nextpnr/himbaechel/arch.cc
Miodrag Milanović d810aac867
Add GroupId related calls to Himbaechel API (#1399)
* Add GroupId related calls to Himbaechel API

* Example uarch using new API features

* Update drawGroup to propagate only GroupId
2024-12-05 13:59:33 +01:00

591 lines
20 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "arch.h"
#include <boost/filesystem/path.hpp>
#include "archdefs.h"
#include "chipdb.h"
#include "log.h"
#include "nextpnr.h"
#include "command.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
static constexpr int database_version = 6;
static const ChipInfoPOD *get_chip_info(const RelPtr<ChipInfoPOD> *ptr) { return ptr->get(); }
Arch::Arch(ArchArgs args) : args(args)
{
HimbaechelArch *arch = HimbaechelArch::find_match(args.device);
if (!arch) {
std::string available = HimbaechelArch::list();
log_error("unable to load uarch for device '%s', included uarches: %s\n", args.device.c_str(),
available.c_str());
}
log_info("Using uarch '%s' for device '%s'\n", arch->name.c_str(), args.device.c_str());
this->args.uarch = arch->name;
uarch = arch->create(args.device, args.options);
// Load uarch
uarch->init_database(this);
if (!chip_info)
log_error("uarch didn't load any chipdb, probably a load_chipdb call was missing\n");
init_tiles();
}
void Arch::load_chipdb(const std::string &path)
{
std::string db_path;
if (!args.chipdb_override.empty()) {
db_path = args.chipdb_override;
} else {
db_path = proc_share_dirname();
db_path += "himbaechel/";
db_path += path;
boost::filesystem::path p(db_path);
db_path = p.make_preferred().string();
}
try {
blob_file.open(db_path);
if (db_path.empty() || !blob_file.is_open())
log_error("Unable to read chipdb %s\n", db_path.c_str());
const char *blob = reinterpret_cast<const char *>(blob_file.data());
chip_info = get_chip_info(reinterpret_cast<const RelPtr<ChipInfoPOD> *>(blob));
} catch (...) {
log_error("Unable to read chipdb %s\n", db_path.c_str());
}
// Check consistency of blob
if (chip_info->magic != 0x00ca7ca7)
log_error("chipdb %s does not look like a valid himbächel database!\n", db_path.c_str());
if (chip_info->version != database_version)
log_error(
"chipdb uses db version %d but nextpnr is expecting version %d (did you forget a database rebuild?).\n",
chip_info->version, database_version);
std::string blob_uarch(chip_info->uarch.get());
if (blob_uarch != args.uarch)
log_error("database device uarch '%s' does not match selected device uarch '%s'.\n", blob_uarch.c_str(),
args.uarch.c_str());
// Setup constids from database
for (int i = 0; i < chip_info->extra_constids->bba_ids.ssize(); i++) {
IdString::initialize_add(this, chip_info->extra_constids->bba_ids[i].get(),
i + chip_info->extra_constids->known_id_count);
}
}
void Arch::set_speed_grade(const std::string &speed)
{
if (speed.empty())
return;
// Select speed grade
for (const auto &speed_data : chip_info->speed_grades) {
if (IdString(speed_data.name) == id(speed)) {
speed_grade = &speed_data;
break;
}
}
if (!speed_grade) {
log_error("Speed grade '%s' not found in database.\n", speed.c_str());
}
}
void Arch::set_package(const std::string &package)
{
if (package.empty())
return;
// Select speed grade
for (const auto &pkg_data : chip_info->packages) {
if (IdString(pkg_data.name) == id(package)) {
package_info = &pkg_data;
break;
}
}
if (!package_info) {
log_error("Package '%s' not found in database.\n", package.c_str());
}
}
void Arch::init_tiles()
{
for (int y = 0; y < chip_info->height; y++) {
for (int x = 0; x < chip_info->width; x++) {
int tile = y * chip_info->width + x;
auto &inst = chip_info->tile_insts[tile];
IdString name = idf("%sX%dY%d", IdString(inst.name_prefix).c_str(this), x, y);
NPNR_ASSERT(int(tile_name.size()) == tile);
tile_name.push_back(name);
tile_name2idx[name] = tile;
}
}
}
void Arch::late_init()
{
BaseArch::init_cell_types();
BaseArch::init_bel_buckets();
}
