nextpnr/ecp5/bitstream.cc
David Shah 04f9b87101 ecp5: Allow setting IO SLEWRATE
Signed-off-by: David Shah <dave@ds0.me>
2018-11-01 20:41:51 +00:00

1017 lines
56 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "bitstream.h"
#include <fstream>
#include <iomanip>
#include <queue>
#include <regex>
#include <streambuf>
#include "config.h"
#include "io.h"
#include "log.h"
#include "util.h"
#define fmt_str(x) (static_cast<const std::ostringstream &>(std::ostringstream() << x).str())
NEXTPNR_NAMESPACE_BEGIN
// Convert an absolute wire name to a relative Trellis one
static std::string get_trellis_wirename(Context *ctx, Location loc, WireId wire)
{
std::string basename = ctx->locInfo(wire)->wire_data[wire.index].name.get();
std::string prefix2 = basename.substr(0, 2);
if (prefix2 == "G_" || prefix2 == "L_" || prefix2 == "R_")
return basename;
if (loc == wire.location)
return basename;
std::string rel_prefix;
if (wire.location.y < loc.y)
rel_prefix += "N" + std::to_string(loc.y - wire.location.y);
if (wire.location.y > loc.y)
rel_prefix += "S" + std::to_string(wire.location.y - loc.y);
if (wire.location.x > loc.x)
rel_prefix += "E" + std::to_string(wire.location.x - loc.x);
if (wire.location.x < loc.x)
rel_prefix += "W" + std::to_string(loc.x - wire.location.x);
return rel_prefix + "_" + basename;
}
static std::vector<bool> int_to_bitvector(int val, int size)
{
std::vector<bool> bv;
for (int i = 0; i < size; i++) {
bv.push_back((val & (1 << i)) != 0);
}
return bv;
}
static std::vector<bool> str_to_bitvector(std::string str, int size)
{
std::vector<bool> bv;
bv.resize(size, 0);
if (str.substr(0, 2) != "0b")
log_error("error parsing value '%s', expected 0b prefix\n", str.c_str());
for (int i = 0; i < int(str.size()) - 2; i++) {
char c = str.at((str.size() - i) - 1);
NPNR_ASSERT(c == '0' || c == '1');
bv.at(i) = (c == '1');
}
return bv;
}
// Tie a wire using the CIB ties
static void tie_cib_signal(Context *ctx, ChipConfig &cc, WireId wire, bool value)
{
static const std::regex cib_re("J([A-D]|CE|LSR|CLK)[0-7]");
std::queue<WireId> signals;
signals.push(wire);
WireId cibsig;
std::string basename;
while (true) {
NPNR_ASSERT(!signals.empty());
NPNR_ASSERT(signals.size() < 100);
cibsig = signals.front();
basename = ctx->getWireBasename(cibsig).str(ctx);
signals.pop();
if (std::regex_match(basename, cib_re))
break;
for (auto pip : ctx->getPipsUphill(cibsig))
signals.push(ctx->getPipSrcWire(pip));
}
bool out_value = value;
if (basename.substr(0, 3) == "JCE")
NPNR_ASSERT(value);
if (basename.substr(0, 4) == "JCLK" || basename.substr(0, 4) == "JLSR") {
NPNR_ASSERT(value);
out_value = 0;
}
for (const auto &tile : ctx->getTilesAtLocation(cibsig.location.y, cibsig.location.x)) {
if (tile.second.substr(0, 3) == "CIB" || tile.second.substr(0, 4) == "VCIB") {
cc.tiles[tile.first].add_enum("CIB." + basename + "MUX", out_value ? "1" : "0");
return;
}
}
NPNR_ASSERT_FALSE("CIB tile not found at location");
}
inline int chtohex(char c)
{
static const std::string hex = "0123456789ABCDEF";
return hex.find(c);
}
std::vector<bool> parse_init_str(const std::string &str, int length)
{
// Parse a string that may be binary or hex
std::vector<bool> result;
result.resize(length, false);
if (str.substr(0, 2) == "0x") {
// Lattice style hex string
if (int(str.length()) > (2 + ((length + 3) / 4)))
log_error("hex string value too long, expected up to %d chars and found %d.\n", (2 + ((length + 3) / 4)),
int(str.length()));
for (int i = 0; i < int(str.length()) - 2; i++) {
char c = str.at((str.size() - i) - 1);
int nibble = chtohex(c);
result.at(i * 4) = nibble & 0x1;
if (i * 4 + 1 < length)
result.at(i * 4 + 1) = nibble & 0x2;
if (i * 4 + 2 < length)
result.at(i * 4 + 2) = nibble & 0x4;
if (i * 4 + 3 < length)
result.at(i * 4 + 3) = nibble & 0x8;
}
} else {
// Yosys style binary string
if (int(str.length()) > length)
log_error("hex string value too long, expected up to %d bits and found %d.\n", length, int(str.length()));
for (int i = 0; i < int(str.length()); i++) {
char c = str.at((str.size() - i) - 1);
NPNR_ASSERT(c == '0' || c == '1' || c == 'X' || c == 'x');
result.at(i) = (c == '1');
}
}
return result;
}
inline uint16_t bit_reverse(uint16_t x, int size)
{
uint16_t y = 0;
for (int i = 0; i < size; i++)
if (x & (1 << i))
y |= (1 << ((size - 1) - i));
return y;
}
// Get the PIO tile corresponding to a PIO bel
static std::string get_pio_tile(Context *ctx, BelId bel)
{
static const std::set<std::string> pioabcd_l = {"PICL1", "PICL1_DQS0", "PICL1_DQS3"};
static const std::set<std::string> pioabcd_r = {"PICR1", "PICR1_DQS0", "PICR1_DQS3"};
static const std::set<std::string> pioa_b = {"PICB0", "EFB0_PICB0", "EFB2_PICB0"};
static const std::set<std::string> piob_b = {"PICB1", "EFB1_PICB1", "EFB3_PICB1"};
std::string pio_name = ctx->locInfo(bel)->bel_data[bel.index].name.get();
if (bel.location.y == 0) {
if (pio_name == "PIOA") {
return ctx->getTileByTypeAndLocation(0, bel.location.x, "PIOT0");
} else if (pio_name == "PIOB") {
return ctx->getTileByTypeAndLocation(0, bel.location.x + 1, "PIOT1");
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
} else if (bel.location.y == ctx->chip_info->height - 1) {
