nextpnr/himbaechel/uarch/gowin/pack.cc
Saviour Owolabi e9e7dce23d
Himbaechel Gowin: HCLK Support (#1340)
* Himbaechel Gowin: Add support for CLKDIV and CLKDIV2

* Himbaechel Gowin: Add support for CLKDIV and CLKDIV2

* Gowin Himbaechel: HCLK Bug fixes and corrections
2024-08-03 15:57:22 +02:00

3146 lines
131 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#define HIMBAECHEL_CONSTIDS "uarch/gowin/constids.inc"
#include "himbaechel_constids.h"
#include "himbaechel_helpers.h"
#include "gowin.h"
#include "gowin_utils.h"
#include "pack.h"
#include <cinttypes>
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct GowinPacker
{
Context *ctx;
HimbaechelHelpers h;
GowinUtils gwu;
GowinPacker(Context *ctx) : ctx(ctx)
{
h.init(ctx);
gwu.init(ctx);
}
// ===================================
// IO
// ===================================
// create IOB connections for gowin_pack
// can be called repeatedly when switching inputs, disabled outputs do not change
void make_iob_nets(CellInfo &iob)
{
for (const auto &port : iob.ports) {
const NetInfo *net = iob.getPort(port.first);
std::string connected_net = "NET";
if (net != nullptr) {
if (ctx->verbose) {
log_info("%s: %s - %s\n", ctx->nameOf(&iob), port.first.c_str(ctx), ctx->nameOf(net));
}
if (net->name == ctx->id("$PACKER_VCC")) {
connected_net = "VCC";
} else if (net->name == ctx->id("$PACKER_GND")) {
connected_net = "GND";
}
iob.setParam(ctx->idf("NET_%s", port.first.c_str(ctx)), connected_net);
}
}
}
void config_simple_io(CellInfo &ci)
{
if (ci.type.in(id_TBUF, id_IOBUF)) {
return;
}
log_info("simple:%s\n", ctx->nameOf(&ci));
ci.addInput(id_OEN);
if (ci.type == id_OBUF) {
ci.connectPort(id_OEN, ctx->nets.at(ctx->id("$PACKER_GND")).get());
} else {
NPNR_ASSERT(ci.type == id_IBUF);
ci.connectPort(id_OEN, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
}
}
void config_bottom_row(CellInfo &ci, Loc loc, uint8_t cnd = Bottom_io_POD::NORMAL)
{
if (!gwu.has_bottom_io_cnds()) {
return;
}
if (!ci.type.in(id_OBUF, id_TBUF, id_IOBUF)) {
return;
}
if (loc.z != BelZ::IOBA_Z) {
return;
}
auto connect_io_wire = [&](IdString port, IdString net_name) {
// XXX it is very convenient that nothing terrible happens in case
// of absence/presence of a port
ci.disconnectPort(port);
ci.addInput(port);
if (net_name == id_VSS) {
ci.connectPort(port, ctx->nets.at(ctx->id("$PACKER_GND")).get());
} else {
NPNR_ASSERT(net_name == id_VCC);
ci.connectPort(port, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
}
};
IdString wire_a_net = gwu.get_bottom_io_wire_a_net(cnd);
connect_io_wire(id_BOTTOM_IO_PORT_A, wire_a_net);
IdString wire_b_net = gwu.get_bottom_io_wire_b_net(cnd);
connect_io_wire(id_BOTTOM_IO_PORT_B, wire_b_net);
}
// Attributes of deleted cells are copied
void trim_nextpnr_iobs(void)
{
// Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis
const pool<CellTypePort> top_ports{
CellTypePort(id_IBUF, id_I),
CellTypePort(id_OBUF, id_O),
CellTypePort(id_TBUF, id_O),
CellTypePort(id_IOBUF, id_IO),
};
std::vector<IdString> to_remove;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (!ci.type.in(ctx->id("$nextpnr_ibuf"), ctx->id("$nextpnr_obuf"), ctx->id("$nextpnr_iobuf")))
continue;
NetInfo *i = ci.getPort(id_I);
if (i && i->driver.cell) {
if (!top_ports.count(CellTypePort(i->driver)))
log_error("Top-level port '%s' driven by illegal port %s.%s\n", ctx->nameOf(&ci),
ctx->nameOf(i->driver.cell), ctx->nameOf(i->driver.port));
for (const auto &attr : ci.attrs) {
i->driver.cell->setAttr(attr.first, attr.second);
}
}
NetInfo *o = ci.getPort(id_O);
if (o) {
for (auto &usr : o->users) {
if (!top_ports.count(CellTypePort(usr)))
log_error("Top-level port '%s' driving illegal port %s.%s\n", ctx->nameOf(&ci),
ctx->nameOf(usr.cell), ctx->nameOf(usr.port));
for (const auto &attr : ci.attrs) {
usr.cell->setAttr(attr.first, attr.second);
}
// network/port attributes that can be set in the
// restriction file and that need to be transferred to real
// networks before nextpnr buffers are removed.
NetInfo *dst_net = usr.cell->getPort(id_O);
if (dst_net != nullptr) {
for (const auto &attr : o->attrs) {
if (!attr.first.in(id_CLOCK)) {
continue;
}
dst_net->attrs[attr.first] = attr.second;
}
}
}
}
NetInfo *io = ci.getPort(id_IO);
if (io && io->driver.cell) {
if (!top_ports.count(CellTypePort(io->driver)))
log_error("Top-level port '%s' driven by illegal port %s.%s\n", ctx->nameOf(&ci),
ctx->nameOf(io->driver.cell), ctx->nameOf(io->driver.port));
for (const auto &attr : ci.attrs) {
io->driver.cell->setAttr(attr.first, attr.second);
}
}
ci.disconnectPort(id_I);
ci.disconnectPort(id_O);
ci.disconnectPort(id_IO);
to_remove.push_back(ci.name);
}
for (IdString cell_name : to_remove)
ctx->cells.erase(cell_name);
}
BelId bind_io(CellInfo &ci)
{
BelId bel = ctx->getBelByNameStr(ci.attrs.at(id_BEL).as_string());
if (bel == BelId()) {
log_error("No bel named %s\n", ci.attrs.at(id_BEL).as_string().c_str());
}
if (!ctx->checkBelAvail(bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci), ctx->nameOfBel(bel),
ctx->nameOf(ctx->getBoundBelCell(bel)));
}
ci.unsetAttr(id_BEL);
ctx->bindBel(bel, &ci, PlaceStrength::STRENGTH_LOCKED);
return bel;
}
void pack_iobs(void)
{
log_info("Pack IOBs...\n");
trim_nextpnr_iobs();
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (!ci.type.in(id_IBUF, id_OBUF, id_TBUF, id_IOBUF))
continue;
if (ci.attrs.count(id_BEL) == 0) {
log_error("Unconstrained IO:%s\n", ctx->nameOf(&ci));
}
BelId io_bel = bind_io(ci);
Loc io_loc = ctx->getBelLocation(io_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(ci, io_loc);
}
if (gwu.is_simple_io_bel(io_bel)) {
config_simple_io(ci);
}
make_iob_nets(ci);
}
}
// ===================================
// Differential IO
// ===================================
static bool is_iob(const Context *ctx, CellInfo *cell)
{
return (cell->type.in(id_IBUF, id_OBUF, id_TBUF, id_IOBUF));
}
std::pair<CellInfo *, CellInfo *> get_pn_cells(const CellInfo &ci)
{
CellInfo *p, *n;
switch (ci.type.hash()) {
case ID_ELVDS_TBUF: /* fall-through */
case ID_TLVDS_TBUF: /* fall-through */
case ID_ELVDS_OBUF: /* fall-through */
case ID_TLVDS_OBUF:
p = net_only_drives(ctx, ci.ports.at(id_O).net, is_iob, id_I, true);
n = net_only_drives(ctx, ci.ports.at(id_OB).net, is_iob, id_I, true);
break;
case ID_ELVDS_IBUF: /* fall-through */
case ID_TLVDS_IBUF:
p = net_driven_by(ctx, ci.ports.at(id_I).net, is_iob, id_O);
n = net_driven_by(ctx, ci.ports.at(id_IB).net, is_iob, id_O);
break;
case ID_ELVDS_IOBUF: /* fall-through */
case ID_TLVDS_IOBUF:
p = net_only_drives(ctx, ci.ports.at(id_IO).net, is_iob, id_I);
n = net_only_drives(ctx, ci.ports.at(id_IOB).net, is_iob, id_I);
break;
default:
log_error("Bad diff IO '%s' type '%s'\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
return std::make_pair(p, n);
}
void mark_iobs_as_diff(CellInfo &ci, std::pair<CellInfo *, CellInfo *> &pn_cells)
{
pn_cells.first->setParam(id_DIFF, std::string("P"));
pn_cells.first->setParam(id_DIFF_TYPE, ci.type.str(ctx));
pn_cells.second->setParam(id_DIFF, std::string("N"));
pn_cells.second->setParam(id_DIFF_TYPE, ci.type.str(ctx));
}
void switch_diff_ports(CellInfo &ci, std::pair<CellInfo *, CellInfo *> &pn_cells,
std::vector<IdString> &nets_to_remove)
{
CellInfo *iob_p = pn_cells.first;
CellInfo *iob_n = pn_cells.second;
if (ci.type.in(id_TLVDS_TBUF, id_TLVDS_OBUF, id_ELVDS_TBUF, id_ELVDS_OBUF)) {
nets_to_remove.push_back(ci.getPort(id_O)->name);
ci.disconnectPort(id_O);
nets_to_remove.push_back(ci.getPort(id_OB)->name);
ci.disconnectPort(id_OB);
nets_to_remove.push_back(iob_n->getPort(id_I)->name);
iob_n->disconnectPort(id_I);
if (ci.type.in(id_TLVDS_TBUF, id_ELVDS_TBUF)) {
NetInfo *oen_net = iob_n->getPort(id_OEN);
if (oen_net != nullptr) {
nets_to_remove.push_back(oen_net->name);
}
iob_n->disconnectPort(id_OEN);
iob_p->disconnectPort(id_OEN);
ci.movePortTo(id_OEN, iob_p, id_OEN);
}
iob_p->disconnectPort(id_I);
ci.movePortTo(id_I, iob_p, id_I);
return;
}
if (ci.type.in(id_TLVDS_IBUF, id_ELVDS_IBUF)) {
nets_to_remove.push_back(ci.getPort(id_I)->name);
ci.disconnectPort(id_I);
nets_to_remove.push_back(ci.getPort(id_IB)->name);
ci.disconnectPort(id_IB);
iob_n->disconnectPort(id_O);
iob_p->disconnectPort(id_O);
ci.movePortTo(id_O, iob_p, id_O);
return;
}
if (ci.type.in(id_TLVDS_IOBUF, id_ELVDS_IOBUF)) {
nets_to_remove.push_back(ci.getPort(id_IO)->name);
ci.disconnectPort(id_IO);
nets_to_remove.push_back(ci.getPort(id_IOB)->name);
ci.disconnectPort(id_IOB);
nets_to_remove.push_back(iob_n->getPort(id_I)->name);
iob_n->disconnectPort(id_I);
iob_n->disconnectPort(id_OEN);
iob_p->disconnectPort(id_OEN);
ci.movePortTo(id_OEN, iob_p, id_OEN);
iob_p->disconnectPort(id_I);
ci.movePortTo(id_I, iob_p, id_I);
iob_p->disconnectPort(id_O);
ci.movePortTo(id_O, iob_p, id_O);
return;
}
}
void pack_diff_iobs(void)
{
log_info("Pack diff IOBs...\n");
std::vector<IdString> cells_to_remove, nets_to_remove;
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (!is_diffio(&ci)) {
continue;
}
if (!gwu.is_diff_io_supported(ci.type)) {
log_error("%s is not supported\n", ci.type.c_str(ctx));
}
cells_to_remove.push_back(ci.name);
auto pn_cells = get_pn_cells(ci);
NPNR_ASSERT(pn_cells.first != nullptr && pn_cells.second != nullptr);
mark_iobs_as_diff(ci, pn_cells);
switch_diff_ports(ci, pn_cells, nets_to_remove);
}
for (auto cell : cells_to_remove) {
ctx->cells.erase(cell);
}
for (auto net : nets_to_remove) {
ctx->nets.erase(net);
}
}
// ===================================
// IO logic
// ===================================
// the functions of these two inputs are yet to be discovered, so we set as observed
// in the exemplary images
void set_daaj_nets(CellInfo &ci, BelId bel)
{
std::vector<IdString> pins = ctx->getBelPins(bel);
if (std::find(pins.begin(), pins.end(), id_DAADJ0) != pins.end()) {
ci.addInput(id_DAADJ0);
ci.connectPort(id_DAADJ0, ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
if (std::find(pins.begin(), pins.end(), id_DAADJ1) != pins.end()) {
ci.addInput(id_DAADJ1);
ci.connectPort(id_DAADJ1, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
}
}
BelId get_iologico_bel(CellInfo *iob)
{
NPNR_ASSERT(iob->bel != BelId());
Loc loc = ctx->getBelLocation(iob->bel);
loc.z = loc.z - BelZ::IOBA_Z + BelZ::IOLOGICA_Z;
return ctx->getBelByLocation(loc);
}
BelId get_iologici_bel(CellInfo *iob)
{
NPNR_ASSERT(iob->bel != BelId());
Loc loc = ctx->getBelLocation(iob->bel);
loc.z = loc.z - BelZ::IOBA_Z + BelZ::IOLOGICA_Z + 2;
return ctx->getBelByLocation(loc);
}
void check_iologic_placement(CellInfo &ci, Loc iob_loc, int diff /* 1 - diff */)
{
if (ci.type.in(id_ODDR, id_ODDRC, id_IDDR, id_IDDRC, id_OSER4) || diff) {
return;
}
BelId l_bel = ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IOBA_Z + 1 - (iob_loc.z - BelZ::IOBA_Z)));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
}
// While we require an exact match of the type, in the future the criteria
// may be relaxed and there will be a comparison of the control networks
// used.