BelId Arch::getBelByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 2);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int bel = 0; bel < tdata.bels.ssize(); bel++) {
if (IdString(tdata.bels[bel].name) == name[1])
return BelId(tile, bel);
}
return BelId();
}
IdStringList Arch::getBelName(BelId bel) const
{
return IdStringList::concat(tile_name.at(bel.tile), IdString(chip_bel_info(chip_info, bel).name));
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
// TODO: binary search
auto &info = chip_bel_info(chip_info, bel);
for (auto &bel_pin : info.pins) {
if (IdString(bel_pin.name) == pin)
return normalise_wire(bel.tile, bel_pin.wire);
}
return WireId();
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
auto &info = chip_bel_info(chip_info, bel);
for (auto &bel_pin : info.pins) {
if (IdString(bel_pin.name) == pin)
return PortType(bel_pin.type);
}
NPNR_ASSERT_FALSE("bel pin not found");
}
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> result;
auto &info = chip_bel_info(chip_info, bel);
result.reserve(info.pins.size());
for (auto &bel_pin : info.pins)
result.emplace_back(bel_pin.name);
return result;
}
bool Arch::pack()
{
log_break();
uarch->pack();
getCtx()->assignArchInfo();
getCtx()->settings[id("pack")] = 1;
log_info("Checksum: 0x%08x\n", getCtx()->checksum());
return true;
}
bool Arch::place()
{
bool retVal = false;
uarch->prePlace();
std::string placer = str_or_default(settings, id("placer"), defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
uarch->configurePlacerHeap(cfg);
cfg.ioBufTypes.insert(id("GENERIC_IOB"));
retVal = placer_heap(getCtx(), cfg);
} else if (placer == "sa") {
retVal = placer1(getCtx(), Placer1Cfg(getCtx()));
} else {
log_error("Himbächel architecture does not support placer '%s'\n", placer.c_str());
}
uarch->postPlace();
getCtx()->settings[getCtx()->id("place")] = 1;
archInfoToAttributes();
return retVal;
}
bool Arch::route()
{
set_fast_pip_delays(true);
uarch->preRoute();
std::string router = str_or_default(settings, id("router"), defaultRouter);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("Himbächel architecture does not support router '%s'\n", router.c_str());
}
uarch->postRoute();
getCtx()->settings[getCtx()->id("route")] = 1;
archInfoToAttributes();
set_fast_pip_delays(false);
return result;
}
void Arch::assignArchInfo()
{
int cell_idx = 0, net_idx = 0;
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
ci->flat_index = cell_idx++;
if (speed_grade && ci->timing_index == -1)
ci->timing_index = get_cell_timing_idx(ci->type);
for (auto &port : ci->ports) {
// Default 1:1 cell:bel mapping
if (!ci->cell_bel_pins.count(port.first))
ci->cell_bel_pins[port.first].push_back(port.first);
}
}
for (auto &net : nets) {
net.second->flat_index = net_idx++;
}
}
WireId Arch::getWireByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 2);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int wire = 0; wire < tdata.wires.ssize(); wire++) {
if (IdString(tdata.wires[wire].name) == name[1])
return WireId(tile, wire);
}
return WireId();
}
IdStringList Arch::getWireName(WireId wire) const
{
return IdStringList::concat(tile_name.at(wire.tile), IdString(chip_wire_info(chip_info, wire).name));
}
PipId Arch::getPipByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 3);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int pip = 0; pip < tdata.pips.ssize(); pip++) {
if (IdString(tdata.wires[tdata.pips[pip].dst_wire].name) == name[1] &&
IdString(tdata.wires[tdata.pips[pip].src_wire].name) == name[2])
return PipId(tile, pip);
}
return PipId();
}
IdStringList Arch::getPipName(PipId pip) const
{
auto &tdata = chip_tile_info(chip_info, pip.tile);
auto &pdata = tdata.pips[pip.index];
return IdStringList::concat(tile_name.at(pip.tile),
IdStringList::concat(IdString(tdata.wires[pdata.dst_wire].name),
IdString(tdata.wires[pdata.src_wire].name)));
}
IdString Arch::getPipType(PipId pip) const { return IdString(); }
