use std::{ collections::{BinaryHeap, HashMap, HashSet}, time::Instant, }; use colored::Colorize; use indicatif::{MultiProgress, ProgressBar, ProgressStyle}; use itertools::Itertools; use crate::{ npnr::{self, NetIndex, PipId, WireId}, partition, }; #[derive(Clone, Hash, PartialEq, Eq)] pub struct Arc { source_wire: npnr::WireId, source_loc: npnr::Loc, sink_wire: npnr::WireId, sink_loc: npnr::Loc, net: npnr::NetIndex, } impl Arc { pub fn new( source_wire: npnr::WireId, source_loc: npnr::Loc, sink_wire: npnr::WireId, sink_loc: npnr::Loc, net: NetIndex, ) -> Self { Self { source_wire, source_loc, sink_wire, sink_loc, net, } } pub fn split(&self, ctx: &npnr::Context, pip: npnr::PipId) -> (Self, Self) { let pip_src = ctx.pip_src_wire(pip); let pip_dst = ctx.pip_dst_wire(pip); ( Self { source_wire: self.source_wire, source_loc: self.source_loc, sink_wire: pip_src, sink_loc: ctx.pip_location(pip), net: self.net, }, Self { source_wire: pip_dst, source_loc: ctx.pip_location(pip), sink_wire: self.sink_wire, sink_loc: self.sink_loc, net: self.net, }, ) } pub fn get_source_loc(&self) -> npnr::Loc { self.source_loc } pub fn get_sink_loc(&self) -> npnr::Loc { self.sink_loc } pub fn get_source_wire(&self) -> npnr::WireId { self.source_wire } pub fn get_sink_wire(&self) -> npnr::WireId { self.sink_wire } pub fn net(&self) -> npnr::NetIndex { self.net } } #[derive(Copy, Clone)] struct QueuedWire { delay: f32, congest: f32, togo: f32, criticality: f32, wire: npnr::WireId, } impl QueuedWire { pub fn new(delay: f32, congest: f32, togo: f32, criticality: f32, wire: npnr::WireId) -> Self { Self { delay, congest, togo, criticality, wire, } } fn score(&self) -> f32 { (self.criticality * self.delay) + ((1.0 - self.criticality) * self.congest) } } impl PartialEq for QueuedWire { fn eq(&self, other: &Self) -> bool { self.delay == other.delay && self.congest == other.congest && self.togo == other.togo && self.wire == other.wire } } impl Eq for QueuedWire {} impl Ord for QueuedWire { fn cmp(&self, other: &Self) -> std::cmp::Ordering { let me = self.score() + self.togo; let other = other.score() + other.togo; other.total_cmp(&me) } } impl PartialOrd for QueuedWire { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } struct PerNetData { wires: HashMap, done_sinks: HashSet, } struct PerWireData { wire: WireId, curr_cong: u32, hist_cong: f32, unavailable: bool, reserved_net: Option, pip_fwd: PipId, visited_fwd: bool, pip_bwd: PipId, visited_bwd: bool, } pub struct Router { box_ne: partition::Coord, box_sw: partition::Coord, pressure: f32, history: f32, nets: Vec, wire_to_idx: HashMap, flat_wires: Vec, dirty_wires: Vec, } impl Router { pub fn new( box_ne: partition::Coord, box_sw: partition::Coord, pressure: f32, history: f32, ) -> Self { Self { box_ne, box_sw, pressure, history, nets: Vec::new(), wire_to_idx: HashMap::new(), flat_wires: Vec::new(), dirty_wires: Vec::new(), } } pub fn route( &mut self, ctx: &npnr::Context, nets: &npnr::Nets, wires: &[npnr::WireId], arcs: &[Arc], progress: &MultiProgress, id: &str, ) { for _ in 0..nets.len() { self.nets.push(PerNetData { wires: HashMap::new(), done_sinks: HashSet::new(), }); } for (idx, &wire) in wires.iter().enumerate() { self.flat_wires.push(PerWireData { wire, curr_cong: 0, hist_cong: 0.0, unavailable: false, reserved_net: None, pip_fwd: PipId::null(), visited_fwd: false, pip_bwd: PipId::null(), visited_bwd: false, }); self.wire_to_idx.insert(wire, idx as u32); } let mut delay = HashMap::new(); for arc in arcs { delay.insert(arc, 1.0_f32); } let start = Instant::now(); let mut max_delay = 1.0; let mut least_overuse = usize::MAX; let mut iters_since_improvement = 0; let mut route_arcs = Vec::from_iter(arcs.iter()); let mut iterations = 0; loop { iterations += 1; let progress = progress.add(ProgressBar::new(route_arcs.len() as u64)); progress.set_style( ProgressStyle::with_template("[{elapsed}] [{bar:40.magenta/red}] {msg:30!