bool are_iologic_compatible(CellInfo *ci_0, CellInfo *ci_1)
{
switch (ci_0->type.hash()) {
case ID_ODDR:
return ci_1->type == id_IDDR;
case ID_ODDRC:
return ci_1->type == id_IDDRC;
case ID_IDDR:
return ci_1->type == id_ODDR;
case ID_IDDRC:
return ci_1->type == id_ODDRC;
default:
return false;
}
return false;
}
void pack_bi_output_iol(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
// These primitives have an additional pin to control the tri-state iob - Q1.
IdString out_port = id_Q0;
IdString tx_port = id_Q1;
CellInfo *out_iob = net_only_drives(ctx, ci.ports.at(out_port).net, is_iob, id_I, true);
NPNR_ASSERT(out_iob != nullptr && out_iob->bel != BelId());
BelId iob_bel = out_iob->bel;
BelId l_bel = get_iologico_bel(out_iob);
// check compatible Input and Output iologic if any
BelId in_l_bel = get_iologici_bel(out_iob);
if (in_l_bel != BelId() && !ctx->checkBelAvail(in_l_bel)) {
CellInfo *in_iologic_ci = ctx->getBoundBelCell(in_l_bel);
if (!are_iologic_compatible(&ci, in_iologic_ci)) {
log_error("IOLOGIC %s at %s cannot coexist with %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel),
ctx->nameOf(in_iologic_ci));
}
}
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
// mark IOB as used by IOLOGIC
out_iob->setParam(id_IOLOGIC_IOB, 1);
check_iologic_placement(ci, ctx->getBelLocation(iob_bel), out_iob->params.count(id_DIFF_TYPE));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
ctx->bindBel(l_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
std::string out_mode;
switch (ci.type.hash()) {
case ID_ODDR:
case ID_ODDRC:
out_mode = "ODDRX1";
break;
case ID_OSER4:
out_mode = "ODDRX2";
break;
case ID_OSER8:
out_mode = "ODDRX4";
break;
}
ci.setParam(ctx->id("OUTMODE"), out_mode);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(out_port)->name);
out_iob->disconnectPort(id_I);
ci.disconnectPort(out_port);
set_daaj_nets(ci, iob_bel);
Loc io_loc = ctx->getBelLocation(iob_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(*out_iob, io_loc, Bottom_io_POD::DDR);
}
// if Q1 is connected then disconnect it too
if (port_used(&ci, tx_port)) {
NPNR_ASSERT(out_iob == net_only_drives(ctx, ci.ports.at(tx_port).net, is_iob, id_OEN, true));
nets_to_remove.push_back(ci.getPort(tx_port)->name);
out_iob->disconnectPort(id_OEN);
ci.disconnectPort(tx_port);
}
make_iob_nets(*out_iob);
}
void pack_single_output_iol(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString out_port = id_Q;
CellInfo *out_iob = net_only_drives(ctx, ci.ports.at(out_port).net, is_iob, id_I, true);
NPNR_ASSERT(out_iob != nullptr && out_iob->bel != BelId());
BelId iob_bel = out_iob->bel;
BelId l_bel = get_iologico_bel(out_iob);
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
// mark IOB as used by IOLOGIC
out_iob->setParam(id_IOLOGIC_IOB, 1);
check_iologic_placement(ci, ctx->getBelLocation(iob_bel), out_iob->params.count(id_DIFF_TYPE));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
ctx->bindBel(l_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
std::string out_mode;
switch (ci.type.hash()) {
case ID_OVIDEO:
out_mode = "VIDEORX";
break;
case ID_OSER10:
out_mode = "ODDRX5";
break;
}
ci.setParam(ctx->id("OUTMODE"), out_mode);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(out_port)->name);
out_iob->disconnectPort(id_I);
ci.disconnectPort(out_port);
set_daaj_nets(ci, iob_bel);
Loc io_loc = ctx->getBelLocation(iob_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(*out_iob, io_loc, Bottom_io_POD::DDR);
}
make_iob_nets(*out_iob);
}
IdString create_aux_name(IdString main_name, int idx = 0, const char *str_suffix = "_aux$")
{
std::string sfx("");
if (idx) {
sfx = std::to_string(idx);
}
return ctx->id(main_name.str(ctx) + std::string(str_suffix) + sfx);
}
BelId get_aux_iologic_bel(const CellInfo &ci)
{
return ctx->getBelByLocation(gwu.get_pair_iologic_bel(ctx->getBelLocation(ci.bel)));
}
bool is_diff_io(BelId bel) { return ctx->getBoundBelCell(bel)->params.count(id_DIFF_TYPE) != 0; }
CellInfo *create_aux_iologic_cell(CellInfo &ci, IdString mode, bool io16 = false, int idx = 0)
{
if (ci.type.in(id_ODDR, id_ODDRC, id_OSER4, id_IDDR, id_IDDRC, id_IDES4)) {
return nullptr;
}
IdString aux_name = create_aux_name(ci.name, idx);
BelId bel = get_aux_iologic_bel(ci);
BelId io_bel = gwu.get_io_bel_from_iologic(bel);
if (!ctx->checkBelAvail(io_bel)) {
if (!is_diff_io(io_bel)) {
log_error("Can't place %s at %s because of a conflict with another IO %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(bel), ctx->nameOf(ctx->getBoundBelCell(io_bel)));
}
}
ctx->createCell(aux_name, id_IOLOGIC_DUMMY);
CellInfo *aux = ctx->cells.at(aux_name).get();
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
if (io16) {
aux->setParam(mode, Property("DDRENABLE16"));
} else {
aux->setParam(mode, Property("DDRENABLE"));
}
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
aux->setAttr(ctx->id("MAIN_CELL"), Property(ci.name.str(ctx)));
ctx->bindBel(bel, aux, PlaceStrength::STRENGTH_LOCKED);
return aux;
}
void reconnect_ides_outs(CellInfo *ci)
{
IdString dest_ports[] = {id_Q9, id_Q8, id_Q7, id_Q6, id_Q5, id_Q4, id_Q3, id_Q2};
switch (ci->type.hash()) {
case ID_IDDR: /* fall-through*/
case ID_IDDRC:
ci->renamePort(id_Q1, id_Q9);
ci->renamePort(id_Q0, id_Q8);
break;
case ID_IDES4:
for (int i = 0; i < 4; ++i) {
ci->renamePort(ctx->idf("Q%d", 3 - i), dest_ports[i]);
}
break;
case ID_IVIDEO:
for (int i = 0; i < 7; ++i) {
ci->renamePort(ctx->idf("Q%d", 6 - i), dest_ports[i]);
}
break;
case ID_IDES8:
for (int i = 0; i < 8; ++i) {
ci->renamePort(ctx->idf("Q%d", 7 - i), dest_ports[i]);
}
break;
default:
break;
}
}
void pack_ides_iol(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString in_port = id_D;
CellInfo *in_iob = net_driven_by(ctx, ci.ports.at(in_port).net, is_iob, id_O);
NPNR_ASSERT(in_iob != nullptr && in_iob->bel != BelId());
BelId iob_bel = in_iob->bel;
BelId l_bel = get_iologici_bel(in_iob);
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
// mark IOB as used by IOLOGIC
in_iob->setParam(id_IOLOGIC_IOB, 1);
check_iologic_placement(ci, ctx->getBelLocation(iob_bel), in_iob->params.count(id_DIFF_TYPE));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
ctx->bindBel(l_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
std::string in_mode;
switch (ci.type.hash()) {
case ID_IDDR:
case ID_IDDRC:
in_mode = "IDDRX1";
break;
case ID_IDES4:
in_mode = "IDDRX2";
break;
case ID_IDES8:
in_mode = "IDDRX4";
break;
case ID_IDES10:
in_mode = "IDDRX5";
break;
case ID_IVIDEO:
in_mode = "VIDEORX";
break;
}
ci.setParam(ctx->id("INMODE"), in_mode);
// disconnect D input: it is wired internally
nets_to_remove.push_back(ci.getPort(in_port)->name);
in_iob->disconnectPort(id_O);
ci.disconnectPort(in_port);
set_daaj_nets(ci, iob_bel);
reconnect_ides_outs(&ci);
make_iob_nets(*in_iob);
}
void pack_iologic()
{
log_info("Pack IO logic...\n");
std::vector<IdString> nets_to_remove;
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (!(is_iologici(&ci) || is_iologico(&ci))) {
continue;
}
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
if (ci.type.in(id_ODDR, id_ODDRC, id_OSER4, id_OSER8)) {
pack_bi_output_iol(ci, nets_to_remove);
create_aux_iologic_cell(ci, ctx->id("OUTMODE"));
continue;
}
if (ci.type.in(id_OVIDEO, id_OSER10)) {
pack_single_output_iol(ci, nets_to_remove);
create_aux_iologic_cell(ci, ctx->id("OUTMODE"));
continue;
}
if (ci.type.in(id_IDDR, id_IDDRC, id_IDES4, id_IDES8, id_IDES10, id_IVIDEO)) {
pack_ides_iol(ci, nets_to_remove);
create_aux_iologic_cell(ci, ctx->id("INMODE"));
continue;
}
}
for (auto net : nets_to_remove) {
ctx->nets.erase(net);
}
}
// ===================================
// IDES16 / OSER16
// ===================================
void check_io16_placement(CellInfo &ci, Loc main_loc, Loc aux_off, int diff /* 1 - diff */)
{
if (main_loc.z != BelZ::IOBA_Z) {
log_error("Can't place %s at %s because OSER16/IDES16 must be placed at A pin\n", ctx->nameOf(&ci),
ctx->nameOfBel(ctx->getBelByLocation(main_loc)));
}
int mod[][3] = {{0, 0, 1}, {1, 1, 0}, {1, 1, 1}};
for (int i = diff; i < 3; ++i) {
Loc aux_loc(main_loc.x + mod[i][0] * aux_off.x, main_loc.y + mod[i][1] * aux_off.y, main_loc.z + mod[i][2]);
BelId l_bel = ctx->getBelByLocation(aux_loc);
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
}
}
void pack_oser16(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString out_port = id_Q;
CellInfo *out_iob = net_only_drives(ctx, ci.ports.at(out_port).net, is_iob, id_I, true);
NPNR_ASSERT(out_iob != nullptr && out_iob->bel != BelId());
// mark IOB as used by IOLOGIC
out_iob->setParam(id_IOLOGIC_IOB, 1);
BelId iob_bel = out_iob->bel;
Loc iob_loc = ctx->getBelLocation(iob_bel);
Loc aux_offset = gwu.get_tile_io16_offs(iob_loc.x, iob_loc.y);
if (aux_offset.x == 0 && aux_offset.y == 0) {
log_error("OSER16 %s can not be placed at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
check_io16_placement(ci, iob_loc, aux_offset, out_iob->params.count(id_DIFF_TYPE));
BelId main_bel = ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::OSER16_Z));
ctx->bindBel(main_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(out_port)->name);
out_iob->disconnectPort(id_I);
ci.disconnectPort(out_port);
// to simplify packaging, the parts of the OSER16 are presented as IOLOGIC cells
// and one of these aux cells is declared as main
IdString main_name = create_aux_name(ci.name);
IdString aux_name = create_aux_name(ci.name, 1);
ctx->createCell(aux_name, id_IOLOGIC_DUMMY);
CellInfo *aux = ctx->cells.at(aux_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("OUTMODE"), Property("ODDRX8"));
aux->setParam(ctx->id("UPDATE"), Property("SAME"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ctx->bindBel(ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IOLOGICA_Z)), aux,
PlaceStrength::STRENGTH_LOCKED);
// make aux cell in the first cell
aux = create_aux_iologic_cell(*aux, ctx->id("OUTMODE"), true, 2);
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("UPDATE"), Property("SAME"));
// make cell in the next location
ctx->createCell(main_name, id_IOLOGIC);
aux = ctx->cells.at(main_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("OUTMODE"), Property("DDRENABLE16"));
aux->setParam(ctx->id("UPDATE"), Property("SAME"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ci.movePortTo(id_FCLK, aux, id_FCLK);
ci.movePortTo(id_D12, aux, id_D0);
ci.movePortTo(id_D13, aux, id_D1);
ci.movePortTo(id_D14, aux, id_D2);
ci.movePortTo(id_D15, aux, id_D3);
Loc next_io16(iob_loc.x + aux_offset.x, iob_loc.y + aux_offset.y, BelZ::IOLOGICA_Z);
ctx->bindBel(ctx->getBelByLocation(next_io16), aux, PlaceStrength::STRENGTH_LOCKED);