GroupId Arch::getGroupByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 2);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int group = 0; group < tdata.groups.ssize(); group++) {
if (IdString(tdata.groups[group].name) == name[1])
return GroupId(tile, group);
}
return GroupId();
}
IdStringList Arch::getGroupName(GroupId group) const
{
return IdStringList::concat(tile_name.at(group.tile), IdString(chip_group_info(chip_info, group).name));
}
std::string Arch::getChipName() const { return chip_info->name.get(); }
IdString Arch::archArgsToId(ArchArgs args) const
{
// TODO
return IdString();
}
void IdString::initialize_arch(const BaseCtx *ctx) {}
const std::string Arch::defaultPlacer = "heap";
const std::vector<std::string> Arch::availablePlacers = {"sa", "heap"};
const std::string Arch::defaultRouter = "router1";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
void Arch::set_fast_pip_delays(bool fast_mode)
{
if (fast_mode && !fast_pip_delays) {
// Have to rebuild these structures
drive_res.clear();
load_cap.clear();
for (auto &net : nets) {
for (auto &wire_pair : net.second->wires) {
PipId pip = wire_pair.second.pip;
if (pip == PipId())
continue;
auto &pip_data = chip_pip_info(chip_info, pip);
auto pip_tmg = get_pip_timing(pip_data);
if (pip_tmg != nullptr) {
WireId src = getPipSrcWire(pip), dst = getPipDstWire(pip);
load_cap[src] += pip_tmg->in_cap.slow_max;
drive_res[dst] = (((pip_tmg->flags & 1) || !drive_res.count(src)) ? 0 : drive_res.at(src)) +
pip_tmg->out_res.slow_max;
}
}
}
}
fast_pip_delays = fast_mode;
}
// Helper for cell timing lookups
namespace {
template <typename Tres, typename Tgetter, typename Tkey>
int db_binary_search(const RelSlice<Tres> &list, Tgetter key_getter, Tkey key)
{
if (list.ssize() < 7) {
for (int i = 0; i < list.ssize(); i++) {
if (key_getter(list[i]) == key) {
return i;
}
}
} else {
int b = 0, e = list.ssize() - 1;
while (b <= e) {
int i = (b + e) / 2;
if (key_getter(list[i]) == key) {
return i;
}
if (key_getter(list[i]) > key)
e = i - 1;
else
b = i + 1;
}
}
return -1;
}
} // namespace
int Arch::get_cell_timing_idx(IdString type_variant) const
{
return db_binary_search(
speed_grade->cell_types, [](const CellTimingPOD &ct) { return ct.type_variant; }, type_variant.index);
}
bool Arch::lookup_cell_delay(int type_idx, IdString from_port, IdString to_port, DelayQuad &delay) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int to_pin_idx = db_binary_search(ct.pins, [](const CellPinTimingPOD &pd) { return pd.pin; }, to_port.index);
if (to_pin_idx == -1)
return false;
const auto &tp = ct.pins[to_pin_idx];
int arc_idx =
db_binary_search(tp.comb_arcs, [](const CellPinCombArcPOD &arc) { return arc.input; }, from_port.index);
if (arc_idx == -1)
return false;
delay = DelayQuad(tp.comb_arcs[arc_idx].delay.fast_min, tp.comb_arcs[arc_idx].delay.slow_max);
return true;
}
const RelSlice<CellPinRegArcPOD> *Arch::lookup_cell_seq_timings(int type_idx, IdString port) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int pin_idx = db_binary_search(ct.pins, [](const CellPinTimingPOD &pd) { return pd.pin; }, port.index);
if (pin_idx == -1)
return nullptr;
return &ct.pins[pin_idx].reg_arcs;
}
TimingPortClass Arch::lookup_port_tmg_type(int type_idx, IdString port, PortType dir) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int pin_idx = db_binary_search(ct.pins, [](const CellPinTimingPOD &pd) { return pd.pin; }, port.index);
if (pin_idx == -1)
return (dir == PORT_OUT) ? TMG_IGNORE : TMG_COMB_INPUT;
auto &pin = ct.pins[pin_idx];
if (dir == PORT_IN) {
if (pin.flags & CellPinTimingPOD::FLAG_CLK)
return TMG_CLOCK_INPUT;
return pin.reg_arcs.ssize() > 0 ? TMG_REGISTER_INPUT : TMG_COMB_INPUT;
} else {
// If a clock-to-out entry exists, then this is a register output
return pin.reg_arcs.ssize() > 0 ? TMG_REGISTER_OUTPUT : TMG_COMB_OUTPUT;
}
}
// TODO: adding uarch overrides for these?