}") .unwrap() .progress_chars("━╸ "), ); for arc in route_arcs.iter().sorted_by(|&i, &j| { (delay.get(j).unwrap() / max_delay).total_cmp(&(delay.get(i).unwrap() / max_delay)) }) { let net = unsafe { nets.net_from_index(arc.net).as_ref().unwrap() }; let name = ctx.name_of(nets.name_from_index(arc.net)).to_str().unwrap(); if net.is_global() { continue; } //log_info!("{}\n", name); //log_info!(" {} to {}\n", ctx.name_of_wire(arc.source_wire).to_str().unwrap(), ctx.name_of_wire(arc.sink_wire).to_str().unwrap()); let criticality = (delay.get(arc).unwrap() / max_delay).min(0.99).powf(2.5) + 0.1; progress.inc(1); progress.set_message(format!("{} @ {}: {}", id, iterations, name)); *delay.get_mut(arc).unwrap() = self.route_arc(ctx, nets, arc, criticality); } progress.finish_and_clear(); let mut overused = HashSet::new(); for wd in &mut self.flat_wires { if wd.curr_cong > 1 { overused.insert(wd.wire); wd.hist_cong += (wd.curr_cong as f32) * self.history; if false { log_info!( "wire {} has overuse {}\n", ctx.name_of_wire(wd.wire).to_str().unwrap(), wd.curr_cong ); } } } if overused.is_empty() { let now = (Instant::now() - start).as_secs_f32(); progress.println(format!( "{} @ {}: {} in {:.0}m{:.03}s", id, iterations, "routing complete".green(), now / 60.0, now % 60.0 )); break; } else if overused.len() < least_overuse { least_overuse = overused.len(); iters_since_improvement = 0; progress.println(format!( "{} @ {}: {} wires overused {}", id, iterations, overused.len(), "(new best)".bold() )); } else { iters_since_improvement += 1; progress.println(format!( "{} @ {}: {} wires overused", id, iterations, overused.len() )); } let mut next_arcs = Vec::new(); for arc in arcs { for wire in self.nets[arc.net.into_inner() as usize].wires.keys() { if overused.contains(wire) { next_arcs.push(arc); } } } for &arc in &route_arcs { self.ripup_arc(ctx, arc); } for net in &mut self.nets { net.done_sinks.clear(); } if iters_since_improvement > 50 { iters_since_improvement = 0; least_overuse = usize::MAX; progress.println(format!( "{} @ {}: {}", id, iterations, "bored; rerouting everything".bold() )); route_arcs = Vec::from_iter(arcs.iter()); } else { route_arcs = next_arcs; } max_delay = arcs .iter() .map(|arc| *delay.get(arc).unwrap()) .reduce(f32::max) .unwrap(); } } fn route_arc( &mut self, ctx: &npnr::Context, nets: &npnr::Nets, arc: &Arc, criticality: f32, ) -> f32 { if arc.source_wire == arc.sink_wire { return 0.0; } let mut fwd_queue = BinaryHeap::new(); fwd_queue.push(QueuedWire::new( 0.0, 0.0, ctx.estimate_delay(arc.source_wire, arc.sink_wire), criticality, arc.source_wire, )); let mut bwd_queue = BinaryHeap::new(); bwd_queue.push(QueuedWire::new( 0.0, 0.0, ctx.estimate_delay(arc.source_wire, arc.sink_wire), criticality, arc.sink_wire, )); let mut found_meeting_point = None; let nd = &mut self.nets[arc.net().into_inner() as usize]; let name = ctx .name_of(nets.name_from_index(arc.net)) .to_str() .unwrap() .to_string(); let verbose = ctx.verbose(); //false; //name == "soc0.processor.with_fpu.fpu_0.fpu_multiply_0.rin_CCU2C_S0_4$CCU2_FCI_INT"; let source_wire = *self.wire_to_idx.get(&arc.source_wire).unwrap(); let sink_wire = *self.wire_to_idx.get(&arc.sink_wire).unwrap(); self.flat_wires[source_wire as usize].visited_fwd = true; self.flat_wires[sink_wire as usize].visited_bwd = true; self.dirty_wires.push(source_wire); self.dirty_wires.push(sink_wire); if let Some(_) = nd.done_sinks.get(&arc.get_sink_wire()) { found_meeting_point = Some(*self.wire_to_idx.get(&arc.sink_wire).unwrap()); let source = arc.get_source_wire(); let mut wire = arc.get_sink_wire(); while wire != source { let nd = &mut self.nets[arc.net().into_inner() as usize]; let (driver, _) = nd.wires.get(&wire).unwrap(); let driver = *driver; self.set_visited_fwd(self.wire_to_idx[&wire], driver); wire = ctx.pip_src_wire(driver); } } else { while found_meeting_point.is_none() { if let Some(source) = fwd_queue.pop() { if verbose { let source_idx = *self.wire_to_idx.get(&source.wire).unwrap(); let source_cong = self.flat_wires[source_idx as usize].curr_cong; log_info!( "fwd: {} @ ({}, {}, {}) = {}\n", ctx.name_of_wire(source.wire).to_str().unwrap(), source.delay, source.congest, source.criticality, source.score() ); } for pip in ctx.get_downhill_pips(source.wire) { let pip_loc = ctx.pip_location(pip); let pip_coord = partition::Coord::from(pip_loc); if pip_coord.is_north_of(&self.box_ne) || pip_coord.is_east_of(&self.box_ne) { /*if verbose { log_info!(" out-of-bounds (NE)\n"); }*/ continue; } if pip_coord.is_south_of(&self.box_sw) || pip_coord.is_west_of(&self.box_sw) { /*if verbose { log_info!(" out-of-bounds (SW)\n"); }*/ continue; } if !ctx.pip_avail_for_net(pip, nets.net_from_index(arc.net())) { /*if verbose { log_info!(" pip unavailable for net\n"); }*/ continue; } let wire = ctx.pip_dst_wire(pip); let sink = *self.wire_to_idx.get(&wire).unwrap(); if self.was_visited_fwd(sink) { /*if verbose { log_info!(" already visited\n"); }*/ continue; } let nd = &mut self.nets[arc.net().into_inner() as usize]; let nwd = &self.flat_wires[sink as usize]; if nwd.unavailable { /*if verbose { log_info!(" unavailable\n"); }*/ continue; } if let Some(net) = nwd.reserved_net && net != arc.net() { /*if verbose { log_info!(" reserved for other net\n"); }*/ continue; } // Don't allow the same wire to be bound to the same net with a different driving pip if let Some((found_pip, _)) = nd.wires.get(&wire) && *found_pip != pip { /*if verbose { log_info!(" driven by other pip\n"); }*/ continue; } let node_delay = ctx.pip_delay(pip) + ctx.wire_delay(wire) + ctx.delay_epsilon(); let sum_delay = source.delay + node_delay; let congest = source.congest + (node_delay + nwd.hist_cong) * (1.0 + (nwd.curr_cong as f32 * self.pressure)); let qw = QueuedWire::new( sum_delay, congest, ctx.estimate_delay(wire, arc.sink_wire), criticality, wire, ); self.set_visited_fwd(sink, pip); if self.was_visited_bwd(sink) { if verbose { let source_cong = self.flat_wires[sink as usize].curr_cong; log_info!( "bwd: {} @ ({}, {}, {}) = {}\n", ctx.name_of_wire(wire).to_str().unwrap(), sum_delay, congest, criticality, qw.score() ); } found_meeting_point = Some(sink); break; } fwd_queue.push(qw); if false && verbose { log_info!