Loc io_loc = ctx->getBelLocation(iob_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(*out_iob, io_loc, Bottom_io_POD::DDR);
}
make_iob_nets(*out_iob);
}
void pack_ides16(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString in_port = id_D;
CellInfo *in_iob = net_driven_by(ctx, ci.ports.at(in_port).net, is_iob, id_O);
NPNR_ASSERT(in_iob != nullptr && in_iob->bel != BelId());
// mark IOB as used by IOLOGIC
in_iob->setParam(id_IOLOGIC_IOB, 1);
BelId iob_bel = in_iob->bel;
Loc iob_loc = ctx->getBelLocation(iob_bel);
Loc aux_offset = gwu.get_tile_io16_offs(iob_loc.x, iob_loc.y);
if (aux_offset.x == 0 && aux_offset.y == 0) {
log_error("IDES16 %s can not be placed at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
check_io16_placement(ci, iob_loc, aux_offset, in_iob->params.count(id_DIFF_TYPE));
BelId main_bel = ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IDES16_Z));
ctx->bindBel(main_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(in_port)->name);
in_iob->disconnectPort(id_O);
ci.disconnectPort(in_port);
// to simplify packaging, the parts of the IDES16 are presented as IOLOGIC cells
// and one of these aux cells is declared as main
IdString main_name = create_aux_name(ci.name);
IdString aux_name = create_aux_name(ci.name, 1);
ctx->createCell(aux_name, id_IOLOGIC_DUMMY);
CellInfo *aux = ctx->cells.at(aux_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("INMODE"), Property("IDDRX8"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ctx->bindBel(ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IOLOGICA_Z)), aux,
PlaceStrength::STRENGTH_LOCKED);
// make aux cell in the first cell
aux = create_aux_iologic_cell(*aux, ctx->id("INMODE"), true, 2);
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
ci.copyPortTo(id_CALIB, aux, id_CALIB);
// make cell in the next location
ctx->createCell(main_name, id_IOLOGIC);
aux = ctx->cells.at(main_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("INMODE"), Property("DDRENABLE16"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ci.copyPortTo(id_CALIB, aux, id_CALIB);
ci.movePortTo(id_FCLK, aux, id_FCLK);
ci.movePortTo(id_Q0, aux, id_Q6);
ci.movePortTo(id_Q1, aux, id_Q7);
ci.movePortTo(id_Q2, aux, id_Q8);
ci.movePortTo(id_Q3, aux, id_Q9);
Loc next_io16(iob_loc.x + aux_offset.x, iob_loc.y + aux_offset.y, BelZ::IOLOGICA_Z);
ctx->bindBel(ctx->getBelByLocation(next_io16), aux, PlaceStrength::STRENGTH_LOCKED);
make_iob_nets(*in_iob);
}
void pack_io16(void)
{
std::vector<IdString> nets_to_remove;
log_info("Pack DESER16 logic...\n");
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (ci.type == id_OSER16) {
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
pack_oser16(ci, nets_to_remove);
continue;
}
if (ci.type == id_IDES16) {
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
pack_ides16(ci, nets_to_remove);
continue;
}
}
for (auto net : nets_to_remove) {
ctx->nets.erase(net);
}
}
// ===================================
// Constant nets
// ===================================
void handle_constants(void)
{
log_info("Create constant nets...\n");
const dict<IdString, Property> vcc_params;
const dict<IdString, Property> gnd_params;
h.replace_constants(CellTypePort(id_GOWIN_VCC, id_V), CellTypePort(id_GOWIN_GND, id_G), vcc_params, gnd_params);
// disconnect the constant LUT inputs
log_info("Modify LUTs...\n");
for (IdString netname : {ctx->id("$PACKER_GND"), ctx->id("$PACKER_VCC")}) {
auto net = ctx->nets.find(netname);
if (net == ctx->nets.end()) {
continue;
}
NetInfo *constnet = net->second.get();
for (auto user : constnet->users) {
CellInfo *uc = user.cell;
if (is_lut(uc) && (user.port.str(ctx).at(0) == 'I')) {
if (ctx->debug) {
log_info("%s user %s/%s\n", ctx->nameOf(constnet), ctx->nameOf(uc), user.port.c_str(ctx));
}
auto it_param = uc->params.find(id_INIT);
if (it_param == uc->params.end())
log_error("No initialization for lut found.\n");
int64_t uc_init = it_param->second.intval;
int64_t mask = 0;
uint8_t amt = 0;
if (user.port == id_I0) {
mask = 0x5555;
amt = 1;
} else if (user.port == id_I1) {
mask = 0x3333;
amt = 2;
} else if (user.port == id_I2) {
mask = 0x0F0F;
amt = 4;
} else if (user.port == id_I3) {
mask = 0x00FF;
amt = 8;
} else {
log_error("Port number invalid.\n");
}
if ((constnet->name == ctx->id("$PACKER_GND"))) {
uc_init = (uc_init & mask) | ((uc_init & mask) << amt);
} else {
uc_init = (uc_init & (mask << amt)) | ((uc_init & (mask << amt)) >> amt);
}
size_t uc_init_len = it_param->second.to_string().length();
uc_init &= (1LL << uc_init_len) - 1;
if (ctx->verbose && it_param->second.intval != uc_init)
log_info("%s lut config modified from 0x%" PRIX64 " to 0x%" PRIX64 "\n", ctx->nameOf(uc),
it_param->second.intval, uc_init);
it_param->second = Property(uc_init, uc_init_len);
uc->disconnectPort(user.port);
}
}
}
}
// ===================================
// Wideluts
// ===================================
void pack_wideluts(void)
{
log_info("Pack wide LUTs...\n");
// children's offsets
struct _children
{
IdString port;
int dx, dz;
} mux_inputs[4][2] = {{{id_I0, 1, -7}, {id_I1, 0, -7}},
{{id_I0, 0, 4}, {id_I1, 0, -4}},
{{id_I0, 0, 2}, {id_I1, 0, -2}},
{{id_I0, 0, -BelZ::MUX20_Z}, {id_I1, 0, 2 - BelZ::MUX20_Z}}};
typedef std::function<void(CellInfo &, CellInfo *, int, int)> recurse_func_t;
recurse_func_t make_cluster = [&, this](CellInfo &ci_root, CellInfo *ci_cursor, int dx, int dz) {
_children *inputs;
if (is_lut(ci_cursor)) {
return;
}
switch (ci_cursor->type.hash()) {
case ID_MUX2_LUT8:
inputs = mux_inputs[0];
break;
case ID_MUX2_LUT7:
inputs = mux_inputs[1];
break;
case ID_MUX2_LUT6:
inputs = mux_inputs[2];
break;
case ID_MUX2_LUT5:
inputs = mux_inputs[3];
break;
default:
log_error("Bad MUX2 node:%s\n", ctx->nameOf(ci_cursor));
}
for (int i = 0; i < 2; ++i) {
// input src
NetInfo *in = ci_cursor->getPort(inputs[i].port);
NPNR_ASSERT(in && in->driver.cell && in->driver.cell->cluster == ClusterId());
int child_dx = dx + inputs[i].dx;
int child_dz = dz + inputs[i].dz;
ci_root.constr_children.push_back(in->driver.cell);
in->driver.cell->cluster = ci_root.name;
in->driver.cell->constr_abs_z = false;
in->driver.cell->constr_x = child_dx;
in->driver.cell->constr_y = 0;
in->driver.cell->constr_z = child_dz;
make_cluster(ci_root, in->driver.cell, child_dx, child_dz);
}
};
// look for MUX2
// MUX2_LUT8 create right away, collect others
std::vector<IdString> muxes[3];
int packed[4] = {0, 0, 0, 0};
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.cluster != ClusterId()) {
continue;
}
if (ci.type == id_MUX2_LUT8) {
ci.cluster = ci.name;
ci.constr_abs_z = false;
make_cluster(ci, &ci, 0, 0);
++packed[0];
continue;
}
if (ci.type.in(id_MUX2_LUT7, id_MUX2_LUT6, id_MUX2_LUT5)) {
switch (ci.type.hash()) {
case ID_MUX2_LUT7:
muxes[0].push_back(cell.first);
break;
case ID_MUX2_LUT6:
muxes[1].push_back(cell.first);
break;
default: // ID_MUX2_LUT5
muxes[2].push_back(cell.first);
break;
}
}
}
// create others
for (int i = 0; i < 3; ++i) {
for (IdString cell_name : muxes[i]) {
auto &ci = *ctx->cells.at(cell_name);
if (ci.cluster != ClusterId()) {
continue;
}
ci.cluster = ci.name;
ci.constr_abs_z = false;
make_cluster(ci, &ci, 0, 0);
++packed[i + 1];
}
}
log_info("Packed MUX2_LUT8:%d, MUX2_LU7:%d, MUX2_LUT6:%d, MUX2_LUT5:%d\n", packed[0], packed[1], packed[2],
packed[3]);
}
// ===================================
// ALU
// ===================================
// create ALU CIN block
std::unique_ptr<CellInfo> alu_add_cin_block(Context *ctx, CellInfo *head, NetInfo *cin_net)
{
std::string name = head->name.str(ctx) + "_HEAD_ALULC";
IdString name_id = ctx->id(name);
NetInfo *cout_net = ctx->createNet(name_id);
head->disconnectPort(id_CIN);
head->connectPort(id_CIN, cout_net);
auto cin_ci = std::make_unique<CellInfo>(ctx, name_id, id_ALU);
cin_ci->addOutput(id_COUT);
cin_ci->connectPort(id_COUT, cout_net);
if (cin_net->name == ctx->id("$PACKER_GND")) {
cin_ci->setParam(id_ALU_MODE, std::string("C2L"));
cin_ci->addInput(id_I2);
cin_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
return cin_ci;
}
if (cin_net->name == ctx->id("$PACKER_VCC")) {
cin_ci->setParam(id_ALU_MODE, std::string("ONE2C"));
cin_ci->addInput(id_I2);
cin_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
return cin_ci;
}
// CIN from logic
cin_ci->addInput(id_I0);
cin_ci->connectPort(id_I0, ctx->nets.at(ctx->id("$PACKER_GND")).get());
cin_ci->addInput(id_I1);
cin_ci->addInput(id_I3);
cin_ci->connectPort(id_I1, cin_net);
cin_ci->connectPort(id_I3, cin_net);
cin_ci->addInput(id_I2);
cin_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
cin_ci->setParam(id_ALU_MODE, std::string("0")); // ADD
return cin_ci;
}
// create ALU COUT block
std::unique_ptr<CellInfo> alu_add_cout_block(Context *ctx, CellInfo *tail, NetInfo *cout_net)
{
std::string name = tail->name.str(ctx) + "_TAIL_ALULC";
IdString name_id = ctx->id(name);
NetInfo *cin_net = ctx->createNet(name_id);
tail->disconnectPort(id_COUT);
tail->connectPort(id_COUT, cin_net);
auto cout_ci = std::make_unique<CellInfo>(ctx, name_id, id_ALU);
cout_ci->addOutput(id_COUT); // may be needed for the ALU filler
cout_ci->addInput(id_CIN);
cout_ci->connectPort(id_CIN, cin_net);
cout_ci->addOutput(id_SUM);
cout_ci->connectPort(id_SUM, cout_net);
cout_ci->addInput(id_I2);
cout_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
cout_ci->setParam(id_ALU_MODE, std::string("C2L"));
return cout_ci;
}
// create ALU filler block
std::unique_ptr<CellInfo> alu_add_dummy_block(Context *ctx, CellInfo *tail)
{
std::string name = tail->name.str(ctx) + "_DUMMY_ALULC";
IdString name_id = ctx->id(name);
auto dummy_ci = std::make_unique<CellInfo>(ctx, name_id, id_ALU);
dummy_ci->setParam(id_ALU_MODE, std::string("C2L"));
return dummy_ci;
}
// create ALU chain
void pack_alus(void)
{
const CellTypePort cell_alu_cout = CellTypePort(id_ALU, id_COUT);
const CellTypePort cell_alu_cin = CellTypePort(id_ALU, id_CIN);
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack ALUs...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (ci->cluster != ClusterId()) {
continue;
}
if (is_alu(ci)) {
// The ALU head is when the input carry is not a dedicated wire from the previous ALU
NetInfo *cin_net = ci->getPort(id_CIN);
if (!cin_net || !cin_net->driver.cell) {
log_error("CIN disconnected at ALU:%s\n", ctx->nameOf(ci));
}
if (CellTypePort(cin_net->driver) != cell_alu_cout || cin_net->users.entries() > 1) {
if (ctx->debug) {
log_info("ALU head found %s. CIN net is %s\n", ctx->nameOf(ci), ctx->nameOf(cin_net));
}
// always prepend first ALU with carry generator block
// three cases: CIN == 0, CIN == 1 and CIN == ?
