/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 David Shah * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /* * Timing-optimised detailed placement algorithm * Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs" * https://www.cerc.utexas.edu/utda/publications/C205.pdf */ #include "timing.h" #include "timing_opt.h" #include "nextpnr.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN class TimingOptimiser { public: TimingOptimiser(Context *ctx) : ctx(ctx){}; bool optimise() {} private: // Ratio of available to already-candidates to begin borrowing const float borrow_thresh = 0.2; void setup_delay_limits() { for (auto net : sorted(ctx->nets)) { NetInfo *ni = net.second; max_net_delay[ni].clear(); max_net_delay[ni].resize(ni->users.size(), std::numeric_limits::max()); if (!net_crit.count(net.first)) continue; auto &nc = net_crit.at(net.first); if (nc.slack.empty()) continue; for (size_t i = 0; i < ni->users.size(); i++) { delay_t net_delay = ctx->getNetinfoRouteDelay(ni, ni->users.at(i)); max_net_delay[ni].at(i) = net_delay + ((nc.slack.at(i) - nc.cd_worst_slack) / nc.max_path_length); } } } bool check_cell_delay_limits(CellInfo *cell) { for (const auto &port : cell->ports) { int nc; if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE) continue; NetInfo *net = port.second.net; if (net == nullptr) continue; if (port.second.type == PORT_IN) { if (net->driver.cell == nullptr || net->driver.cell->bel == BelId()) continue; BelId srcBel = net->driver.cell->bel; if (ctx->estimateDelay(ctx->getBelPinWire(srcBel, net->driver.port), ctx->getBelPinWire(cell->bel, port.first)) > max_net_delay.at(std::make_pair(cell->name, port.first))) return false; } else if (port.second.type == PORT_OUT) { for (auto user : net->users) { // This could get expensive for high-fanout nets?? BelId dstBel = user.cell->bel; if (dstBel == BelId()) continue; if (ctx->estimateDelay(ctx->getBelPinWire(cell->bel, port.first), ctx->getBelPinWire(dstBel, user.port)) > max_net_delay.at(std::make_pair(user.cell->name, user.port))) return false; } } } return true; } bool acceptable_bel_candidate(CellInfo *cell, BelId newBel) { bool result = true; // At the moment we have to actually do the swap to get an accurate legality result // Switching to macro swaps might help with this BelId oldBel = cell->bel; CellInfo *other_cell = ctx->getBoundBelCell(newBel); if (other_cell != nullptr && other_cell->belStrength > STRENGTH_WEAK) { return false; } ctx->bindBel(newBel, cell, STRENGTH_WEAK); if (other_cell != nullptr) { ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK); } if (!ctx->isBelLocationValid(newBel) || ((other_cell != nullptr && !ctx->isBelLocationValid(oldBel)))) { result = false; goto unbind; } if (!check_cell_delay_limits(cell) || (other_cell != nullptr && !check_cell_delay_limits(other_cell))) { result = false; goto unbind; } unbind: ctx->unbindBel(newBel); if (other_cell != nullptr) ctx->unbindBel(oldBel); // Undo the swap ctx->bindBel(oldBel, cell, STRENGTH_WEAK); if (other_cell != nullptr) { ctx->bindBel(newBel, other_cell, STRENGTH_WEAK); } return result; } int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap) { BelId curr = cell->bel; Loc curr_loc = ctx->getBelLocation(curr); int found_count = 0; for (int dy = -d; dy <= d; dy++) { for (int dx = -d; dx <= d; dx++) { if (dx == 0 && dy == 0) continue; // Go through all the Bels at this location // First, find all bels of the correct type that are either unbound or bound normally // Strongly bound bels are ignored // FIXME: This means that we cannot touch carry chains or similar relatively constrained macros std::vector free_bels_at_loc; std::vector bound_bels_at_loc; for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) { if (ctx->getBelType(bel) != cell->type) continue; CellInfo *bound = ctx->getBoundBelCell(bel); if (bound == nullptr) { free_bels_at_loc.push_back(bel); } else if (bound->belStrength <= STRENGTH_WEAK) { bound_bels_at_loc.push_back(bel); } } BelId candidate; while (!free_bels_at_loc.empty() && !bound_bels_at_loc.empty()) { BelId try_bel; if (!free_bels_at_loc.empty()) { int try_idx = ctx->rng(int(free_bels_at_loc.size())); try_bel = free_bels_at_loc.at(try_idx); free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx); } else { int try_idx = ctx->rng(int(bound_bels_at_loc.size())); try_bel = bound_bels_at_loc.at(try_idx); bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx); } if (bel_candidate_cells.count(try_bel) && !allow_swap) { // Overlap is only allowed if it is with the previous cell (this is handled by