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const
{
if (cell->timing_index == -1)
return false;
return lookup_cell_delay(cell->timing_index, fromPort, toPort, delay);
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
if (cell->timing_index == -1)
return TMG_IGNORE;
auto type = lookup_port_tmg_type(cell->timing_index, port, cell->ports.at(port).type);
clockInfoCount = 0;
if (type == TMG_REGISTER_INPUT || type == TMG_REGISTER_OUTPUT) {
auto reg_arcs = lookup_cell_seq_timings(cell->timing_index, port);
if (reg_arcs)
clockInfoCount = reg_arcs->ssize();
}
return type;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
TimingClockingInfo result;
NPNR_ASSERT(cell->timing_index != -1);
auto reg_arcs = lookup_cell_seq_timings(cell->timing_index, port);
NPNR_ASSERT(reg_arcs);
const auto &arc = (*reg_arcs)[index];
result.clock_port = IdString(arc.clock);
result.edge = ClockEdge(arc.edge);
result.setup = DelayPair(arc.setup.fast_min, arc.setup.slow_max);
result.hold = DelayPair(arc.hold.fast_min, arc.hold.slow_max);
result.clockToQ = DelayQuad(arc.clk_q.fast_min, arc.clk_q.slow_max);
return result;
}
const PadInfoPOD *Arch::get_package_pin(IdString pin) const
{
NPNR_ASSERT(package_info);
for (const auto &pad : package_info->pads) {
if (IdString(pad.package_pin) == pin)
return &pad;
}
return nullptr;
}
const PadInfoPOD *Arch::get_bel_package_pin(BelId bel) const
{
IdStringList bel_name = getBelName(bel);
NPNR_ASSERT(package_info);
for (const auto &pad : package_info->pads) {
if (IdString(pad.tile) == bel_name[0] && IdString(pad.bel) == bel_name[1])
return &pad;
}
return nullptr;
}
BelId Arch::get_package_pin_bel(IdString pin) const
{
auto pin_data = get_package_pin(pin);
if (!pin_data)
return BelId();
return getBelByName(IdStringList::concat(IdString(pin_data->tile), IdString(pin_data->bel)));
}
IdString Arch::get_tile_type(int tile) const
{
auto &tile_data = chip_tile_info(chip_info, tile);
return IdString(tile_data.type_name);
}
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const
{
std::vector<GraphicElement> ret;
if (decal.type == DecalId::TYPE_GROUP) {
GroupId group(decal.tile, decal.index);
Loc loc;
tile_xy(chip_info, decal.tile, loc.x, loc.y);
uarch->drawGroup(ret, group, loc);
} else if (decal.type == DecalId::TYPE_BEL) {
BelId bel(decal.tile, decal.index);
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
uarch->drawBel(ret, style, getBelType(bel), getBelLocation(bel));
} else if (decal.type == DecalId::TYPE_WIRE) {
WireId w(decal.tile, decal.index);
for (WireId wire : get_tile_wire_range(w)) {
auto wire_type = getWireType(wire);
GraphicElement::style_t style =
decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
Loc loc;
tile_xy(chip_info, wire.tile, loc.x, loc.y);
int32_t tilewire = chip_wire_info(chip_info, wire).tile_wire;
uarch->drawWire(ret, style, loc, wire_type, tilewire, get_tile_type(wire.tile));
}
} else if (decal.type == DecalId::TYPE_PIP) {
PipId pip(decal.tile, decal.index);
WireId src_wire = getPipSrcWire(pip);
WireId dst_wire = getPipDstWire(pip);
Loc loc = getPipLocation(pip);
int32_t src_id = chip_wire_info(chip_info, src_wire).tile_wire;
int32_t dst_id = chip_wire_info(chip_info, dst_wire).tile_wire;
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_HIDDEN;
uarch->drawPip(ret, style, loc, src_wire, getWireType(src_wire), src_id, dst_wire, getWireType(dst_wire),
dst_id);
}
return ret;
}
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
decalxy.decal = DecalId(bel.tile, bel.index, DecalId::TYPE_BEL);
decalxy.decal.active = getBoundBelCell(bel) != nullptr;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const
{
DecalXY decalxy;
decalxy.decal = DecalId(wire.tile, wire.index, DecalId::TYPE_WIRE);
decalxy.decal.active = getBoundWireNet(wire) != nullptr;
return decalxy;
}
DecalXY Arch::getPipDecal(PipId pip) const
{
DecalXY decalxy;
decalxy.decal = DecalId(pip.tile, pip.index, DecalId::TYPE_PIP);
decalxy.decal.active = getBoundPipNet(pip) != nullptr;
return decalxy;
}
DecalXY Arch::getGroupDecal(GroupId group) const
{
DecalXY decalxy;
decalxy.decal = DecalId(group.tile, group.index, DecalId::TYPE_GROUP);
decalxy.decal.active = true;
return decalxy;
}
NEXTPNR_NAMESPACE_END