new_cells.push_back(std::move(alu_add_cin_block(ctx, ci, cin_net)));
CellInfo *cin_block_ci = new_cells.back().get();
// CIN block is the cluster root and is always placed in ALU0
// This is a possible place for further optimization
cin_block_ci->cluster = cin_block_ci->name;
cin_block_ci->constr_z = BelZ::ALU0_Z;
cin_block_ci->constr_abs_z = true;
int alu_chain_len = 1;
while (true) {
// add to cluster
if (ctx->debug) {
log_info("Add ALU to the chain (len:%d): %s\n", alu_chain_len, ctx->nameOf(ci));
}
cin_block_ci->constr_children.push_back(ci);
NPNR_ASSERT(ci->cluster == ClusterId());
ci->cluster = cin_block_ci->name;
ci->constr_abs_z = false;
ci->constr_x = alu_chain_len / 6;
ci->constr_y = 0;
ci->constr_z = alu_chain_len % 6;
// XXX mode 0 - ADD
if (ci->params.at(id_ALU_MODE).as_int64() == 0) {
ci->renamePort(id_I3, id_I2);
ci->renamePort(id_I0, id_I3);
ci->renamePort(id_I2, id_I0);
}
// XXX I2 is pin C which must be set to 1 for all ALU modes except MUL
// we use only mode 2 ADDSUB so create and connect this pin
ci->addInput(id_I2);
ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
++alu_chain_len;
// check for the chain end
NetInfo *cout_net = ci->getPort(id_COUT);
if (!cout_net || cout_net->users.empty()) {
break;
}
if (CellTypePort(*cout_net->users.begin()) != cell_alu_cin || cout_net->users.entries() > 1) {
new_cells.push_back(std::move(alu_add_cout_block(ctx, ci, cout_net)));
CellInfo *cout_block_ci = new_cells.back().get();
cin_block_ci->constr_children.push_back(cout_block_ci);
NPNR_ASSERT(cout_block_ci->cluster == ClusterId());
cout_block_ci->cluster = cin_block_ci->name;
cout_block_ci->constr_abs_z = false;
cout_block_ci->constr_x = alu_chain_len / 6;
cout_block_ci->constr_y = 0;
cout_block_ci->constr_z = alu_chain_len % 6;
if (ctx->debug) {
log_info("Add ALU carry out to the chain (len:%d): %s COUT-net: %s\n", alu_chain_len,
ctx->nameOf(cout_block_ci), ctx->nameOf(cout_net));
}
++alu_chain_len;
break;
}
ci = (*cout_net->users.begin()).cell;
}
// ALUs are always paired
if (alu_chain_len & 1) {
// create dummy cell
new_cells.push_back(std::move(alu_add_dummy_block(ctx, ci)));
CellInfo *dummy_block_ci = new_cells.back().get();
cin_block_ci->constr_children.push_back(dummy_block_ci);
NPNR_ASSERT(dummy_block_ci->cluster == ClusterId());
dummy_block_ci->cluster = cin_block_ci->name;
dummy_block_ci->constr_abs_z = false;
dummy_block_ci->constr_x = alu_chain_len / 6;
dummy_block_ci->constr_y = 0;
dummy_block_ci->constr_z = alu_chain_len % 6;
if (ctx->debug) {
log_info("Add ALU dummy cell to the chain (len:%d): %s\n", alu_chain_len,
ctx->nameOf(dummy_block_ci));
}
}
}
}
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
}
// ===================================
// glue LUT and FF
// ===================================
void constrain_lutffs(void)
{
// Constrain directly connected LUTs and FFs together to use dedicated resources
const pool<CellTypePort> lut_outs{{id_LUT1, id_F}, {id_LUT2, id_F}, {id_LUT3, id_F}, {id_LUT4, id_F}};
const pool<CellTypePort> dff_ins{{id_DFF, id_D}, {id_DFFE, id_D}, {id_DFFN, id_D}, {id_DFFNE, id_D},
{id_DFFS, id_D}, {id_DFFSE, id_D}, {id_DFFNS, id_D}, {id_DFFNSE, id_D},
{id_DFFR, id_D}, {id_DFFRE, id_D}, {id_DFFNR, id_D}, {id_DFFNRE, id_D},
{id_DFFP, id_D}, {id_DFFPE, id_D}, {id_DFFNP, id_D}, {id_DFFNPE, id_D},
{id_DFFC, id_D}, {id_DFFCE, id_D}, {id_DFFNC, id_D}, {id_DFFNCE, id_D}};
int lutffs = h.constrain_cell_pairs(lut_outs, dff_ins, 0);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
// ===================================
// SSRAM cluster
// ===================================
std::unique_ptr<CellInfo> ssram_make_lut(Context *ctx, CellInfo *ci, int index)
{
IdString name_id = ctx->idf("%s_LUT%d", ci->name.c_str(ctx), index);
auto lut_ci = std::make_unique<CellInfo>(ctx, name_id, id_LUT4);
if (index) {
for (IdString port : {id_I0, id_I1, id_I2, id_I3}) {
lut_ci->addInput(port);
}
}
IdString init_name = ctx->idf("INIT_%d", index);
if (ci->params.count(init_name)) {
lut_ci->setParam(id_INIT, ci->params.at(init_name));
} else {
lut_ci->setParam(id_INIT, std::string("1111111111111111"));
}
return lut_ci;
}
void pack_ram16sdp4(void)
{
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack RAMs...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (ci->cluster != ClusterId()) {
continue;
}
if (is_ssram(ci)) {
// make cluster root
ci->cluster = ci->name;
ci->constr_abs_z = true;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = BelZ::RAMW_Z;
ci->addInput(id_CE);
ci->connectPort(id_CE, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
// RAD networks
NetInfo *rad[4];
for (int i = 0; i < 4; ++i) {
rad[i] = ci->getPort(ctx->idf("RAD[%d]", i));
}
// active LUTs
int luts_num = 4;
if (ci->type == id_RAM16SDP1) {
luts_num = 1;
} else {
if (ci->type == id_RAM16SDP2) {
luts_num = 2;
}
}
// make actual storage cells
for (int i = 0; i < 4; ++i) {
new_cells.push_back(std::move(ssram_make_lut(ctx, ci, i)));
CellInfo *lut_ci = new_cells.back().get();
ci->constr_children.push_back(lut_ci);
lut_ci->cluster = ci->name;
lut_ci->constr_abs_z = true;
lut_ci->constr_x = 0;
lut_ci->constr_y = 0;
lut_ci->constr_z = i * 2;
// inputs
// LUT0 is already connected when generating the base
if (i && i < luts_num) {
for (int j = 0; j < 4; ++j) {
lut_ci->connectPort(ctx->idf("I%d", j), rad[j]);
}
}
}
}
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
}
// ===================================
// Block RAM
// ===================================
void bsram_rename_ports(CellInfo *ci, int bit_width, char const *from, char const *to, int offset = 0)
{
int num = (bit_width == 9 || bit_width == 18 || bit_width == 36) ? 36 : 32;
for (int i = 0, j = offset; i < num; ++i, ++j) {
if (((i + 1) % 9) == 0 && (bit_width == 16 || bit_width == 32)) {
++j;
}
ci->renamePort(ctx->idf(from, i), ctx->idf(to, offset ? j % 36 : j));
}
}
// We solve the BLKSEL problems that are observed on some chips by
// connecting the BLKSEL ports to constant networks so that this BSRAM will
// be selected, the actual selection is made by manipulating the Clock
// Enable pin using a LUT-based decoder.
void bsram_fix_blksel(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
// is BSRAM enabled
NetInfo *ce_net = ci->getPort(id_CE);
if (ce_net == nullptr || ce_net->name == ctx->id("$PACKER_GND")) {
return;
}
// port name, BLK_SEL parameter for this port
std::vector<std::pair<IdString, int>> dyn_blksel;
int blk_sel_parameter = ci->params.at(id_BLK_SEL).as_int64();
for (int i = 0; i < 3; ++i) {
IdString pin_name = ctx->idf("BLKSEL[%d]", i);
NetInfo *net = ci->getPort(pin_name);
if (net == nullptr || net->name == ctx->id("$PACKER_GND") || net->name == ctx->id("$PACKER_VCC")) {
continue;
}
dyn_blksel.push_back(std::make_pair(pin_name, (blk_sel_parameter >> i) & 1));
}
if (dyn_blksel.empty()) {
return;
}
if (ctx->verbose) {
log_info(" apply the BSRAM BLKSEL fix\n");
}
// Make a decoder
auto lut_cell = gwu.create_cell(create_aux_name(ci->name, 0, "_blksel_lut$"), id_LUT4);
CellInfo *lut = lut_cell.get();
lut->addInput(id_I3);
ci->movePortTo(id_CE, lut, id_I3);
lut->addOutput(id_F);
ci->connectPorts(id_CE, lut, id_F);
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
// Connected CE to I3 to make it easy to calculate the decoder
int init = 0x100; // CE == 0 --> F = 0
// CE == 1 --> F = decoder result
int idx = 0;
for (auto &port : dyn_blksel) {
IdString lut_input_name = ctx->idf("I%d", idx);
ci->movePortTo(port.first, lut, lut_input_name);
if (port.second) {
init <<= (1 << idx);
ci->connectPort(port.first, vcc_net);
} else {
ci->connectPort(port.first, vss_net);
}
++idx;
}
lut->setParam(id_INIT, init);
new_cells.push_back(std::move(lut_cell));
}
// Some chips cannot, for some reason, use internal BSRAM registers to
// implement READ_MODE=1'b1 (pipeline) with a word width other than 32 or
// 36 bits.