( " bwd: {}: -> {} ({}, {}) = {}\n", ctx.name_of_pip(pip).to_str().unwrap(), ctx.name_of_wire(ctx.pip_dst_wire(pip)).to_str().unwrap(), congest, criticality, qw.score() ); } } } else { break; } if let Some(sink) = bwd_queue.pop() { if verbose { let sink_idx = *self.wire_to_idx.get(&sink.wire).unwrap(); let sink_cong = self.flat_wires[sink_idx as usize].curr_cong; log_info!( "bwd: {} @ ({}, {}, {}) = {}\n", ctx.name_of_wire(sink.wire).to_str().unwrap(), sink.delay, sink.congest, sink.criticality, sink.score() ); } for pip in ctx.get_uphill_pips(sink.wire) { let pip_loc = ctx.pip_location(pip); let pip_coord = partition::Coord::from(pip_loc); if pip_coord.is_north_of(&self.box_ne) || pip_coord.is_east_of(&self.box_ne) { /*if verbose { log_info!(" out-of-bounds (NE)\n"); }*/ continue; } if pip_coord.is_south_of(&self.box_sw) || pip_coord.is_west_of(&self.box_sw) { /*if verbose { log_info!(" out-of-bounds (SW)\n"); }*/ continue; } if !ctx.pip_avail_for_net(pip, nets.net_from_index(arc.net())) { /*if verbose { log_info!(" pip unavailable for net\n"); }*/ continue; } let wire = ctx.pip_src_wire(pip); let source = *self.wire_to_idx.get(&wire).unwrap(); if self.was_visited_bwd(source) { /*if verbose { log_info!(" already visited\n"); }*/ continue; } let nd = &mut self.nets[arc.net().into_inner() as usize]; let nwd = &self.flat_wires[source as usize]; if nwd.unavailable { /*if verbose { log_info!(" unavailable\n"); }*/ continue; } if let Some(net) = nwd.reserved_net && net != arc.net() { /*if verbose { log_info!(" reserved for other net\n"); }*/ continue; } // Don't allow the same wire to be bound to the same net with a different driving pip if let Some((found_pip, _)) = nd.wires.get(&sink.wire) && *found_pip != pip { /*if verbose { log_info!(" driven by other pip\n"); }*/ continue; } let node_delay = ctx.pip_delay(pip) + ctx.wire_delay(wire) + ctx.delay_epsilon(); let sum_delay = sink.delay + node_delay; let congest = sink.congest + (node_delay + nwd.hist_cong) * (1.0 + (nwd.curr_cong as f32 * self.pressure)); let qw = QueuedWire::new( sum_delay, congest, ctx.estimate_delay(wire, arc.source_wire), criticality, wire, ); self.set_visited_bwd(source, pip); if self.was_visited_fwd(source) { if verbose { let source_cong = self.flat_wires[source as usize].curr_cong; log_info!( "bwd: {} @ ({}, {}, {}) = {}\n", ctx.name_of_wire(wire).to_str().unwrap(), sum_delay, congest, criticality, qw.score() ); } found_meeting_point = Some(source); break; } bwd_queue.push(qw); if false && verbose { log_info!( " bwd: {}: -> {} @ ({}, {}) = {}\n", ctx.name_of_pip(pip).to_str().unwrap(), ctx.name_of_wire(ctx.pip_dst_wire(pip)).to_str().unwrap(), congest, criticality, qw.score() ); } } } else { // don't break when bwd goes bad, fwd was written by lofty, who knows all, this was written by dummy kbity //break; } } } assert!( found_meeting_point.is_some(), "didn't find sink wire for net {} between {} ({:?}) and {} ({:?})", name, ctx.name_of_wire(arc.source_wire).to_str().unwrap(), arc.source_loc, ctx.name_of_wire(arc.sink_wire).to_str().unwrap(), arc.sink_loc, ); if verbose { println!( "{} [label=\"{}\"]", source_wire, ctx.name_of_wire(arc.source_wire).to_str().unwrap(), //self.flat_wires[wire as usize].curr_cong ); } let mut wire = found_meeting_point.unwrap(); if verbose { println!( "source: {} [label=\"{}\"]", source_wire, ctx.name_of_wire(self.flat_wires[source_wire as usize].wire) .to_str() .unwrap(), //self.flat_wires[wire as usize].curr_cong ); println!( "sink: {} [label=\"{}\"]", sink_wire, ctx.name_of_wire(self.flat_wires[sink_wire as usize].wire) .to_str() .unwrap(), //self.flat_wires[wire as usize].curr_cong ); println!