std::string text_config_file) { MachXO2Bitgen bitgen(ctx); bitgen.run(); // Configure chip if (!text_config_file.empty()) { std::ofstream out_config(text_config_file); out_config << bitgen.cc; } } NEXTPNR_NAMESPACE_END