// We work around this by adding an external DFF and using BSRAM
// as READ_MODE=1'b0 (bypass).
void bsram_fix_outreg(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
if (bit_width == 32 || bit_width == 36) {
return;
}
int read_mode = ci->params.at(id_READ_MODE).as_int64();
if (read_mode == 0) {
return;
}
NetInfo *ce_net = ci->getPort(id_CE);
NetInfo *oce_net = ci->getPort(id_OCE);
if (ce_net == nullptr || oce_net == nullptr) {
return;
}
if (ce_net->name == ctx->id("$PACKER_GND") || oce_net->name == ctx->id("$PACKER_GND")) {
return;
}
if (ctx->verbose) {
log_info(" apply the BSRAM OUTREG fix\n");
}
ci->setParam(id_READ_MODE, 0);
ci->disconnectPort(id_OCE);
ci->connectPort(id_OCE, ce_net);
NetInfo *reset_net = ci->getPort(id_RESET);
bool sync_reset = ci->params.at(id_RESET_MODE).as_string() == std::string("SYNC");
IdString dff_type = sync_reset ? id_DFFRE : id_DFFCE;
IdString reset_port = sync_reset ? id_RESET : id_CLEAR;
for (int i = 0; i < bit_width; ++i) {
IdString do_name = ctx->idf("DO[%d]", i);
const NetInfo *net = ci->getPort(do_name);
if (net != nullptr) {
if (net->users.empty()) {
ci->disconnectPort(do_name);
continue;
}
// create DFF
auto cache_dff_cell = gwu.create_cell(create_aux_name(ci->name, i, "_cache_dff$"), dff_type);
CellInfo *cache_dff = cache_dff_cell.get();
cache_dff->addInput(id_CE);
cache_dff->connectPort(id_CE, oce_net);
cache_dff->addInput(reset_port);
cache_dff->connectPort(reset_port, reset_net);
ci->copyPortTo(id_CLK, cache_dff, id_CLK);
cache_dff->addOutput(id_Q);
ci->movePortTo(do_name, cache_dff, id_Q);
cache_dff->addInput(id_D);
ci->connectPorts(do_name, cache_dff, id_D);
new_cells.push_back(std::move(cache_dff_cell));
}
}
}
// Analysis of the images generated by the IDE showed that some components
// are being added at the input and output of the BSRAM. Two LUTs are
// added on the WRE and CE inputs (strangely, OCE is not affected), a pair
// of LUT-DFFs on each DO output, and one or two flipflops of different
// types in the auxiliary network.
// The semantics of these additions are unclear, but we can replicate this behavior.
// Fix BSRAM in single port mode.
void bsram_fix_sp(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
if (ctx->verbose) {
log_info(" apply the SP fix\n");
}
// create WRE LUT
auto wre_lut_cell = gwu.create_cell(create_aux_name(ci->name, 0, "_wre_lut$"), id_LUT4);
CellInfo *wre_lut = wre_lut_cell.get();
wre_lut->setParam(id_INIT, 0x8888);
ci->movePortTo(id_CE, wre_lut, id_I0);
ci->movePortTo(id_WRE, wre_lut, id_I1);
wre_lut->addOutput(id_F);
ci->connectPorts(id_WRE, wre_lut, id_F);
// create CE LUT
auto ce_lut_cell = gwu.create_cell(create_aux_name(ci->name, 0, "_ce_lut$"), id_LUT4);
CellInfo *ce_lut = ce_lut_cell.get();
ce_lut->setParam(id_INIT, 0xeeee);
wre_lut->copyPortTo(id_I0, ce_lut, id_I0);
wre_lut->copyPortTo(id_I1, ce_lut, id_I1);
ce_lut->addOutput(id_F);
ci->connectPorts(id_CE, ce_lut, id_F);
// create ce reg
int write_mode = ci->params.at(id_WRITE_MODE).as_int64();
IdString dff_type = write_mode ? id_DFF : id_DFFR;
auto ce_pre_dff_cell = gwu.create_cell(create_aux_name(ci->name, 0, "_ce_pre_dff$"), dff_type);
CellInfo *ce_pre_dff = ce_pre_dff_cell.get();
ce_pre_dff->addInput(id_D);
ce_lut->copyPortTo(id_I0, ce_pre_dff, id_D);
ci->copyPortTo(id_CLK, ce_pre_dff, id_CLK);
if (dff_type == id_DFFR) {
wre_lut->copyPortTo(id_I1, ce_pre_dff, id_RESET);
}
ce_pre_dff->addOutput(id_Q);
// new ce src with Q pin (used by output pins, not by BSRAM itself)
CellInfo *new_ce_net_src = ce_pre_dff;
// add delay register in pipeline mode
int read_mode = ci->params.at(id_READ_MODE).as_int64();
if (read_mode) {
auto ce_pipe_dff_cell = gwu.create_cell(create_aux_name(ci->name, 0, "_ce_pipe_dff$"), id_DFF);
new_cells.push_back(std::move(ce_pipe_dff_cell));
CellInfo *ce_pipe_dff = new_cells.back().get();
ce_pipe_dff->addInput(id_D);
new_ce_net_src->connectPorts(id_Q, ce_pipe_dff, id_D);
ci->copyPortTo(id_CLK, ce_pipe_dff, id_CLK);
ce_pipe_dff->addOutput(id_Q);
new_ce_net_src = ce_pipe_dff;
}
// used outputs of the BSRAM convert to cached
for (int i = 0; i < bit_width; ++i) {
IdString do_name = ctx->idf("DO[%d]", i);
const NetInfo *net = ci->getPort(do_name);
if (net != nullptr) {
if (net->users.empty()) {
ci->disconnectPort(do_name);
continue;
}
// create cache lut
auto cache_lut_cell = gwu.create_cell(create_aux_name(ci->name, i, "_cache_lut$"), id_LUT4);
CellInfo *cache_lut = cache_lut_cell.get();
cache_lut->setParam(id_INIT, 0xcaca);
cache_lut->addInput(id_I0);
cache_lut->addInput(id_I1);
cache_lut->addInput(id_I2);
ci->movePortTo(do_name, cache_lut, id_F);
ci->connectPorts(do_name, cache_lut, id_I1);
new_ce_net_src->connectPorts(id_Q, cache_lut, id_I2);
// create cache DFF
auto cache_dff_cell = gwu.create_cell(create_aux_name(ci->name, i, "_cache_dff$"), id_DFFE);
CellInfo *cache_dff = cache_dff_cell.get();
cache_dff->addInput(id_CE);
cache_dff->addInput(id_D);
ci->copyPortTo(id_CLK, cache_dff, id_CLK);
new_ce_net_src->connectPorts(id_Q, cache_dff, id_CE);
cache_lut->copyPortTo(id_I1, cache_dff, id_D);
cache_dff->addOutput(id_Q);
cache_dff->connectPorts(id_Q, cache_lut, id_I0);
new_cells.push_back(std::move(cache_lut_cell));
new_cells.push_back(std::move(cache_dff_cell));
}
}
new_cells.push_back(std::move(wre_lut_cell));
new_cells.push_back(std::move(ce_lut_cell));
new_cells.push_back(std::move(ce_pre_dff_cell));
}
void pack_ROM(CellInfo *ci)
{
int default_bw = 32;
// XXX use block 111
ci->setParam(ctx->id("BLK_SEL"), Property(7, 32));
if (ci->type == id_pROM) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 36;
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 3; ++i) {
IdString port = ctx->idf("BLKSEL%d", i);
ci->addInput(port);
ci->connectPort(port, vcc_net);
port = ctx->idf("BLKSELB%d", i);
ci->addInput(port);
ci->connectPort(port, vcc_net);
}
ci->addInput(id_WRE);
ci->connectPort(id_WRE, vss_net);
ci->addInput(id_WREB);
ci->connectPort(id_WREB, vss_net);
if (!ci->params.count(id_BIT_WIDTH)) {
ci->setParam(id_BIT_WIDTH, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(id_CLK, ci, id_CLKB);
ci->copyPortTo(id_CE, ci, id_CEB);
ci->copyPortTo(id_OCE, ci, id_OCEB);
ci->copyPortTo(id_RESET, ci, id_RESETB);
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("AD[%d]", i), ctx->idf("ADA%d", i));
ci->copyPortTo(ctx->idf("ADA%d", i), ci, ctx->idf("ADB%d", i));
}
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d");
} else {
// use port B
ci->renamePort(id_CLK, id_CLKB);
ci->renamePort(id_OCE, id_OCEB);
ci->renamePort(id_CE, id_CEB);
ci->renamePort(id_RESET, id_RESETB);
ci->addInput(id_CEA);
ci->connectPort(id_CEA, vss_net);
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("AD[%d]", i), ctx->idf("ADB%d", i));
}
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d", 18);
}
}
void pack_SDPB(CellInfo *ci)
{
int default_bw = 32;
if (ci->type == id_SDPB) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 36;
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("ADA[%d]", i), ctx->idf("ADA%d", i));
ci->renamePort(ctx->idf("ADB[%d]", i), ctx->idf("ADB%d", i));
}
for (int i = 0; i < 3; ++i) {
ci->renamePort(ctx->idf("BLKSELA[%d]", i), ctx->idf("BLKSELA%d", i));
ci->renamePort(ctx->idf("BLKSELB[%d]", i), ctx->idf("BLKSELB%d", i));
}
ci->copyPortTo(id_OCE, ci, id_OCEB);
// Port A
ci->addInput(id_WRE);
ci->connectPort(id_WRE, vcc_net);
if (!ci->params.count(id_BIT_WIDTH_0)) {
ci->setParam(id_BIT_WIDTH_0, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH_0).as_int64();
bsram_rename_ports(ci, bit_width, "DI[%d]", "DI%d");
// Port B
ci->addInput(id_WREB);
if (!ci->params.count(id_BIT_WIDTH_1)) {
ci->setParam(id_BIT_WIDTH_1, Property(default_bw, 32));
}
bit_width = ci->params.at(id_BIT_WIDTH_1).as_int64();
if (bit_width == 32 || bit_width == 36) {
ci->connectPort(id_WREB, vcc_net);
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d");
} else {
ci->connectPort(id_WREB, vss_net);
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d", 18);
}
}
void pack_DPB(CellInfo *ci)
{
int default_bw = 16;
if (ci->type == id_DPB) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 18;
}
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("ADA[%d]", i), ctx->idf("ADA%d", i));
ci->renamePort(ctx->idf("ADB[%d]", i), ctx->idf("ADB%d", i));
}
for (int i = 0; i < 3; ++i) {
ci->renamePort(ctx->idf("BLKSELA[%d]", i), ctx->idf("BLKSELA%d", i));
ci->renamePort(ctx->idf("BLKSELB[%d]", i), ctx->idf("BLKSELB%d", i));
}
if (!ci->params.count(id_BIT_WIDTH_0)) {
ci->setParam(id_BIT_WIDTH_0, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH_0).as_int64();
bsram_rename_ports(ci, bit_width, "DIA[%d]", "DIA%d");
bsram_rename_ports(ci, bit_width, "DOA[%d]", "DOA%d");
if (!ci->params.count(id_BIT_WIDTH_1)) {
ci->setParam(id_BIT_WIDTH_1, Property(default_bw, 32));
}
bit_width = ci->params.at(id_BIT_WIDTH_1).as_int64();
bsram_rename_ports(ci, bit_width, "DIB[%d]", "DIB%d");
bsram_rename_ports(ci, bit_width, "DOB[%d]", "DOB%d");
}
void divide_sp(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int bw = ci->params.at(id_BIT_WIDTH).as_int64();
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
IdString cell_type = id_SP;
IdString name = ctx->idf("%s_AUX", ctx->nameOf(ci));
auto sp_cell = gwu.create_cell(name, cell_type);
CellInfo *sp = sp_cell.get();
ci->copyPortTo(id_CLK, sp, id_CLK);