if (pio_name == "PIOA") {
return ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x, pioa_b);
} else if (pio_name == "PIOB") {
return ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x + 1, piob_b);
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
} else if (bel.location.x == 0) {
return ctx->getTileByTypeAndLocation(bel.location.y + 1, bel.location.x, pioabcd_l);
} else if (bel.location.x == ctx->chip_info->width - 1) {
return ctx->getTileByTypeAndLocation(bel.location.y + 1, bel.location.x, pioabcd_r);
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
}
// Get the PIC tile corresponding to a PIO bel
static std::string get_pic_tile(Context *ctx, BelId bel)
{
static const std::set<std::string> picab_l = {"PICL0", "PICL0_DQS2"};
static const std::set<std::string> piccd_l = {"PICL2", "PICL2_DQS1", "MIB_CIB_LR"};
static const std::set<std::string> picab_r = {"PICR0", "PICR0_DQS2"};
static const std::set<std::string> piccd_r = {"PICR2", "PICR2_DQS1", "MIB_CIB_LR_A"};
static const std::set<std::string> pica_b = {"PICB0", "EFB0_PICB0", "EFB2_PICB0"};
static const std::set<std::string> picb_b = {"PICB1", "EFB1_PICB1", "EFB3_PICB1"};
std::string pio_name = ctx->locInfo(bel)->bel_data[bel.index].name.get();
if (bel.location.y == 0) {
if (pio_name == "PIOA") {
return ctx->getTileByTypeAndLocation(1, bel.location.x, "PICT0");
} else if (pio_name == "PIOB") {
return ctx->getTileByTypeAndLocation(1, bel.location.x + 1, "PICT1");
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
} else if (bel.location.y == ctx->chip_info->height - 1) {
if (pio_name == "PIOA") {
return ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x, pica_b);
} else if (pio_name == "PIOB") {
return ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x + 1, picb_b);
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
} else if (bel.location.x == 0) {
if (pio_name == "PIOA" || pio_name == "PIOB") {
return ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x, picab_l);
} else if (pio_name == "PIOC" || pio_name == "PIOD") {
return ctx->getTileByTypeAndLocation(bel.location.y + 2, bel.location.x, piccd_l);
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
} else if (bel.location.x == ctx->chip_info->width - 1) {
if (pio_name == "PIOA" || pio_name == "PIOB") {
return ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x, picab_r);
} else if (pio_name == "PIOC" || pio_name == "PIOD") {
return ctx->getTileByTypeAndLocation(bel.location.y + 2, bel.location.x, piccd_r);
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
} else {
NPNR_ASSERT_FALSE("bad PIO location");
}
}
// Get the list of tiles corresponding to a blockram
std::vector<std::string> get_bram_tiles(Context *ctx, BelId bel)
{
std::vector<std::string> tiles;
Loc loc = ctx->getBelLocation(bel);
static const std::set<std::string> ebr0 = {"MIB_EBR0", "EBR_CMUX_UR", "EBR_CMUX_LR", "EBR_CMUX_LR_25K"};
static const std::set<std::string> ebr8 = {"MIB_EBR8", "EBR_SPINE_UL1", "EBR_SPINE_UR1", "EBR_SPINE_LL1",
"EBR_CMUX_UL", "EBR_SPINE_LL0", "EBR_CMUX_LL", "EBR_SPINE_LR0",
"EBR_SPINE_LR1", "EBR_CMUX_LL_25K", "EBR_SPINE_UL2", "EBR_SPINE_UL0",
"EBR_SPINE_UR2", "EBR_SPINE_LL2", "EBR_SPINE_LR2", "EBR_SPINE_UR0"};
switch (loc.z) {
case 0:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, ebr0));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_EBR1"));
break;
case 1:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_EBR2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_EBR3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB_EBR4"));
break;
case 2:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_EBR4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_EBR5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB_EBR6"));
break;
case 3:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_EBR6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_EBR7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, ebr8));
break;
default:
NPNR_ASSERT_FALSE("bad EBR z loc");
}
return tiles;
}
// Get the list of tiles corresponding to a DSP
std::vector<std::string> get_dsp_tiles(Context *ctx, BelId bel)
{
std::vector<std::string> tiles;
Loc loc = ctx->getBelLocation(bel);
static const std::set<std::string> dsp8 = {"MIB_DSP8", "DSP_SPINE_UL0", "DSP_SPINE_UR0", "DSP_SPINE_UR1"};
if (ctx->getBelType(bel) == id_MULT18X18D) {
switch (loc.z) {
case 0:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_DSP0"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB2_DSP0"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_DSP1"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB2_DSP1"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB_DSP2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB2_DSP2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB_DSP3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB2_DSP3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 4, "MIB_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 4, "MIB2_DSP4"));
break;
