/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2020 David Shah * * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef NEXTPNR_H #error Include "arch.h" via "nextpnr.h" only. #endif #include #include NEXTPNR_NAMESPACE_BEGIN template struct RelPtr { int32_t offset; // void set(const T *ptr) { // offset = reinterpret_cast(ptr) - // reinterpret_cast(this); // } const T *get() const { return reinterpret_cast(reinterpret_cast(this) + int64_t(offset) * 4); } const T &operator[](size_t index) const { return get()[index]; } const T &operator*() const { return *(get()); } const T *operator->() const { return get(); } }; /* Fully deduplicated database There are two key data structures in the database: Locations (aka tile but not called this to avoid confusion with Lattice terminology), are a (x, y) location. Local wires; pips and bels are all stored once per variety of location (called a location type) with a separate grid containing the location type at a (x, y) coordinate. Each location also has _neighbours_, other locations with interconnected wires. The set of neighbours for a location are called a _neighbourhood_. Each variety of _neighbourhood_ for a location type is also stored once, using relative coordinates. */ NPNR_PACKED_STRUCT(struct BelWirePOD { uint32_t port; uint16_t type; uint16_t wire_index; // wire index in tile }); NPNR_PACKED_STRUCT(struct BelInfoPOD { int32_t name; // bel name in tile IdString int32_t type; // bel type IdString int16_t rel_x, rel_y; // bel location relative to parent RelPtr ports; // ports, sorted by name IdString int32_t num_ports; // number of ports }); NPNR_PACKED_STRUCT(struct BelPinPOD { uint32_t bel; // bel index in tile int32_t pin; // bel pin name IdString }); enum TileWireFlags : uint32_t { WIRE_PRIMARY = 0x80000000, }; NPNR_PACKED_STRUCT(struct LocWireInfoPOD { int32_t name; // wire name in tile IdString uint32_t flags; int32_t num_uphill, num_downhill, num_bpins; // Note this pip lists exclude neighbourhood pips RelPtr pips_uh, pips_dh; // list of uphill/downhill pip indices in tile RelPtr bel_pins; }); NPNR_PACKED_STRUCT(struct PipInfoPOD { uint16_t from_wire, to_wire; int32_t tile_type; }); enum RelLocFlags { REL_GLOBAL = 0x80, REL_BRANCH = 0x40, REL_SPINE = 0x20, REL_HROW = 0x10 }; enum ArcFlags { LOGICAL_TO_PRIMARY = 0x80, PHYSICAL_DOWNHILL = 0x08, }; NPNR_PACKED_STRUCT(struct RelWireInfoPOD { int16_t rel_x, rel_y; uint16_t wire_index; uint8_t loc_flags; uint8_t arc_flags; }); NPNR_PACKED_STRUCT(struct WireNeighboursInfoPOD { uint32_t num_nwires; RelPtr neigh_wires; }); NPNR_PACKED_STRUCT(struct LocNeighourhoodPOD { RelPtr wire_neighbours; }); NPNR_PACKED_STRUCT(struct LocTypePOD { uint32_t num_bels, num_wires, num_pips, num_nhtypes; RelPtr bels; RelPtr wires; RelPtr pips; RelPtr neighbourhoods; }); // A physical (bitstream) tile; of which there may be more than // one in a logical tile (XY grid location). // Tile name is reconstructed {prefix}R{row}C{col}:{tiletype} NPNR_PACKED_STRUCT(struct PhysicalTileInfoPOD { int32_t prefix; // tile name prefix IdString int32_t tiletype; // tile type IdString }); NPNR_PACKED_STRUCT(struct GridLocationPOD { uint32_t loc_type; uint16_t neighbourhood_type; uint16_t num_phys_tiles; RelPtr phys_tiles; }); NPNR_PACKED_STRUCT(struct ChipInfoPOD { RelPtr device_name; uint16_t width; uint16_t height; uint32_t num_tiles; RelPtr grid; }); NPNR_PACKED_STRUCT(struct DatabasePOD { uint32_t version; uint32_t num_chips; RelPtr family; RelPtr chips; uint32_t num_loctypes; RelPtr loctypes; }); // ----------------------------------------------------------------------- // Helper functions for database access namespace { template const LocTypePOD &chip_loc_data(const DatabasePOD *db, const ChipInfoPOD *chip, Id &id) { return db->loctypes[chip->grid[id.tile].loc_type]; } template const LocNeighourhoodPOD &chip_nh_data(const DatabasePOD *db, const ChipInfoPOD *chip, Id &id) { auto &t = chip->grid[id.tile]; return db->loctypes[t.loc_type].neighbourhoods[t.neighbourhood_type]; } inline const BelInfoPOD &chip_bel_data(const DatabasePOD *db, const ChipInfoPOD *chip, BelId id) { return