ci->copyPortTo(id_OCE, sp, id_OCE);
ci->copyPortTo(id_CE, sp, id_CE);
ci->copyPortTo(id_RESET, sp, id_RESET);
ci->copyPortTo(id_WRE, sp, id_WRE);
// XXX Separate "byte enable" port
ci->movePortTo(ctx->id("AD[2]"), sp, ctx->id("AD0"));
ci->movePortTo(ctx->id("AD[3]"), sp, ctx->id("AD1"));
ci->connectPort(ctx->id("AD[2]"), vss_net);
ci->connectPort(ctx->id("AD[3]"), vss_net);
sp->addInput(ctx->id("AD2"));
sp->connectPort(ctx->id("AD2"), vss_net);
sp->addInput(ctx->id("AD3"));
sp->connectPort(ctx->id("AD3"), vss_net);
ci->disconnectPort(ctx->id("AD[4]"));
ci->connectPort(ctx->id("AD[4]"), vss_net);
sp->addInput(ctx->id("AD4"));
sp->connectPort(ctx->id("AD4"), vcc_net);
ci->copyPortBusTo(id_AD, 5, true, sp, id_AD, 5, false, 14 - 5 + 1);
sp->params = ci->params;
sp->setAttr(id_BSRAM_SUBTYPE, ci->attrs.at(id_BSRAM_SUBTYPE));
if (bw == 32) {
ci->setParam(id_BIT_WIDTH, Property(16, 32));
sp->setParam(id_BIT_WIDTH, Property(16, 32));
ci->movePortBusTo(id_DI, 16, true, sp, id_DI, 0, false, 16);
ci->movePortBusTo(id_DO, 16, true, sp, id_DO, 0, false, 16);
} else {
ci->setParam(id_BIT_WIDTH, Property(18, 32));
sp->setParam(id_BIT_WIDTH, Property(18, 32));
ci->movePortBusTo(id_DI, 18, true, sp, id_DI, 0, false, 18);
ci->movePortBusTo(id_DO, 18, true, sp, id_DO, 0, false, 18);
}
ci->copyPortBusTo(ctx->id("BLKSEL"), 0, true, sp, ctx->id("BLKSEL"), 0, false, 3);
new_cells.push_back(std::move(sp_cell));
}
void pack_SP(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int default_bw = 32;
if (ci->type == id_SP) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 36;
}
if (!ci->params.count(id_BIT_WIDTH)) {
ci->setParam(id_BIT_WIDTH, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
// XXX strange WRE<->CE relations
// Gowin IDE adds two LUTs to the WRE and CE signals. The logic is
// unclear, but without them effects occur. Perhaps this is a
// correction of some BSRAM defects.
if (gwu.need_SP_fix()) {
bsram_fix_sp(ci, new_cells);
}
// Some chips have faulty output registers
if (gwu.need_BSRAM_OUTREG_fix()) {
bsram_fix_outreg(ci, new_cells);
}
// Some chips have problems with BLKSEL ports
if (gwu.need_BLKSEL_fix()) {
bsram_fix_blksel(ci, new_cells);
}
// XXX UG285-1.3.6_E Gowin BSRAM & SSRAM User Guide:
// For GW1N-9/GW1NR-9/GW1NS-4 series, 32/36-bit SP/SPX9 is divided into two
// SP/SPX9s, which occupy two BSRAMs.
// So divide it here
if ((bit_width == 32 || bit_width == 36) && !gwu.has_SP32()) {
divide_sp(ci, new_cells);
bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
for (int i = 0; i < 3; ++i) {
ci->renamePort(ctx->idf("BLKSEL[%d]", i), ctx->idf("BLKSEL%d", i));
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(ctx->idf("BLKSEL%d", i), ci, ctx->idf("BLKSELB%d", i));
}
}
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("AD[%d]", i), ctx->idf("AD%d", i));
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(ctx->idf("AD%d", i), ci, ctx->idf("ADB%d", i));
}
}
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(id_CLK, ci, id_CLKB);
ci->copyPortTo(id_OCE, ci, id_OCEB);
ci->copyPortTo(id_CE, ci, id_CEB);
ci->copyPortTo(id_RESET, ci, id_RESETB);
ci->copyPortTo(id_WRE, ci, id_WREB);
ci->disconnectPort(ctx->id("ADB4"));
ci->connectPort(ctx->id("ADB4"), vcc_net);
}
bsram_rename_ports(ci, bit_width, "DI[%d]", "DI%d");
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d");
}
void pack_bsram(void)
{
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack BSRAMs...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (is_bsram(ci)) {
if (ctx->verbose) {
log_info(" pack %s\n", ci->type.c_str(ctx));
}
switch (ci->type.hash()) {
case ID_pROMX9: /* fallthrough */
case ID_pROM:
pack_ROM(ci);
ci->type = id_ROM;
break;
case ID_SDPX9B: /* fallthrough */
case ID_SDPB:
pack_SDPB(ci);
ci->type = id_SDP;
break;
case ID_DPX9B: /* fallthrough */
case ID_DPB:
pack_DPB(ci);
ci->type = id_DP;
break;
case ID_SPX9: /* fallthrough */
case ID_SP:
pack_SP(ci, new_cells);
ci->type = id_SP;
break;
default:
log_error("Unsupported BSRAM type '%s'\n", ci->type.c_str(ctx));
}
}
}
for (auto &cell : new_cells) {
ctx->cells[cell->name] = std::move(cell);
}
}
// ===================================
// DSP
// ===================================
void pass_net_type(CellInfo *ci, IdString port)
{
const NetInfo *net = ci->getPort(port);
std::string connected_net = "NET";
if (net != nullptr) {
if (net->name == ctx->id("$PACKER_VCC")) {
connected_net = "VCC";
} else if (net->name == ctx->id("$PACKER_GND")) {
connected_net = "GND";
}
ci->setAttr(ctx->idf("NET_%s", port.c_str(ctx)), connected_net);
} else {
ci->setAttr(ctx->idf("NET_%s", port.c_str(ctx)), std::string(""));
}
}
void pack_dsp(void)
{
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack DSP...\n");
std::vector<CellInfo *> dsp_heads;
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (is_dsp(ci)) {
if (ctx->verbose) {
log_info(" pack %s %s\n", ci->type.c_str(ctx), ctx->nameOf(ci));
}
switch (ci->type.hash()) {
case ID_PADD9: {
pass_net_type(ci, id_ASEL);
for (int i = 0; i < 9; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 9; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// ADD_SUB wire
IdString add_sub_net = ctx->id("$PACKER_GND");
if (ci->params.count(ctx->id("ADD_SUB"))) {
if (ci->params.at(ctx->id("ADD_SUB")).as_int64() == 1) {
add_sub_net = ctx->id("$PACKER_VCC");
}
}
ci->addInput(ctx->id("ADDSUB"));
ci->connectPort(ctx->id("ADDSUB"), ctx->nets.at(add_sub_net).get());
// PADD does not have outputs to the outside of the DSP -
// it is always connected to the inputs of the multiplier;
// to emulate a separate PADD primitive, we use
// multiplication by input C, equal to 1. We can switch the
// multiplier to multiplication mode by C in gowin_pack,
// but we will have to generate the value 1 at input C
// here.
ci->addInput(ctx->id("C0"));
ci->connectPort(ctx->id("C0"), ctx->nets.at(ctx->id("$PACKER_VCC")).get());
for (int i = 1; i < 9; ++i) {
ci->addInput(ctx->idf("C%d", i));
ci->connectPort(ctx->idf("C%d", i), ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
// mark mult9x9 as used by making cluster
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_y = 0;
IdString mult_name = create_aux_name(ci->name);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = gwu.get_dsp_mult_from_padd(0);
// DSP head?
if (gwu.dsp_bus_src(ci, "SI", 9) == nullptr && gwu.dsp_bus_dst(ci, "SBO", 9) == nullptr) {
for (int i = 0; i < 9; ++i) {
ci->disconnectPort(ctx->idf("SI[%d]", i));
ci->disconnectPort(ctx->idf("SBO[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_PADD18: {
pass_net_type(ci, id_ASEL);
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// ADD_SUB wire
IdString add_sub_net = ctx->id("$PACKER_GND");
if (ci->params.count(ctx->id("ADD_SUB"))) {
if (ci->params.at(ctx->id("ADD_SUB")).as_int64() == 1) {
add_sub_net = ctx->id("$PACKER_VCC");
}
}
ci->addInput(ctx->id("ADDSUB"));
ci->connectPort(ctx->id("ADDSUB"), ctx->nets.at(add_sub_net).get());
// XXX form C as 1
ci->addInput(ctx->id("C0"));
ci->connectPort(ctx->id("C0"), ctx->nets.at(ctx->id("$PACKER_VCC")).get());
for (int i = 1; i < 18; ++i) {
ci->addInput(ctx->idf("C%d", i));
ci->connectPort(ctx->idf("C%d", i), ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
//
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::PADD18_0_0_Z + i;
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::PADD18_0_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "SI", 18) == nullptr && gwu.dsp_bus_dst(ci, "SBO", 18) == nullptr) {
for (int i = 0; i < 18; ++i) {
ci->disconnectPort(ctx->idf("SI[%d]", i));
ci->disconnectPort(ctx->idf("SBO[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULT9X9: {
pass_net_type(ci, id_ASEL);
pass_net_type(ci, id_BSEL);
for (int i = 0; i < 9; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9 as a child
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
IdString padd_name = create_aux_name(ci->name);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULT9X9_0_0_Z;
// DSP head?
if (gwu.dsp_bus_src(ci, "SIA", 9) == nullptr && gwu.dsp_bus_src(ci, "SIB", 9) == nullptr) {
for (int i = 0; i < 9; ++i) {
ci->disconnectPort(ctx->idf("SIA[%d]", i));
ci->disconnectPort(ctx->idf("SIB[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULT18X18: {
pass_net_type(ci, id_ASEL);
pass_net_type(ci, id_BSEL);
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 36; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULT18X18_0_0_Z + i;
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULT18X18_0_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "SIA", 18) == nullptr && gwu.dsp_bus_src(ci, "SIB", 18) == nullptr) {
for (int i = 0; i < 18; ++i) {
ci->disconnectPort(ctx->idf("SIA[%d]", i));
ci->disconnectPort(ctx->idf("SIB[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_ALU54D: {
pass_net_type(ci, id_ACCLOAD);
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
// ACCLOAD - It looks like these wires are always connected to each other.
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD0);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD1);
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 4; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::ALU54D_0_Z + 4 * (i / 2) + (i % 2);
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::ALU54D_0_Z + 4 * (i / 2) + (i % 2);
}
// DSP head?