removing those // edges in the graph), or if allow_swap is true to deal with cases where overlap means few neighbours // are identified if (bel_candidate_cells.at(try_bel).size() > 1 || (bel_candidate_cells.at(try_bel).size() == 0 || *(bel_candidate_cells.at(try_bel).begin()) != prev_cell)) continue; } if (acceptable_bel_candidate(cell, try_bel)) { candidate = try_bel; break; } } if (candidate != BelId()) { cell_neighbour_bels[cell->name].insert(candidate); bel_candidate_cells[candidate].insert(cell->name); // Work out if we need to delete any overlap std::vector overlap; for (auto other : bel_candidate_cells[candidate]) if (other != cell->name && other != prev_cell) overlap.push_back(other); if (overlap.size() > 0) NPNR_ASSERT(allow_swap); for (auto ov : overlap) { bel_candidate_cells[candidate].erase(ov); cell_neighbour_bels[ov].erase(candidate); } } } } return found_count; } std::vector> find_crit_paths(float crit_thresh, int max_count) { std::vector> crit_paths; std::vector> crit_nets; std::vector netnames; std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames), [](const std::pair> &kv){ return kv.first; }); ctx->sorted_shuffle(netnames); for (auto net : netnames) { if (crit_nets.size() >= max_count) break; if (!net_crit.count(net)) continue; auto crit_user = std::max_element(net_crit[net].criticality.begin(), net_crit[net].criticality.end()); if (*crit_user > crit_thresh) crit_nets.push_back(std::make_pair(ctx->nets[net].get(), crit_user - net_crit[net].criticality.begin())); } auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t { NPNR_ASSERT(port.net != nullptr); for (size_t i = 0; i < port.net->users.size(); i++) { auto &usr = port.net->users.at(i); if (usr.cell == cell && usr.port == port.name) return i; } NPNR_ASSERT_FALSE("port user not found on net"); }; for (auto crit_net : crit_nets) { std::deque crit_path; // FIXME: This will fail badly on combinational loops // Iterate backwards following greatest criticality NetInfo* back_cursor = crit_net.first; while (back_cursor != nullptr) { float max_crit = 0; std::pair crit_sink{nullptr, 0}; CellInfo *cell = back_cursor->driver.cell; if (cell == nullptr) break; for (auto port : cell->ports) { if (port.second.type != PORT_IN) continue; NetInfo *pn = port.second.net; if (pn == nullptr) continue; if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty()) continue; int ccount; DelayInfo combDelay; TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount); if (tpclass != TMG_COMB_INPUT && tpclass != TMG_REGISTER_INPUT) continue; bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay); if (!is_path) continue; size_t user_idx = port_user_index(cell, port.second); float usr_crit = net_crit.at(pn->name).criticality.at(user_idx); if (usr_crit >= max_crit) { max_crit = usr_crit; crit_sink = std::make_pair(pn, user_idx); } } if (crit_sink.first != nullptr) { crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second))); } back_cursor = crit_sink.first; } // Iterate forwards following greatest criticiality PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second)); while (fwd_cursor != nullptr) { crit_path.push_back(fwd_cursor); float max_crit = 0; std::pair crit_sink{nullptr, 0}; CellInfo *cell = fwd_cursor->cell; for (auto port : cell->ports) { if (port.second.type != PORT_OUT) continue; NetInfo *pn = port.second.net; if (pn == nullptr) continue; if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty()) continue; int ccount; DelayInfo combDelay; TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount); if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT) continue; auto &crits = net_crit.at(pn->name).criticality; auto most_crit_usr = std::max_element(crits.begin(), crits.end()); if (*most_crit_usr >= max_crit) { max_crit = *most_crit_usr; crit_sink = std::make_pair(pn, std::distance(crits.begin(), most_crit_usr)); } } if (crit_sink.first != nullptr) { fwd_cursor = &(crit_sink.first->users.at(crit_sink.second)); } else { fwd_cursor = nullptr; } } std::vector crit_path_vec; std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec)); crit_paths.push_back(crit_path_vec); } return crit_paths; } // Current candidate Bels for cells (linked in both direction> std::vector path_cells; std::unordered_map> cell_neighbour_bels; std::unordered_map> bel_candidate_cells; // Map cell ports to net delay limit std::unordered_map, delay_t> max_net_delay; // Criticality data from timing analysis NetCriticalityMap net_crit; Context *ctx; }; bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx).optimise(); } NEXTPNR_NAMESPACE_END