( "middle: {} [label=\"{}\"]", wire, ctx.name_of_wire(self.flat_wires[wire as usize].wire) .to_str() .unwrap(), //self.flat_wires[wire as usize].curr_cong ); } let mut calculated_delay = 0.0; while wire != source_wire { if verbose { println!( "{} [label=\"{}\"]", wire, ctx.name_of_wire(self.flat_wires[wire as usize].wire) .to_str() .unwrap(), //self.flat_wires[wire as usize].curr_cong ); } let pip = self.flat_wires[wire as usize].pip_fwd; assert!(pip != PipId::null()); if verbose { println!( "{} -> {}", *self.wire_to_idx.get(&ctx.pip_src_wire(pip)).unwrap(), wire ); } let node_delay = ctx.pip_delay(pip) + ctx.wire_delay(self.flat_wires[wire as usize].wire) + ctx.delay_epsilon(); calculated_delay += node_delay; self.bind_pip_internal(arc.net(), wire, pip); wire = *self.wire_to_idx.get(&ctx.pip_src_wire(pip)).unwrap(); } let mut wire = found_meeting_point.unwrap(); while wire != sink_wire { let pip = self.flat_wires[wire as usize].pip_bwd; assert!(pip != PipId::null()); // do note that the order is inverted from the fwd loop wire = *self.wire_to_idx.get(&ctx.pip_dst_wire(pip)).unwrap(); let node_delay = ctx.pip_delay(pip) + ctx.wire_delay(self.flat_wires[wire as usize].wire) + ctx.delay_epsilon(); calculated_delay += node_delay; self.bind_pip_internal(arc.net(), wire, pip); } let nd = &mut self.nets[arc.net().into_inner() as usize]; nd.done_sinks.insert(arc.get_sink_wire()); self.reset_wires(); calculated_delay } fn was_visited_fwd(&self, wire: u32) -> bool { self.flat_wires[wire as usize].visited_fwd } fn was_visited_bwd(&self, wire: u32) -> bool { self.flat_wires[wire as usize].visited_bwd } fn set_visited_fwd(&mut self, wire: u32, pip: PipId) { let wd = &mut self.flat_wires[wire as usize]; if !wd.visited_fwd { self.dirty_wires.push(wire); } wd.pip_fwd = pip; wd.visited_fwd = true; } fn set_visited_bwd(&mut self, wire: u32, pip: PipId) { let wd = &mut self.flat_wires[wire as usize]; if !wd.visited_bwd { self.dirty_wires.push(wire); } wd.pip_bwd = pip; wd.visited_bwd = true; } fn bind_pip_internal(&mut self, netindex: NetIndex, wire: u32, pip: PipId) { let wireid = self.flat_wires[wire as usize].wire; let net = &mut self.nets[netindex.into_inner() as usize]; if let Some((bound_pip, usage)) = net.wires.get_mut(&wireid) { assert!(*bound_pip == pip); *usage += 1; } else { net.wires.insert(wireid, (pip, 1)); self.flat_wires[wire as usize].curr_cong += 1; } } fn unbind_pip_internal(&mut self, net: NetIndex, wire: WireId) { let net = net.into_inner() as usize; let wireidx = *self.wire_to_idx.get(&wire).unwrap() as usize; let (_pip, usage) = self.nets[net].wires.get_mut(&wire).unwrap(); *usage -= 1; if *usage == 0 { self.flat_wires[wireidx].curr_cong -= 1; self.nets[net].wires.remove(&wire); } } fn ripup_arc(&mut self, ctx: &npnr::Context, arc: &Arc) { let net = arc.net().into_inner() as usize; let source_wire = arc.source_wire; let mut wire = arc.sink_wire; while wire != source_wire { let pip = self.nets[net].wires.get(&wire).unwrap().0; assert!(pip != PipId::null()); self.unbind_pip_internal(arc.net(), wire); wire = ctx.pip_src_wire(pip); } } fn reset_wires(&mut self) { for &wire in &self.dirty_wires { self.flat_wires[wire as usize].pip_fwd = PipId::null(); self.flat_wires[wire as usize].visited_fwd = false; self.flat_wires[wire as usize].pip_bwd = PipId::null(); self.flat_wires[wire as usize].visited_bwd = false; } self.dirty_wires.clear(); } }