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULTALU18X18: {
// Ports C and D conflict so we need to know the operating mode here.
if (ci->params.count(id_MULTALU18X18_MODE) == 0) {
ci->setParam(id_MULTALU18X18_MODE, 0);
}
int multalu18x18_mode = ci->params.at(id_MULTALU18X18_MODE).as_int64();
NPNR_ASSERT_MSG(multalu18x18_mode >= 0 && multalu18x18_mode <= 2,
"MULTALU18X18_MODE is not in {0, 1, 2}");
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 54; ++i) {
if (i < 18) {
if (multalu18x18_mode != 2) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d1", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d1", i));
} else {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d0", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d0", i));
}
}
switch (multalu18x18_mode) {
case 0:
ci->renamePort(ctx->idf("C[%d]", i), ctx->idf("C%d", i));
ci->disconnectPort(ctx->idf("D[%d]", i));
break;
case 1:
ci->disconnectPort(ctx->idf("C[%d]", i));
ci->disconnectPort(ctx->idf("D[%d]", i));
break;
case 2:
ci->disconnectPort(ctx->idf("C[%d]", i));
ci->renamePort(ctx->idf("D[%d]", i), ctx->idf("D%d", i));
break;
default:
break;
}
}
if (multalu18x18_mode != 2) {
ci->renamePort(id_ASIGN, id_ASIGN1);
ci->renamePort(id_BSIGN, id_BSIGN1);
ci->addInput(id_ASIGN0);
ci->addInput(id_BSIGN0);
ci->connectPort(id_ASIGN0, vss_net);
ci->connectPort(id_BSIGN0, vss_net);
ci->disconnectPort(id_DSIGN);
} else { // BSIGN0 and DSIGN are the same wire
ci->renamePort(id_ASIGN, id_ASIGN0);
ci->addInput(id_ASIGN1);
ci->connectPort(id_ASIGN1, vss_net);
ci->renamePort(id_BSIGN, id_BSIGN0);
}
// ACCLOAD - It looks like these wires are always connected to each other.
pass_net_type(ci, id_ACCLOAD);
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD0);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD1);
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULTALU18X18_0_Z + i;
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULTALU18X18_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULTALU36X18: {
if (ci->params.count(id_MULTALU18X18_MODE) == 0) {
ci->setParam(id_MULTALU18X18_MODE, 0);
}
int multalu36x18_mode = ci->params.at(id_MULTALU36X18_MODE).as_int64();
NPNR_ASSERT_MSG(multalu36x18_mode >= 0 && multalu36x18_mode <= 2,
"MULTALU36X18_MODE is not in {0, 1, 2}");
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 36; ++i) {
if (i < 18) {
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).clear();
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d0", i));
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d1", i));
}
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 54; ++i) {
switch (multalu36x18_mode) {
case 0:
ci->renamePort(ctx->idf("C[%d]", i), ctx->idf("C%d", i));
break;
case 1: /* fallthrough */
case 2:
ci->disconnectPort(ctx->idf("C[%d]", i));
break;
default:
break;
}
}
// both A have sign bit
// only MSB part of B has sign bit
ci->cell_bel_pins.at(id_ASIGN).clear();
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN0);
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN1);
ci->renamePort(id_BSIGN, id_BSIGN1);
ci->addInput(id_BSIGN0);
ci->connectPort(id_BSIGN0, vss_net);
pass_net_type(ci, id_ACCLOAD);
if (multalu36x18_mode == 1) {
if (ci->attrs.at(id_NET_ACCLOAD).as_string() == "GND" ||
ci->attrs.at(id_NET_ACCLOAD).as_string() == "VCC") {
ci->disconnectPort(id_ACCLOAD);
} else {
ci->addInput(id_ALUSEL4);
ci->addInput(id_ALUSEL6);
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL4);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL6);
}
} else {
ci->disconnectPort(id_ACCLOAD);
}
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULTALU36X18_0_Z + i;
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULTALU36X18_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULTADDALU18X18: {
if (ci->params.count(id_MULTADDALU18X18_MODE) == 0) {
ci->setParam(id_MULTADDALU18X18_MODE, 0);
}
int multaddalu18x18_mode = ci->params.at(id_MULTADDALU18X18_MODE).as_int64();
NPNR_ASSERT_MSG(multaddalu18x18_mode >= 0 && multaddalu18x18_mode <= 2,
"MULTADDALU18X18_MODE is not in {0, 1, 2}");
for (int i = 0; i < 54; ++i) {
if (i < 18) {
ci->renamePort(ctx->idf("A0[%d]", i), ctx->idf("A%d0", i));
ci->renamePort(ctx->idf("B0[%d]", i), ctx->idf("B%d0", i));
ci->renamePort(ctx->idf("A1[%d]", i), ctx->idf("A%d1", i));
ci->renamePort(ctx->idf("B1[%d]", i), ctx->idf("B%d1", i));
}
if (multaddalu18x18_mode == 0) {
ci->renamePort(ctx->idf("C[%d]", i), ctx->idf("C%d", i));
} else {
ci->disconnectPort(ctx->idf("C[%d]", i));
}
}
for (int i = 0; i < 2; ++i) {
ci->renamePort(ctx->idf("ASIGN[%d]", i), ctx->idf("ASIGN%d", i));
ci->renamePort(ctx->idf("BSIGN[%d]", i), ctx->idf("BSIGN%d", i));
ci->renamePort(ctx->idf("ASEL[%d]", i), ctx->idf("ASEL%d", i));
ci->renamePort(ctx->idf("BSEL[%d]", i), ctx->idf("BSEL%d", i));
}
pass_net_type(ci, id_ASEL0);
pass_net_type(ci, id_ASEL1);
pass_net_type(ci, id_BSEL0);
pass_net_type(ci, id_BSEL1);
pass_net_type(ci, id_ACCLOAD);
if (multaddalu18x18_mode == 1) {
if (ci->attrs.at(id_NET_ACCLOAD).as_string() == "GND" ||
ci->attrs.at(id_NET_ACCLOAD).as_string() == "VCC") {
ci->disconnectPort(id_ACCLOAD);
} else {
ci->addInput(id_ALUSEL4);
ci->addInput(id_ALUSEL6);
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL4);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL6);
}
} else {
ci->disconnectPort(id_ACCLOAD);
}
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULTADDALU18X18_0_Z + i;
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULTADDALU18X18_0_Z + i;
}
// DSP head? This primitive has the ability to form chains using both SO[AB] -> SI[AB] and
// CASO->CASI
bool cas_head = false;
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
cas_head = true;
}
bool so_head = false;
if (gwu.dsp_bus_src(ci, "SIA", 18) == nullptr && gwu.dsp_bus_src(ci, "SIB", 18) == nullptr) {
for (int i = 0; i < 18; ++i) {
ci->disconnectPort(ctx->idf("SIA[%d]", i));
ci->disconnectPort(ctx->idf("SIB[%d]", i));
}
so_head = true;
}
if (cas_head && so_head) {
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULT36X36: {
for (int i = 0; i < 36; ++i) {
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).clear();
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d0", i));
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d1", i));
ci->cell_bel_pins.at(ctx->idf("B[%d]", i)).clear();
ci->cell_bel_pins.at(ctx->idf("B[%d]", i)).push_back(ctx->idf("B%d0", i));
ci->cell_bel_pins.at(ctx->idf("B[%d]", i)).push_back(ctx->idf("B%d1", i));
}
// only MSB sign bits
ci->cell_bel_pins.at(id_ASIGN).clear();
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN0);
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN1);
ci->cell_bel_pins.at(id_BSIGN).clear();
ci->cell_bel_pins.at(id_BSIGN).push_back(id_BSIGN0);
ci->cell_bel_pins.at(id_BSIGN).push_back(id_BSIGN1);
// LSB sign bits = 0
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
ci->addInput(id_ZERO_SIGN);
ci->cell_bel_pins[id_ZERO_SIGN].push_back(id_ZERO_ASIGN0);
ci->cell_bel_pins.at(id_ZERO_SIGN).push_back(id_ZERO_BSIGN0);
ci->cell_bel_pins.at(id_ZERO_SIGN).push_back(id_ZERO_BSIGN1);
ci->cell_bel_pins.at(id_ZERO_SIGN).push_back(id_ZERO_ASIGN1);
ci->connectPort(id_ZERO_SIGN, vss_net);
for (int i = 0; i < 72; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 8; ++i) {
IdString padd_name = create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
static int padd_z[] = {BelZ::PADD9_0_0_Z, BelZ::PADD9_0_2_Z, BelZ::PADD9_1_0_Z,
BelZ::PADD9_1_2_Z};
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = padd_z[i / 2] - BelZ::MULT36X36_Z + i % 2;
IdString mult_name = create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
static int mult_z[] = {BelZ::MULT9X9_0_0_Z, BelZ::MULT9X9_0_2_Z, BelZ::MULT9X9_1_0_Z,
BelZ::MULT9X9_1_2_Z};
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = mult_z[i / 2] - BelZ::MULT36X36_Z + i % 2;
}
} break;
default:
log_error("Unsupported DSP type '%s'\n", ci->type.c_str(ctx));
}
}
}
// add new cells
for (auto &cell : new_cells) {
if (cell->cluster != ClusterId()) {
IdString cluster_root = cell->cluster;
IdString cell_name = cell->name;
ctx->cells[cell_name] = std::move(cell);
ctx->cells.at(cluster_root).get()->constr_children.push_back(ctx->cells.at(cell_name).get());
} else {
ctx->cells[cell->name] = std::move(cell);
}
}
// DSP chains
for (CellInfo *head : dsp_heads) {
if (ctx->verbose) {
log_info("Process a DSP head: %s\n", ctx->nameOf(head));
}
switch (head->type.hash()) {
case ID_PADD9: /* fallthrough */
case ID_PADD18: {
int wire_num = 9;
if (head->type == id_PADD18) {
wire_num = 18;
}
CellInfo *cur_dsp = head;
while (1) {
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "SO", wire_num);
CellInfo *next_dsp_b = gwu.dsp_bus_src(cur_dsp, "SBI", wire_num);
if (next_dsp_a != nullptr && next_dsp_b != nullptr && next_dsp_a != next_dsp_b) {
log_error("%s is the next for two different DSPs (%s and %s) in the chain.",
ctx->nameOf(cur_dsp), ctx->nameOf(next_dsp_a), ctx->nameOf(next_dsp_b));
}
if (next_dsp_a == nullptr && next_dsp_b == nullptr) {
// End of chain
cur_dsp->setAttr(id_LAST_IN_CHAIN, 1);
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SO[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SBI[%d]", i));
}
break;
}
next_dsp_a = next_dsp_a != nullptr ? next_dsp_a : next_dsp_b;
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SO[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SBI[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SI[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SBO[%d]", i));
}
cur_dsp = next_dsp_a;
if (ctx->verbose) {
log_info(" add %s to the chain.\n", ctx->nameOf(cur_dsp));
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
case ID_MULT9X9: /* fallthrough */
case ID_MULT18X18: {
int wire_num = 9;
if (head->type == id_MULT18X18) {
wire_num = 18;
}
CellInfo *cur_dsp = head;
while (1) {
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "SOA", wire_num);
CellInfo *next_dsp_b = gwu.dsp_bus_dst(cur_dsp, "SOB", wire_num);
if (next_dsp_a != nullptr && next_dsp_b != nullptr && next_dsp_a != next_dsp_b) {
log_error("%s is the source for two different DSPs (%s and %s) in the chain.",
ctx->nameOf(cur_dsp), ctx->nameOf(next_dsp_a), ctx->nameOf(next_dsp_b));
}
if (next_dsp_a == nullptr && next_dsp_b == nullptr) {
// End of chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
}
break;
}
next_dsp_a = next_dsp_a != nullptr ? next_dsp_a : next_dsp_b;
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SIA[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SIB[%d]", i));
}
cur_dsp = next_dsp_a;
if (ctx->verbose) {
log_info(" add %s to the chain.\n", ctx->nameOf(cur_dsp));