chip_loc_data(db, chip, id).bels[id.index]; } inline const LocWireInfoPOD &chip_wire_data(const DatabasePOD *db, const ChipInfoPOD *chip, WireId &id) { return chip_loc_data(db, chip, id).wires[id.index]; } inline const PipInfoPOD &chip_pip_data(const DatabasePOD *db, const ChipInfoPOD *chip, PipId &id) { return chip_loc_data(db, chip, id).pips[id.index]; } inline bool chip_rel_tile(const ChipInfoPOD *chip, int32_t base, int16_t rel_x, int16_t rel_y, int32_t &next) { int32_t curr_x = base % chip->width; int32_t curr_y = base / chip->width; int32_t new_x = curr_x + rel_x; int32_t new_y = curr_y + rel_y; if (new_x < 0 || new_x >= chip->width) return false; if (new_y < 0 || new_y >= chip->height) return false; next = new_y * chip->width + new_x; return true; } inline WireId chip_canonical_wire(const DatabasePOD *db, const ChipInfoPOD *chip, int32_t tile, uint16_t index) { WireId wire{tile, index}; // `tile` is the primary location for the wire, so ID is already canonical if (chip_wire_data(db, chip, wire).flags & WIRE_PRIMARY) return wire; // Not primary; find the primary location which forms the canonical ID auto &nd = chip_nh_data(db, chip, wire); auto &wn = nd.wire_neighbours[index]; for (size_t i = 0; i < wn.num_nwires; i++) { auto &nw = wn.neigh_wires[i]; if (nw.arc_flags & LOGICAL_TO_PRIMARY) { if (chip_rel_tile(chip, tile, nw.rel_x, nw.rel_y, wire.tile)) { wire.index = nw.wire_index; break; } } } return wire; } inline bool chip_wire_is_primary(const DatabasePOD *db, const ChipInfoPOD *chip, int32_t tile, uint16_t index) { WireId wire{tile, index}; // `tile` is the primary location for the wire, so ID is already canonical if (chip_wire_data(db, chip, wire).flags & WIRE_PRIMARY) return true; // Not primary; find the primary location which forms the canonical ID auto &nd = chip_nh_data(db, chip, wire); auto &wn = nd.wire_neighbours[index]; for (size_t i = 0; i < wn.num_nwires; i++) { auto &nw = wn.neigh_wires[i]; if (nw.arc_flags & LOGICAL_TO_PRIMARY) { if (chip_rel_tile(chip, tile, nw.rel_x, nw.rel_y, wire.tile)) { return false; } } } return true; } } // namespace // ----------------------------------------------------------------------- struct BelIterator { const DatabasePOD *db; const ChipInfoPOD *chip; int cursor_index; int cursor_tile; BelIterator operator++() { cursor_index++; while (cursor_tile < int(chip->num_tiles) && cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_bels)) { cursor_index = 0; cursor_tile++; } return *this; } BelIterator operator++(int) { BelIterator prior(*this); ++(*this); return prior; } bool operator!=(const BelIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const BelIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } BelId operator*() const { BelId ret; ret.tile = cursor_tile; ret.index = cursor_index; return ret; } }; struct BelRange { BelIterator b, e; BelIterator begin() const { return b; } BelIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct WireIterator { const DatabasePOD *db; const ChipInfoPOD *chip; int cursor_index; int cursor_tile = 0; WireIterator operator++() { // Iterate over nodes first, then tile wires that aren't nodes do { cursor_index++; while (cursor_tile < int(chip->num_tiles) && cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_wires)) { cursor_index = 0; cursor_tile++; } } while (cursor_tile < int(chip->num_tiles) && !chip_wire_is_primary(db, chip, cursor_tile, cursor_index)); return *this; } WireIterator operator++(int) { WireIterator prior(*this); ++(*this); return prior; } bool operator!=(const WireIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const WireIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } WireId operator*() const { WireId ret; ret.tile = cursor_tile; ret.index = cursor_index; return ret; } }; struct WireRange { WireIterator b, e; WireIterator begin() const { return b; } WireIterator end() const { return e; } }; // Iterate over all neighour wires for a wire struct TileWireIterator { const DatabasePOD *db; const ChipInfoPOD *chip; WireId baseWire; int cursor = -1; void operator++() { auto &wn = chip_nh_data(db, chip, baseWire).wire_neighbours[baseWire.index]; int32_t tile; do cursor++; while (cursor < int(wn.num_nwires) && ((wn.neigh_wires[cursor].arc_flags & LOGICAL_TO_PRIMARY) || !chip_rel_tile(chip, baseWire.tile, wn.neigh_wires[cursor].rel_x, wn.neigh_wires[cursor].rel_y, tile))); } bool operator!