/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 gatecat * Copyright (C) 2018 Eddie Hung * Copyright (C) 2023 rowanG077 * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "timing.h" #include #include #include #include #include #include "log.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN TimingAnalyser::TimingAnalyser(Context *ctx) : ctx(ctx) { ClockDomainKey key{IdString(), ClockEdge::RISING_EDGE}; domain_to_id.emplace(key, 0); domains.emplace_back(key); async_clock_id = 0; }; void TimingAnalyser::setup(bool update_net_timings, bool update_histogram, bool update_crit_paths) { init_ports(); get_cell_delays(); topo_sort(); setup_port_domains(); identify_related_domains(); run(true, update_net_timings, update_histogram, update_crit_paths); } void TimingAnalyser::run(bool update_route_delays, bool update_net_timings, bool update_histogram, bool update_crit_paths) { reset_times(); if (update_route_delays) get_route_delays(); walk_forward(); walk_backward(); compute_slack(); compute_criticality(); // Ensure we clear all timing results if any of them has been marked as // as to be updated. This is done so we ensure it's not possible to have // timing_result which contains mixed reports if (update_net_timings || update_histogram || update_crit_paths) { result = TimingResult(); } if (update_net_timings) { build_detailed_net_timing_report(); } if (update_histogram) { build_slack_histogram_report(); } if (update_crit_paths) { get_min_delay_violations(); build_crit_path_reports(); } } void TimingAnalyser::init_ports() { // Per cell port structures for (auto &cell : ctx->cells) { CellInfo *ci = cell.second.get(); for (auto &port : ci->ports) { auto &data = ports[CellPortKey(ci->name, port.first)]; data.type = port.second.type; data.cell_port = CellPortKey(ci->name, port.first); } } } void TimingAnalyser::get_cell_delays() { auto async_clk_key = domains.at(async_clock_id); for (auto &port : ports) { CellInfo *ci = cell_info(port.first); auto &pi = port_info(port.first); auto &pd = port.second; IdString name = port.first.port; // Ignore dangling ports altogether for timing purposes if (!pi.net) continue; pd.cell_arcs.clear(); int clkInfoCount = 0; TimingPortClass cls = ctx->getPortTimingClass(ci, name, clkInfoCount); if (cls == TMG_CLOCK_INPUT || cls == TMG_GEN_CLOCK || cls == TMG_IGNORE) continue; if (pi.type == PORT_IN) { // Input ports might have setup/hold relationships if (cls == TMG_REGISTER_INPUT) { for (int i = 0; i < clkInfoCount; i++) { auto info = ctx->getPortClockingInfo(ci, name, i); if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr) continue; pd.cell_arcs.emplace_back(CellArc::SETUP, info.clock_port, DelayQuad(info.setup, info.setup), info.edge); auto hold_factor = 1; auto hold_faked = DelayPair(hold_factor * info.hold.min_delay, hold_factor * info.hold.max_delay); pd.cell_arcs.emplace_back(CellArc::HOLD, info.clock_port, DelayQuad(hold_faked, hold_faked), info.edge); } } // asynchronous endpoint else if (cls == TMG_ENDPOINT) { pd.cell_arcs.emplace_back(CellArc::ENDPOINT, async_clk_key.key.clock, DelayQuad{}); } // Combinational delays through cell for (auto &other_port : ci->ports) { auto &op = other_port.second; // ignore dangling ports and non-outputs if (op.net == nullptr || op.type != PORT_OUT) continue; DelayQuad delay; bool is_path = ctx->getCellDelay(ci, name, other_port.first, delay); if (is_path) pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay); } } else if (pi.type == PORT_OUT) { // Output ports might have clk-to-q relationships if (cls == TMG_REGISTER_OUTPUT) { for (int i = 0; i < clkInfoCount; i++) { auto info = ctx->getPortClockingInfo(ci, name, i); if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr) continue; pd.cell_arcs.emplace_back(CellArc::CLK_TO_Q, info.clock_port, info.clockToQ, info.edge); } } // Asynchronous startpoint else if (cls == TMG_STARTPOINT) { pd.cell_arcs.emplace_back(CellArc::STARTPOINT, async_clk_key.key.clock, DelayQuad{}); } // Combinational delays through cell for (auto &other_port : ci->ports) { auto &op = other_port.second; // ignore dangling ports and non-inputs if (op.net == nullptr || op.type != PORT_IN) continue; DelayQuad delay; bool is_path = ctx->getCellDelay(ci, other_port.first, name, delay); if (is_path) pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay); } } } } void TimingAnalyser::get_route_delays() { for (auto &net : ctx->nets) { NetInfo *ni = net.second.get(); if (ni->driver.cell == nullptr || ni->driver.cell->bel == BelId()) continue; for (auto &usr : ni->users) { if (usr.cell->bel == BelId()) continue; ports.at(CellPortKey(usr)).route_delay = DelayPair(ctx->getNetinfoRouteDelay(ni, usr)); } } } void TimingAnalyser::set_route_delay(CellPortKey port, DelayPair value) { ports.at(port).route_delay = value; } void TimingAnalyser::topo_sort() { TopoSort topo; for (auto &port : ports) { auto &pd = port.second; // All ports are nodes topo.node(port.first); if (pd.type == PORT_IN) { // inputs: combinational arcs through the cell are edges for (auto &arc : pd.cell_arcs) { if (arc.type != CellArc::COMBINATIONAL) continue; topo.edge(port.first, CellPortKey(port.first.cell, arc.other_port)); } } else if (pd.type == PORT_OUT) { // output: routing arcs are edges const NetInfo *pn = port_info(port.first).net; if (pn != nullptr) { for (auto &usr : pn->users) topo.edge(port.first, CellPortKey(usr)); } } } bool ignore_loops = bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false); bool no_loops = topo.sort(); if (!no_loops && !ignore_loops) { log_info("Found %d combinational loops:\n", int(topo.loops.size())); int i = 0; for (auto &loop : topo.loops) { log_info(" loop %d:\n", ++i); for (auto &port : loop) { log_info(" %s.%s (%s)\n", ctx->nameOf(port.cell), ctx->nameOf(port.port), ctx->nameOf(port_info(port).net)); } } if (ctx->force) log_warning("Timing analysis failed due to combinational loops.\n"); else log_error("Timing analysis failed due to combinational loops.\n"); } have_loops = !no_loops; std::swap(topological_order, topo.sorted); } void TimingAnalyser::setup_port_domains() { for (auto &d : domains) { d.startpoints.clear(); d.endpoints.clear(); } bool first_iter = true; do { // Go forward through the topological order (domains from the PoV of arrival time) updated_domains = false; for (auto port : topological_order) { auto &pd = ports.at(port); auto &pi = port_info(port); if (pi.type == PORT_OUT) { if (first_iter) { for (auto &fanin : pd.cell_arcs) { domain_id_t dom; // registered outputs are startpoints if (fanin.type == CellArc::CLK_TO_Q) dom = domain_id(port.cell, fanin.other_port, fanin.edge); else if (fanin.type == CellArc::STARTPOINT) dom = async_clock_id; else continue; // create per-domain data pd.arrival[dom]; domains.at(dom).startpoints.emplace_back(port, fanin.other_port); } } // copy domains across routing if (pi.net != nullptr) for (auto &usr : pi.net->users) copy_domains(port, CellPortKey(usr), false); } else { // copy domains from input to output for (auto &fanout : pd.cell_arcs) { if (fanout.type != CellArc::COMBINATIONAL) continue; copy_domains(port, CellPortKey(port.cell, fanout.other_port), false); } } } // Go backward through the topological order (domains from the PoV of required time) for (auto port : reversed_range(topological_order)) { auto &pd = ports.at(port); auto &pi = port_info(port); if (pi.type == PORT_OUT) { // copy domains from output to input for (auto &fanin : pd.cell_arcs) { if (fanin.type != CellArc::COMBINATIONAL) continue; copy_domains(port, CellPortKey(port.cell, fanin.other_port), true); } } else { if (first_iter) { for (auto &fanout : pd.cell_arcs) { domain_id_t dom; // registered inputs are endpoints if (fanout.type == CellArc::SETUP) dom = domain_id(port.cell, fanout.other_port, fanout.edge); else if (fanout.type == CellArc::ENDPOINT) dom = async_clock_id; else continue; // create per-domain data pd.required[dom]; domains.at(dom).endpoints.emplace_back(port, fanout.other_port); } } // copy port to driver if (pi.net != nullptr && pi.net->driver.cell != nullptr) copy_domains(port, CellPortKey(pi.net->driver), true); } } // Iterate over ports and find domain pairs for (auto port : topological_order) { auto &pd = ports.at(port); for (auto &arr : pd.arrival) for (auto &req : pd.required) { pd.domain_pairs[domain_pair_id(arr.first, req.first)]; } } first_iter = false; // If there are loops, repeat the process until a fixed point is reached, as there might be unusual ways to // visit points, which would result in a missing domain key and therefore crash later on } while (have_loops && updated_domains); for (auto &dp : domain_pairs) { auto &launch_data = domains.at(dp.key.launch); auto &capture_data = domains.at(dp.key.capture); if (launch_data.key.clock != capture_data.key.clock) continue; IdString clk = launch_data.key.clock; delay_t period = ctx->getDelayFromNS(1.0e9 / ctx->setting("target_freq")); if (ctx->nets.count(clk)) { NetInfo *clk_net = ctx->nets.at(clk).get(); if (clk_net->clkconstr) { period = clk_net->clkconstr->period.minDelay(); } } if (launch_data.key.edge != capture_data.key.edge) period /= 2; dp.period = DelayPair(period); } } void TimingAnalyser::identify_related_domains() { // Identify clock nets pool clock_nets; for (const auto &domain : domains) { clock_nets.insert(domain.key.clock); } // For each clock net identify all nets that can possibly drive it. Compute // cumulative delays to each of them. std::function &, dict &, delay_t)> find_net_drivers = [&](const NetInfo *ni, pool &net_trace, dict &drivers, delay_t delay_acc) { // Get driving cell and port if (ni == nullptr) return; const CellInfo *cell = ni->driver.cell; if (cell == nullptr) return; const IdString port = ni->driver.port; bool didGoUpstream = false; // Ring oscillator driving the net if (net_trace.find(ni->name) != net_trace.end()) { drivers[ni->name] = delay_acc; return; } net_trace.insert(ni->name); // The cell has only one port if (cell->ports.size() == 1) { drivers[ni->name] = delay_acc; return; } // Get the driver timing class int info_count = 0; auto timing_class = ctx->getPortTimingClass(cell, port, info_count); // The driver must be a combinational output if (timing_class != TMG_COMB_OUTPUT) { drivers[ni->name] = delay_acc; return; } // Recurse upstream through all input ports that have combinational // paths to this driver for (const auto &it : cell->ports) { const auto &pi = it.second; // Only connected inputs if (pi.type != PORT_IN) { continue; } if (pi.net == nullptr) { continue; } // The input must be a combinational input timing_class = ctx->getPortTimingClass(cell, pi.name, info_count); if (timing_class != TMG_COMB_INPUT) { continue; } // There must be a combinational arc DelayQuad delay; if (!ctx->getCellDelay(cell, pi.name, port, delay)) { continue; } // Recurse find_net_drivers(pi.net, net_trace, drivers, delay_acc + delay.maxDelay()); didGoUpstream = true; } // Did not propagate upstream through the cell, mark the net as driver if (!didGoUpstream) { drivers[ni->name] = delay_acc; } }; // Identify possible drivers for each clock domain dict> clock_drivers; for (const auto &domain : domains) { if (domain.key.is_async()) continue; const NetInfo *ni = ctx->nets.at(domain.key.clock).get(); if (ni == nullptr) continue; if (ni->driver.cell == nullptr) continue; dict drivers; pool net_trace; find_net_drivers(ni, net_trace, drivers, 0); clock_drivers[domain.key.clock] = drivers; if (ctx->debug) { log("Clock '%s' can be driven by:\n", domain.key.clock.str(ctx).c_str()); for (const auto &it : drivers) { const NetInfo *net = ctx->nets.at(it.first).get(); log(" %s.%s delay %.3fns\n", net->driver.cell->name.str(ctx).c_str(), net->driver.port.str(ctx).c_str(), ctx->getDelayNS(it.second)); } } } // Identify related clocks. For simplicity do it both for A->B and B->A // cases. for (const auto &c1 : clock_drivers) { for (const auto &c2 : clock_drivers) { if (c1 == c2) { continue; } // Make an intersection of the two drivers sets pool common_drivers; for (const auto &it : c1.second) { common_drivers.insert(it.first); } for (const auto &it : c2.second) { common_drivers.insert(it.first); } for (auto it = common_drivers.begin(); it != common_drivers.end();) { if (!c1.second.count(*it) || !c2.second.count(*it)) { it = common_drivers.erase(it); } else { ++it; } } if (ctx->debug) { log("Possible common driver(s) for clocks '%s' and '%s'\n", c1.first.str(ctx).c_str(), c2.first.str(ctx).c_str()); for (const auto &it : common_drivers) { const NetInfo *ni = ctx->nets.at(it).get(); const CellInfo *cell = ni->driver.cell; const IdString port = ni->driver.port; log(" net '%s', cell %s (%s), port %s\n", it.str(ctx).c_str(), cell->name.str(ctx).c_str(), cell->type.str(ctx).c_str(), port.str(ctx).c_str()); } } // If there is no single driver then consider the two clocks // unrelated. if (common_drivers.size() != 1) { continue; } // Compute delay from c1 to c2 and store it auto driver = *common_drivers.begin(); auto delay = c2.second.at(driver) - c1.second.at(driver); clock_delays[std::make_pair(c1.first, c2.first)] = delay; } } } void TimingAnalyser::reset_times() { static const auto init_delay = DelayPair(std::numeric_limits::max(), std::numeric_limits::lowest()); for (auto &port : ports) { auto do_reset = [&](dict ×) { for (auto &t : times) { t.second.value = init_delay; t.second.path_length = 0; t.second.bwd_min = CellPortKey(); t.second.bwd_max = CellPortKey(); } }; do_reset(port.second.arrival); do_reset(port.second.required); for (auto &dp : port.second.domain_pairs) { dp.second.setup_slack = std::numeric_limits::max(); dp.second.hold_slack = std::numeric_limits::max(); dp.second.max_path_length = 0; dp.second.criticality = 0; } port.second.worst_crit = 0; port.second.worst_setup_slack = std::numeric_limits::max(); port.second.worst_hold_slack = std::numeric_limits::max(); } } void TimingAnalyser::set_arrival_time(CellPortKey target, domain_id_t domain, DelayPair arrival, int path_length, CellPortKey prev) { auto &arr = ports.at(target).arrival.at(domain); if (arrival.max_delay > arr.value.max_delay) { arr.value.max_delay = arrival.max_delay; arr.bwd_max = prev; } if (!setup_only && (arrival.min_delay < arr.value.min_delay)) { arr.value.min_delay = arrival.min_delay; arr.bwd_min = prev; } arr.path_length = std::max(arr.path_length, path_length); } void TimingAnalyser::set_required_time(CellPortKey target, domain_id_t domain, DelayPair required, int path_length, CellPortKey prev) { auto &req = ports.at(target).required.at(domain); if (required.min_delay < req.value.min_delay) { req.value.min_delay = required.min_delay; req.bwd_min = prev; } if (!setup_only && (required.max_delay > req.value.max_delay)) { req.value.max_delay = required.max_delay; req.bwd_max = prev; } req.path_length = std::max(req.path_length, path_length); } void TimingAnalyser::walk_forward() { // Assign initial arrival time to domain startpoints for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) { auto &dom = domains.at(dom_id); for (auto &sp : dom.startpoints) { auto &pd = ports.at(sp.first); DelayPair init_arrival(0); CellPortKey clock_key; // TODO: clock routing delay, if analysis of that is enabled if (sp.second != IdString()) { // clocked startpoints have a clock-to-out time for (auto &fanin : pd.cell_arcs) { if (fanin.type == CellArc::CLK_TO_Q && fanin.other_port == sp.second) { init_arrival = init_arrival + fanin.value.delayPair(); // printf("walk_forward %s.%s: init_arrival to %d - %d\n", sp.first.cell.c_str(ctx), // sp.first.port.c_str(ctx), init_arrival.min_delay, init_arrival.max_delay); break; } } clock_key = CellPortKey(sp.first.cell, sp.second); } set_arrival_time(sp.first, dom_id, init_arrival, 1, clock_key); } } // Walk forward in topological order for (auto p : topological_order) { auto &pd = ports.at(p); for (auto &arr : pd.arrival) { if (pd.type == PORT_OUT) { // Output port: propagate delay through net, adding route delay NetInfo *net = port_info(p).net; if (net != nullptr) for (auto &usr : net->users) { CellPortKey usr_key(usr); auto &usr_pd = ports.at(usr_key); auto next_arr = arr.second.value + usr_pd.route_delay; printf("walk_forward: propagate routing from %s.%s to %s.%s, %d - %d\n", p.cell.c_str(ctx), p.port.c_str(ctx), usr_key.cell.c_str(ctx), usr_key.port.c_str(ctx), next_arr.min_delay, next_arr.max_delay); set_arrival_time(usr_key, arr.first, next_arr, arr.second.path_length, p); } } else if (pd.type == PORT_IN) { // Input port; propagate delay through cell, adding combinational delay for (auto &fanout : pd.cell_arcs) { if (fanout.type != CellArc::COMBINATIONAL) continue; auto next_arr = arr.second.value + fanout.value.delayPair(); printf("walk_forward: propagate through cell from %s.%s to %s.%s, %d - %d\n", p.cell.c_str(ctx), p.port.c_str(ctx), p.cell.c_str(ctx), fanout.other_port.c_str(ctx), next_arr.min_delay, next_arr.max_delay); set_arrival_time(CellPortKey(p.cell, fanout.other_port), arr.first, next_arr, arr.second.path_length + 1, p); } } } } } void TimingAnalyser::walk_backward() { // Assign initial required time to domain endpoints // Note that clock frequency will be considered later in the analysis for, for now all required times are normalised // to 0ns for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) { auto &dom = domains.at(dom_id); for (auto &ep : dom.endpoints) { auto &pd = ports.at(ep.first); DelayPair init_setuphold(0); CellPortKey clock_key; // TODO: clock routing delay, if analysis of that is enabled if (ep.second != IdString()) { // Add setup/hold time, if this endpoint is clocked for (auto &fanin : pd.cell_arcs) { if (fanin.type == CellArc::SETUP && fanin.other_port == ep.second) init_setuphold.min_delay -= fanin.value.maxDelay(); if (fanin.type == CellArc::HOLD && fanin.other_port == ep.second) init_setuphold.max_delay -= fanin.value.maxDelay(); } clock_key = CellPortKey(ep.first.cell, ep.second); } set_required_time(ep.first, dom_id, init_setuphold, 1, clock_key); } } // Walk backwards in topological order for (auto p : reversed_range(topological_order)) { auto &pd = ports.at(p); for (auto &req : pd.required) { if (pd.type == PORT_IN) { // Input port: propagate delay back through net, subtracting route delay NetInfo *net = port_info(p).net; if (net != nullptr && net->driver.cell != nullptr) set_required_time(CellPortKey(net->driver), req.first, req.second.value - DelayPair(pd.route_delay.maxDelay()), req.second.path_length, p); } else if (pd.type == PORT_OUT) { // Output port : propagate delay back through cell, subtracting combinational delay for (auto &fanin : pd.cell_arcs) { if (fanin.type != CellArc::COMBINATIONAL) continue; set_required_time(CellPortKey(p.cell, fanin.other_port), req.first, req.second.value - DelayPair(fanin.value.maxDelay()), req.second.path_length + 1, p); } } } } } dict TimingAnalyser::max_delay_by_domain_pairs() { dict domain_delay; for (auto p : topological_order) { auto &pd = ports.at(p); for (auto &req : pd.required) { auto &capture = req.first; for (auto &arr : pd.arrival) { auto &launch = arr.first; auto dp = domain_pair_id(launch, capture); delay_t delay = arr.second.value.maxDelay() - req.second.value.minDelay(); if (!domain_delay.count(dp) || domain_delay.at(dp) < delay) domain_delay[dp] = delay; } } } return domain_delay; } void TimingAnalyser::compute_slack() { for (auto &dp : domain_pairs) { dp.worst_setup_slack = std::numeric_limits::max(); dp.worst_hold_slack = std::numeric_limits::max(); } for (auto p : topological_order) { auto &pd = ports.at(p); for (auto &pdp : pd.domain_pairs) { auto &dp = domain_pairs.at(pdp.first); // Get clock names const auto &launch_clock = domains.at(dp.key.launch).key.clock; const auto &capture_clock = domains.at(dp.key.capture).key.clock; // Get clock-to-clock delay if any delay_t clock_to_clock = 0; auto clocks = std::make_pair(launch_clock, capture_clock); if (clock_delays.count(clocks)) { clock_to_clock = clock_delays.at(clocks); } auto &arr = pd.arrival.at(dp.key.launch); auto &req = pd.required.at(dp.key.capture); pdp.second.setup_slack = 0 - (arr.value.maxDelay() - req.value.minDelay() + clock_to_clock); if (!setup_only) pdp.second.hold_slack = arr.value.minDelay() - req.value.maxDelay() + clock_to_clock; pdp.second.max_path_length = arr.path_length + req.path_length; if (dp.key.launch == dp.key.capture) pd.worst_setup_slack = std::min(pd.worst_setup_slack, dp.period.minDelay() + pdp.second.setup_slack); dp.worst_setup_slack = std::min(dp.worst_setup_slack, pdp.second.setup_slack); if (!setup_only) { pd.worst_hold_slack = std::min(pd.worst_hold_slack, pdp.second.hold_slack); dp.worst_hold_slack = std::min(dp.worst_hold_slack, pdp.second.hold_slack); } // printf("max arr: %d, min req: %d, c2c: %d, setup slack: %d\n", arr.value.maxDelay(), // req.value.minDelay(), // clock_to_clock, pdp.second.setup_slack); // if (!setup_only) { // printf("min arr: %d, max req: %d, c2c: %d, hold slack: %d\n", arr.value.minDelay(), // req.value.maxDelay(), clock_to_clock, pdp.second.hold_slack); // } } } } void TimingAnalyser::compute_criticality() { for (auto p : topological_order) { auto &pd = ports.at(p); for (auto &pdp : pd.domain_pairs) { auto &dp = domain_pairs.at(pdp.first); // Do not set criticality for asynchronous paths if (domains.at(dp.key.launch).key.is_async() || domains.at(dp.key.capture).key.is_async()) continue; float crit = 1.0f - (float(pdp.second.setup_slack) - float(dp.worst_setup_slack)) / float(-dp.worst_setup_slack); crit = std::min(crit, 1.0f); crit = std::max(crit, 0.0f); pdp.second.criticality = crit; pd.worst_crit = std::max(pd.worst_crit, crit); } } } void TimingAnalyser::build_detailed_net_timing_report() { auto &net_timings = result.detailed_net_timings; for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) { auto &dom = domains.at(dom_id); for (auto &ep : dom.endpoints) { auto &pd = ports.at(ep.first); const NetInfo *net = port_info(ep.first).net; for (auto &arr : pd.arrival) { auto &launch = domains.at(arr.first).key; for (auto &req : pd.required) { auto &capture = domains.at(req.first).key; NetSinkTiming sink_timing; sink_timing.clock_pair.start.clock = launch.clock; sink_timing.clock_pair.start.edge = launch.edge; sink_timing.clock_pair.end.clock = capture.clock; sink_timing.clock_pair.end.edge = capture.edge; sink_timing.cell_port = std::make_pair(pd.cell_port.cell, pd.cell_port.port); sink_timing.delay = arr.second.value; net_timings[net->name].push_back(sink_timing); } } } } } std::vector TimingAnalyser::get_worst_eps(domain_id_t domain_pair, int count) { std::vector worst_eps; delay_t last_slack = std::numeric_limits::lowest(); auto &dp = domain_pairs.at(domain_pair); auto &cap_d = domains.at(dp.key.capture); while (int(worst_eps.size()) < count) { CellPortKey next; delay_t next_slack = std::numeric_limits::max(); for (auto ep : cap_d.endpoints) { auto &pd = ports.at(ep.first); if (!pd.domain_pairs.count(domain_pair)) continue; delay_t ep_slack = pd.domain_pairs.at(domain_pair).setup_slack; if (ep_slack < next_slack && ep_slack > last_slack) { next = ep.first; next_slack = ep_slack; } } if (next == CellPortKey()) break; worst_eps.push_back(next); last_slack = next_slack; } return worst_eps; } CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint, bool longest_path) { CriticalPath report; auto &dp = domain_pairs.at(domain_pair); auto &launch = domains.at(dp.key.launch).key; auto &capture = domains.at(dp.key.capture).key; report.delay = DelayPair(0); report.clock_pair.start.clock = launch.clock; report.clock_pair.start.edge = launch.edge; report.clock_pair.end.clock = capture.clock; report.clock_pair.end.edge = capture.edge; report.bound = DelayPair(0, ctx->getDelayFromNS(1.0e9 / ctx->setting("target_freq"))); if (launch.edge != capture.edge) { report.bound.max_delay = report.bound.max_delay / 2; } if (!launch.is_async() && ctx->nets.at(launch.clock)->clkconstr) { if (launch.edge == capture.edge) { report.bound.max_delay = ctx->nets.at(launch.clock)->clkconstr->period.minDelay(); } else if (capture.edge == RISING_EDGE) { report.bound.max_delay = ctx->nets.at(launch.clock)->clkconstr->low.minDelay(); } else if (capture.edge == FALLING_EDGE) { report.bound.max_delay = ctx->nets.at(launch.clock)->clkconstr->high.minDelay(); } } // Set hold time auto cell = cell_info(endpoint); auto &port = port_info(endpoint); int port_clocks; auto portClass = ctx->getPortTimingClass(cell, port.name, port_clocks); if (portClass == TMG_REGISTER_INPUT) { for (int i = 0; i < port_clocks; i++) { auto info = ctx->getPortClockingInfo(cell, port.name, i); if (!cell->ports.count(info.clock_port) || cell->ports.at(info.clock_port).net == nullptr) continue; report.bound.min_delay = info.hold.min_delay; break; } } pool> visited; std::vector crit_path_rev; auto cursor = endpoint; auto next_cursor = [longest_path](ArrivReqTime &arrival) { if (longest_path) { return arrival.bwd_max; } return arrival.bwd_min; }; while (cursor != CellPortKey()) { auto cell = cell_info(cursor); auto &port = port_info(cursor); int port_clocks; auto portClass = ctx->getPortTimingClass(cell, port.name, port_clocks); // combinational loop if (!visited.insert(std::make_pair(cell->name, port.name)).second) break; if (portClass != TMG_CLOCK_INPUT && portClass != TMG_IGNORE && port.type == PortType::PORT_IN) crit_path_rev.emplace_back(PortRef{cell, port.name}); if (!ports.at(cursor).arrival.count(dp.key.launch)) break; cursor = next_cursor(ports.at(cursor).arrival.at(dp.key.launch)); } auto crit_path = boost::adaptors::reverse(crit_path_rev); auto &front = crit_path.front(); auto &front_port = front.cell->ports.at(front.port); auto &front_driver = front_port.net->driver; portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks); const CellInfo *last_cell = front.cell; IdString last_port = front_driver.port; int clock_start = -1; if (portClass == TMG_REGISTER_OUTPUT) { for (int i = 0; i < port_clocks; i++) { TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i); const NetInfo *clknet = front_driver.cell->getPort(clockInfo.clock_port); if (clknet != nullptr && clknet->name == launch.clock && clockInfo.edge == launch.edge) { last_port = clockInfo.clock_port; clock_start = i; break; } } } for (auto sink : crit_path) { auto sink_cell = sink.cell; auto &port = sink_cell->ports.at(sink.port); auto net = port.net; auto &driver = net->driver; auto driver_cell = driver.cell; CriticalPath::Segment seg_logic; DelayQuad comb_delay; if (clock_start != -1) { auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start); comb_delay = clockInfo.clockToQ; clock_start = -1; seg_logic.type = CriticalPath::Segment::Type::CLK_TO_Q; } else if (last_port == driver.port) { // Case where we start with a STARTPOINT etc comb_delay = DelayQuad(0); seg_logic.type = CriticalPath::Segment::Type::SOURCE; } else { ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay); seg_logic.type = CriticalPath::Segment::Type::LOGIC; } seg_logic.delay = comb_delay.delayPair(); seg_logic.from = std::make_pair(last_cell->name, last_port); seg_logic.to = std::make_pair(driver_cell->name, driver.port); seg_logic.net = IdString(); report.segments.push_back(seg_logic); auto net_delay = DelayPair(ctx->getNetinfoRouteDelay(net, sink)); CriticalPath::Segment seg_route; seg_route.type = CriticalPath::Segment::Type::ROUTING; seg_route.delay = net_delay; seg_route.from = std::make_pair(driver_cell->name, driver.port); seg_route.to = std::make_pair(sink_cell->name, sink.port); seg_route.net = net->name; report.segments.push_back(seg_route); last_cell = sink_cell; last_port = sink.port; } int clockCount = 0; auto sinkClass = ctx->getPortTimingClass(crit_path.back().cell, crit_path.back().port, clockCount); if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) { auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back().cell, crit_path.back().port, 0); auto setup = sinkClockInfo.setup; CriticalPath::Segment seg_logic; seg_logic.type = CriticalPath::Segment::Type::SETUP; seg_logic.delay = setup; seg_logic.from = std::make_pair(last_cell->name, last_port); seg_logic.to = seg_logic.from; seg_logic.net = IdString(); report.segments.push_back(seg_logic); } return report; } void TimingAnalyser::build_crit_path_reports() { auto &clock_reports = result.clock_paths; auto &xclock_reports = result.xclock_paths; auto &clock_fmax = result.clock_fmax; auto &empty_clocks = result.empty_paths; auto &clock_delays_ctx = result.clock_delays; auto delay_by_domain = max_delay_by_domain_pairs(); for (int i = 0; i < int(domains.size()); i++) { empty_clocks.insert(domains.at(i).key.clock); } for (int i = 0; i < int(domain_pairs.size()); i++) { auto &dp = domain_pairs.at(i); auto &launch = domains.at(dp.key.launch).key; auto &capture = domains.at(dp.key.capture).key; if (launch.clock != capture.clock || launch.is_async()) continue; auto path_delay = delay_by_domain.at(i); double Fmax; if (launch.edge == capture.edge) Fmax = 1000 / ctx->getDelayNS(path_delay); else Fmax = 500 / ctx->getDelayNS(path_delay); if (!clock_fmax.count(launch.clock) || Fmax < clock_fmax.at(launch.clock).achieved) { float target = ctx->setting("target_freq") / 1e6; if (ctx->nets.at(launch.clock)->clkconstr) target = 1000 / ctx->getDelayNS(ctx->nets.at(launch.clock)->clkconstr->period.minDelay()); auto worst_endpoint = get_worst_eps(i, 1); if (worst_endpoint.empty()) continue; clock_fmax[launch.clock].achieved = Fmax; clock_fmax[launch.clock].constraint = target; clock_reports[launch.clock] = build_critical_path_report(i, worst_endpoint.at(0), true); empty_clocks.erase(launch.clock); } } for (int i = 0; i < int(domain_pairs.size()); i++) { auto &dp = domain_pairs.at(i); auto &launch = domains.at(dp.key.launch).key; auto &capture = domains.at(dp.key.capture).key; if (launch.clock == capture.clock && !launch.is_async()) continue; auto worst_endpoint = get_worst_eps(i, 1); if (worst_endpoint.empty()) continue; xclock_reports.emplace_back(build_critical_path_report(i, worst_endpoint.at(0), true)); } auto cmp_crit_path = [&](const CriticalPath &ra, const CriticalPath &rb) { const auto &a = ra.clock_pair; const auto &b = rb.clock_pair; if (a.start.clock.str(ctx) < b.start.clock.str(ctx)) return true; if (a.start.clock.str(ctx) > b.start.clock.str(ctx)) return false; if (a.start.edge < b.start.edge) return true; if (a.start.edge > b.start.edge) return false; if (a.end.clock.str(ctx) < b.end.clock.str(ctx)) return true; if (a.end.clock.str(ctx) > b.end.clock.str(ctx)) return false; if (a.end.edge < b.end.edge) return true; return false; }; std::sort(xclock_reports.begin(), xclock_reports.end(), cmp_crit_path); clock_delays_ctx = clock_delays; } void TimingAnalyser::build_slack_histogram_report() { auto &slack_histogram = result.slack_histogram; for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) { for (auto &ep : domains.at(dom_id).endpoints) { auto &pd = ports.at(ep.first); for (auto &req : pd.required) { auto &capture = domains.at(req.first).key; for (auto &arr : pd.arrival) { auto &launch = domains.at(arr.first).key; if (launch.clock != capture.clock || launch.is_async()) continue; float clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting("target_freq")); if (ctx->nets.at(launch.clock)->clkconstr) clk_period = ctx->nets.at(launch.clock)->clkconstr->period.minDelay(); if (launch.edge != capture.edge) clk_period = clk_period / 2; delay_t delay = arr.second.value.maxDelay() - req.second.value.minDelay(); delay_t slack = clk_period - delay; int slack_ps = ctx->getDelayNS(slack) * 1000; slack_histogram[slack_ps]++; } } } } } std::string arc_typ_to_str(TimingAnalyser::CellArc::ArcType typ) { switch (typ) { case TimingAnalyser::CellArc::COMBINATIONAL: return "COMBINATIONAL"; case TimingAnalyser::CellArc::SETUP: return "SETUP"; case TimingAnalyser::CellArc::HOLD: return "HOLD"; case TimingAnalyser::CellArc::CLK_TO_Q: return "CLK_TO_Q"; case TimingAnalyser::CellArc::STARTPOINT: return "STARTPOINT"; case TimingAnalyser::CellArc::ENDPOINT: return "ENDPOINT"; default: return "IMPOSSIBRU"; } } std::vector TimingAnalyser::get_min_delay_violations() { std::vector violations; for (domain_id_t capture_id = 0; capture_id < domain_id_t(domains.size()); ++capture_id) { const auto &capture = domains.at(capture_id); const auto &capture_clock = capture.key.clock; if (ctx->nets.count(capture_clock) == 0) { continue; } NetInfo *clk_net = ctx->nets.at(capture_clock).get(); if (clk_net->clkconstr == nullptr) { continue; } DelayPair period = clk_net->clkconstr->period; printf("Clock %s.%s with period %f - %f\n", clk_net->driver.cell->name.c_str(ctx), clk_net->driver.port.c_str(ctx), ctx->getDelayNS(period.minDelay()), ctx->getDelayNS(period.maxDelay())); for (auto &sp : capture.endpoints) { CellInfo *ci = cell_info(sp.first); int clkInfoCount = 0; TimingPortClass cls = ctx->getPortTimingClass(ci, sp.first.port, clkInfoCount); if (cls != TMG_REGISTER_INPUT) continue; auto &port = ports.at(sp.first); auto &req = port.required.at(capture_id); for (auto &[launch_id, arr] : port.arrival) { const auto &launch = domains.at(launch_id); const auto &launch_clock = launch.key.clock; auto clocks = std::make_pair(launch_clock, capture_clock); auto related_clocks = clock_delays.count(clocks) != 0; // Don't consider clocks without known relationships if (launch_id != capture_id && !related_clocks) { continue; } delay_t clock_to_clock = 0; if (related_clocks) { clock_to_clock = clock_delays.at(clocks); } auto hold_slack = arr.value.minDelay() - req.value.maxDelay() + clock_to_clock; printf("endpoint: %s.%s, arr: %f - %f, req: %f - %f, hold slack: %f\n", sp.first.cell.c_str(ctx), sp.first.port.c_str(ctx), ctx->getDelayNS(arr.value.minDelay()), ctx->getDelayNS(arr.value.maxDelay()), ctx->getDelayNS(req.value.minDelay()), ctx->getDelayNS(req.value.maxDelay()), ctx->getDelayNS(hold_slack)); } } } return violations; } domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockEdge edge) { return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge); } domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge) { NPNR_ASSERT(net != nullptr); ClockDomainKey key{net->name, edge}; auto inserted = domain_to_id.emplace(key, domains.size()); if (inserted.second) { domains.emplace_back(key); } return inserted.first->second; } domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture) { ClockDomainPairKey key{launch, capture}; auto inserted = pair_to_id.emplace(key, domain_pairs.size()); if (inserted.second) { domain_pairs.emplace_back(key); } return inserted.first->second; } void TimingAnalyser::copy_domains(const CellPortKey &from, const CellPortKey &to, bool backward) { auto &f = ports.at(from), &t = ports.at(to); for (auto &dom : (backward ? f.required : f.arrival)) { updated_domains |= (backward ? t.required : t.arrival).emplace(dom.first, ArrivReqTime{}).second; } } CellInfo *TimingAnalyser::cell_info(const CellPortKey &key) { return ctx->cells.at(key.cell).get(); } PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.at(key.cell)->ports.at(key.port); } void timing_analysis(Context *ctx, bool print_slack_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool update_results) { TimingAnalyser tmg(ctx); tmg.setup(ctx->detailed_timing_report, print_slack_histogram, print_path || print_fmax); auto &result = tmg.get_timing_result(); ctx->log_timing_results(result, print_slack_histogram, print_fmax, print_path, warn_on_failure); if (update_results) ctx->timing_result = result; } NEXTPNR_NAMESPACE_END