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
case ID_MULTALU18X18: /* fallthrough */
case ID_MULTALU36X18: /* fallthrough */
case ID_ALU54D: {
int wire_num = 55;
CellInfo *cur_dsp = head;
while (1) {
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "CASO", wire_num);
if (next_dsp_a == nullptr) {
// End of chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
}
break;
}
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("CASI[%d]", i));
}
cur_dsp->setAttr(id_USE_CASCADE_OUT, 1);
cur_dsp = next_dsp_a;
cur_dsp->setAttr(id_USE_CASCADE_IN, 1);
if (ctx->verbose) {
log_info(" add %s to the chain.\n", ctx->nameOf(cur_dsp));
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
case ID_MULTADDALU18X18: {
// This primitive has the ability to form chains using both SO[AB] -> SI[AB] and CASO->CASI
CellInfo *cur_dsp = head;
while (1) {
bool end_of_cas_chain = false;
int wire_num = 55;
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "CASO", wire_num);
if (next_dsp_a == nullptr) {
// End of CASO chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
}
end_of_cas_chain = true;
} else {
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("CASI[%d]", i));
}
}
bool end_of_so_chain = false;
wire_num = 18;
CellInfo *next_so_dsp_a = gwu.dsp_bus_dst(cur_dsp, "SOA", wire_num);
CellInfo *next_so_dsp_b = gwu.dsp_bus_dst(cur_dsp, "SOB", wire_num);
if (next_so_dsp_a != nullptr && next_so_dsp_b != nullptr && next_so_dsp_a != next_so_dsp_b) {
log_error("%s is the source for two different DSPs (%s and %s) in the chain.",
ctx->nameOf(cur_dsp), ctx->nameOf(next_so_dsp_a), ctx->nameOf(next_so_dsp_b));
}
if (next_so_dsp_a == nullptr && next_so_dsp_b == nullptr) {
// End of SO chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
}
end_of_so_chain = true;
} else {
next_so_dsp_a = next_so_dsp_a != nullptr ? next_so_dsp_a : next_so_dsp_b;
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
next_so_dsp_a->disconnectPort(ctx->idf("SIA[%d]", i));
next_so_dsp_a->disconnectPort(ctx->idf("SIB[%d]", i));
}
}
if (end_of_cas_chain && end_of_so_chain) {
break;
}
// to next
if (!end_of_cas_chain) {
cur_dsp->setAttr(id_USE_CASCADE_OUT, 1);
}
cur_dsp = next_dsp_a != nullptr ? next_dsp_a : next_so_dsp_a;
if (!end_of_cas_chain) {
cur_dsp->setAttr(id_USE_CASCADE_IN, 1);
}
if (ctx->verbose) {
log_info(" add %s to the chain. End of the SO chain:%d, end of the CAS chain:%d\n",
ctx->nameOf(cur_dsp), end_of_so_chain, end_of_cas_chain);
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
}
}
}
// ===================================
// Global set/reset
// ===================================
void pack_gsr(void)
{
log_info("Pack GSR...\n");
bool user_gsr = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_GSR) {
user_gsr = true;
break;
}
}
if (!user_gsr) {
// make default GSR
auto gsr_cell = std::make_unique<CellInfo>(ctx, id_GSR, id_GSR);
gsr_cell->addInput(id_GSRI);
gsr_cell->connectPort(id_GSRI, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
ctx->cells[gsr_cell->name] = std::move(gsr_cell);
}
if (ctx->verbose) {
if (user_gsr) {
log_info("Have user GSR\n");
} else {
log_info("No user GSR. Make one.\n");
}
}
}
// ===================================
// Global power regulator
// ===================================
void pack_bandgap(void)
{
if (!gwu.has_BANDGAP()) {
return;
}
log_info("Pack BANDGAP...\n");
bool user_bandgap = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_BANDGAP) {
user_bandgap = true;
break;
}
}
if (!user_bandgap) {
// make default BANDGAP
auto bandgap_cell = std::make_unique<CellInfo>(ctx, id_BANDGAP, id_BANDGAP);
bandgap_cell->addInput(id_BGEN);
bandgap_cell->connectPort(id_BGEN, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
ctx->cells[bandgap_cell->name] = std::move(bandgap_cell);
}
if (ctx->verbose) {
if (user_bandgap) {
log_info("Have user BANDGAP\n");
} else {
log_info("No user BANDGAP. Make one.\n");
}
}
}
// ===================================
// Replace INV with LUT
// ===================================
void pack_inv(void)
{
log_info("Pack INV...\n");
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_INV) {
ci.type = id_LUT4;
ci.renamePort(id_O, id_F);
ci.renamePort(id_I, id_I3); // use D - it's simple for INIT
ci.params[id_INIT] = Property(0x00ff);
}
}
}
// ===================================
// PLL
// ===================================
void pack_pll(void)
{
log_info("Pack PLL...\n");
pool<BelId> used_pll_bels;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type.in(id_rPLL, id_PLLVR)) {
// pin renaming for compatibility
for (int i = 0; i < 6; ++i) {
ci.renamePort(ctx->idf("FBDSEL[%d]", i), ctx->idf("FBDSEL%d", i));
ci.renamePort(ctx->idf("IDSEL[%d]", i), ctx->idf("IDSEL%d", i));
ci.renamePort(ctx->idf("ODSEL[%d]", i), ctx->idf("ODSEL%d", i));
if (i < 4) {
ci.renamePort(ctx->idf("PSDA[%d]", i), ctx->idf("PSDA%d", i));
ci.renamePort(ctx->idf("DUTYDA[%d]", i), ctx->idf("DUTYDA%d", i));
ci.renamePort(ctx->idf("FDLY[%d]", i), ctx->idf("FDLY%d", i));
}
}
// If CLKIN is connected to a special pin, then it makes sense
// to try to place the PLL so that it uses a direct connection
// to this pin.
if (ci.bel == BelId()) {
NetInfo *ni = ci.getPort(id_CLKIN);
if (ni && ni->driver.cell && ni->driver.cell->bel != BelId()) {
BelId pll_bel = gwu.get_pll_bel(ni->driver.cell->bel, id_CLKIN_T);
if (ctx->debug) {
log_info("PLL clkin driver:%s at %s, PLL bel:%s\n", ctx->nameOf(ni->driver.cell),
ctx->getBelName(ni->driver.cell->bel).str(ctx).c_str(),
pll_bel != BelId() ? ctx->getBelName(pll_bel).str(ctx).c_str() : "NULL");
}
if (pll_bel != BelId() && used_pll_bels.count(pll_bel) == 0) {
used_pll_bels.insert(pll_bel);
ctx->bindBel(pll_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
ci.disconnectPort(id_CLKIN);
ci.setParam(id_INSEL, std::string("CLKIN0"));
}
}
}
}
}
}
// ===================================
// HCLK -- CLKDIV and CLKDIV2 for now
// ===================================
void pack_hclk(void)
{
log_info("Pack HCLK cells...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (ci->type != id_CLKDIV)
continue;
NetInfo *hclk_in = ci->getPort(id_HCLKIN);
if (hclk_in) {
CellInfo *this_driver = hclk_in->driver.cell;
if (this_driver && this_driver->type == id_CLKDIV2) {
NetInfo *out = this_driver->getPort(id_CLKOUT);
if (out->users.entries() > 1) {
// We could do as the IDE does sometimes and replicate the CLKDIV2 cell
// as many times as we need. For now, we keep things simple
log_error("CLKDIV2 that drives CLKDIV should drive no other cells\n");
}
ci->cluster = ci->name;
this_driver->cluster = ci->name;
ci->constr_children.push_back(this_driver);
this_driver->constr_x = 0;
this_driver->constr_y = 0;
this_driver->constr_z = BelZ::CLKDIV2_0_Z - BelZ::CLKDIV_0_Z;
this_driver->constr_abs_z = false;
}
}
}
}
// =========================================
// Create entry points to the clock system
// =========================================
void pack_buffered_nets()
{
log_info("Pack buffered nets...\n");
for (auto &net : ctx->nets) {
auto &ni = *net.second;
if (ni.driver.cell == nullptr || ni.attrs.count(id_CLOCK) == 0 || ni.users.empty()) {
continue;
}
// make new BUF cell single user for the net driver
IdString buf_name = ctx->idf("%s_BUFG", net.first.c_str(ctx));
ctx->createCell(buf_name, id_BUFG);
CellInfo *buf_ci = ctx->cells.at(buf_name).get();
buf_ci->addInput(id_I);
// move driver
CellInfo *driver_cell = ni.driver.cell;
IdString driver_port = ni.driver.port;
driver_cell->movePortTo(driver_port, buf_ci, id_O);
buf_ci->connectPorts(id_I, driver_cell, driver_port);
}
}
// =========================================
// Create DQCEs
// =========================================
void pack_dqce()
{
// At the placement stage, nothing can be said definitively about DQCE,
// so we make user cells virtual but allocate all available bels by
// creating and placing cells - we will use some of them after, and
// delete the rest.
// We do this here because the decision about which physical DQCEs to
// use is made during routing, but some of the information (lets say
// mapping cell pins -> bel pins) is filled in before routing.
bool grab_bels = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_DQCE) {
ci.pseudo_cell = std::make_unique<RegionPlug>(Loc(0, 0, 0));
grab_bels = true;
}
}
if (grab_bels) {
for (int i = 0; i < 32; ++i) {
BelId dqce_bel = gwu.get_dqce_bel(ctx->idf("SPINE%d", i));
if (dqce_bel != BelId()) {
IdString dqce_name = ctx->idf("$PACKER_DQCE_SPINE%d", i);
CellInfo *dqce = ctx->createCell(dqce_name, id_DQCE);
dqce->addInput(id_CE);
ctx->bindBel(dqce_bel, dqce, STRENGTH_LOCKED);
}
}
}
}
// =========================================
// Create DCSs
// =========================================
void pack_dcs()
{
// At the placement stage, nothing can be said definitively about DCS,
// so we make user cells virtual but allocate all available bels by
// creating and placing cells - we will use some of them after, and
// delete the rest.
// We do this here because the decision about which physical DCEs to
// use is made during routing, but some of the information (lets say
// mapping cell pins -> bel pins) is filled in before routing.
bool grab_bels = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_DCS) {
ci.pseudo_cell = std::make_unique<RegionPlug>(Loc(0, 0, 0));
grab_bels = true;
}
}
if (grab_bels) {
for (int i = 0; i < 8; ++i) {
BelId dcs_bel = gwu.get_dcs_bel(ctx->idf("P%d%dA", 1 + (i % 4), 6 + (i >> 2)));
if (dcs_bel != BelId()) {
IdString dcs_name = ctx->idf("$PACKER_DCS_SPINE%d", 8 * (i % 4) + 6 + (i >> 2));
CellInfo *dcs = ctx->createCell(dcs_name, id_DCS);
dcs->addInput(id_SELFORCE);
for (int j = 0; j < 4; ++j) {
dcs->addInput(ctx->idf("CLK%d", j));
dcs->addInput(ctx->idf("CLKSEL%d", j));
}
dcs->addOutput(id_CLKOUT);
ctx->bindBel(dcs_bel, dcs, STRENGTH_LOCKED);
}
}
}
}
void run(void)
{
handle_constants();
pack_iobs();
ctx->check();
pack_diff_iobs();
ctx->check();
pack_iologic();
ctx->check();
pack_io16();
ctx->check();
pack_gsr();
ctx->check();
pack_hclk();
ctx->check();
pack_bandgap();
ctx->check();
pack_wideluts();
ctx->check();
pack_alus();
ctx->check();
// XXX Leads to the impossibility of placement on lower models.
// constrain_lutffs();
ctx->check();
pack_pll();
ctx->check();
pack_ram16sdp4();
ctx->check();
pack_bsram();
ctx->check();
pack_dsp();
ctx->check();
pack_inv();
ctx->check();
pack_buffered_nets();
ctx->check();
pack_dqce();
ctx->check();
pack_dcs();
ctx->check();
ctx->fixupHierarchy();
ctx->check();
}
};
} // namespace
void gowin_pack(Context *ctx)
{
GowinPacker packer(ctx);
packer.run();
}
NEXTPNR_NAMESPACE_END