=(const TileWireIterator &other) const { return cursor != other.cursor; } // Returns a *denormalised* identifier that may be a non-primary wire (and thus should _not_ be used // as a WireId in general as it will break invariants) WireId operator*() const { if (cursor == -1) { return baseWire; } else { auto &nw = chip_nh_data(db, chip, baseWire).wire_neighbours[baseWire.index].neigh_wires[cursor]; WireId result; result.index = nw.wire_index; if (!chip_rel_tile(chip, baseWire.tile, nw.rel_x, nw.rel_y, result.tile)) return WireId(); return result; } } }; // ----------------------------------------------------------------------- struct AllPipIterator { const DatabasePOD *db; const ChipInfoPOD *chip; int cursor_index; int cursor_tile; AllPipIterator operator++() { cursor_index++; while (cursor_tile < int(chip->num_tiles) && cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_pips)) { cursor_index = 0; cursor_tile++; } return *this; } AllPipIterator operator++(int) { AllPipIterator prior(*this); ++(*this); return prior; } bool operator!=(const AllPipIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const AllPipIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } PipId operator*() const { PipId ret; ret.tile = cursor_tile; ret.index = cursor_index; return ret; } }; struct AllPipRange { AllPipIterator b, e; AllPipIterator begin() const { return b; } AllPipIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct UpDownhillPipIterator { const DatabasePOD *db; const ChipInfoPOD *chip; TileWireIterator twi, twi_end; int cursor = -1; bool uphill = false; void operator++() { cursor++; while (true) { if (!(twi != twi_end)) break; WireId w = *twi; auto &tile = db->loctypes[chip->grid[w.tile].loc_type]; if (cursor < int(uphill ? tile.wires[w.index].num_uphill : tile.wires[w.index].num_downhill)) break; ++twi; cursor = 0; } } bool operator!=(const UpDownhillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; } PipId operator*() const { PipId ret; WireId w = *twi; ret.tile = w.tile; auto &tile = db->loctypes[chip->grid[w.tile].loc_type]; ret.index = uphill ? tile.wires[w.index].pips_uh[cursor] : tile.wires[w.index].pips_dh[cursor]; return ret; } }; struct UpDownhillPipRange { UpDownhillPipIterator b, e; UpDownhillPipIterator begin() const { return b; } UpDownhillPipIterator end() const { return e; } }; // ----------------------------------------------------------------------- const int bba_version = #include "bba_version.inc" ; struct ArchArgs { std::string chipdb; std::string device; std::string package; }; struct Arch : BaseCtx { ArchArgs args; Arch(ArchArgs args); boost::iostreams::mapped_file_source blob_file; const DatabasePOD *db; const ChipInfoPOD *chip_info; std::string getChipName() const; IdString archId() const { return id("nexus"); } ArchArgs archArgs() const { return args; } IdString archArgsToId(ArchArgs args) const; int getGridDimX() const { return chip_info->width; } int getGridDimY() const { return chip_info->height; } int getTileBelDimZ(int, int) const { return 256; } int getTilePipDimZ(int, int) const { return 1; } template const LocTypePOD &loc_data(Id &id) const { return chip_loc_data(db, chip_info, id); } template const LocNeighourhoodPOD &nh_data(Id &id) const { return chip_nh_data(db, chip_info, id); } inline const BelInfoPOD &bel_data(BelId id) const { return chip_bel_data(db, chip_info, id); } inline const LocWireInfoPOD &wire_data(WireId &id) const { return chip_wire_data(db, chip_info, id); } inline const PipInfoPOD &pip_data(PipId &id) const { return chip_pip_data(db, chip_info, id); } inline bool rel_tile(int32_t base, int16_t rel_x, int16_t rel_y, int32_t &next) { return chip_rel_tile(chip_info, base, rel_x, rel_y, next); } inline const WireId canonical_wire(int32_t tile, uint16_t index) { return chip_canonical_wire(db, chip_info, tile, index); } }; NEXTPNR_NAMESPACE_END