case 1:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB_DSP0"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB2_DSP0"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_DSP1"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB2_DSP1"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_DSP2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB2_DSP2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB_DSP3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB2_DSP3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB2_DSP4"));
break;
case 4:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB2_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_DSP5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB2_DSP5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB_DSP6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB2_DSP6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB_DSP7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB2_DSP7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 4, dsp8));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 4, "MIB2_DSP8"));
break;
case 5:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB2_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_DSP5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB2_DSP5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_DSP6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB2_DSP6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB_DSP7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 2, "MIB2_DSP7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, dsp8));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 3, "MIB2_DSP8"));
break;
default:
NPNR_ASSERT_FALSE("bad MULT z loc");
}
} else if (ctx->getBelType(bel) == id_ALU54B) {
switch (loc.z) {
case 3:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 3, "MIB_DSP0"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 3, "MIB2_DSP0"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 2, "MIB_DSP1"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 2, "MIB2_DSP1"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB_DSP2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB2_DSP2"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_DSP3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB2_DSP3"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB2_DSP4"));
break;
case 7:
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 3, "MIB_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 3, "MIB2_DSP4"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 2, "MIB_DSP5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 2, "MIB2_DSP5"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB_DSP6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "MIB2_DSP6"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB_DSP7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x, "MIB2_DSP7"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, dsp8));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x + 1, "MIB2_DSP8"));
break;
default:
NPNR_ASSERT_FALSE("bad ALU z loc");
}
}
return tiles;
}
// Get the list of tiles corresponding to a PLL
std::vector<std::string> get_pll_tiles(Context *ctx, BelId bel)
{
std::string name = ctx->locInfo(bel)->bel_data[bel.index].name.get();
std::vector<std::string> tiles;
Loc loc = ctx->getBelLocation(bel);
if (name == "EHXPLL_UL") {
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "PLL0_UL"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y + 1, loc.x - 1, "PLL1_UL"));
} else if (name == "EHXPLL_LL") {
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y + 1, loc.x, "PLL0_LL"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y + 1, loc.x + 1, "BANKREF8"));
} else if (name == "EHXPLL_LR") {
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y + 1, loc.x, "PLL0_LR"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y + 1, loc.x - 1, "PLL1_LR"));
} else if (name == "EHXPLL_UR") {
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y, loc.x - 1, "PLL0_UR"));
tiles.push_back(ctx->getTileByTypeAndLocation(loc.y + 1, loc.x - 1, "PLL1_UR"));
} else {
NPNR_ASSERT_FALSE_STR("bad PLL loc " + name);
}
return tiles;
}
void fix_tile_names(Context *ctx, ChipConfig &cc)
{
// Remove the V prefix/suffix on certain tiles if device is a SERDES variant
if (ctx->args.type == ArchArgs::LFE5UM_25F || ctx->args.type == ArchArgs::LFE5UM_45F ||
ctx->args.type == ArchArgs::LFE5UM_85F || ctx->args.type == ArchArgs::LFE5UM5G_25F ||
ctx->args.type == ArchArgs::LFE5UM5G_45F || ctx->args.type == ArchArgs::LFE5UM5G_85F) {
std::map<std::string, std::string> tiletype_xform;
for (const auto &tile : cc.tiles) {
std::string newname = tile.first;
auto vcib = tile.first.find("VCIB");
if (vcib != std::string::npos) {
// Remove the V
newname.erase(vcib, 1);
tiletype_xform[tile.first] = newname;
} else if (tile.first.back() == 'V') {
// BMID_0V or BMID_2V
if (tile.first.at(tile.first.size() - 2) == '0') {
newname.at(tile.first.size() - 1) = 'H';
tiletype_xform[tile.first] = newname;
} else if (tile.first.at(tile.first.size() - 2) == '2') {
newname.pop_back();
tiletype_xform[tile.first] = newname;
}
}
}
// Apply the name changes
for (auto xform : tiletype_xform) {
cc.tiles[xform.second] = cc.tiles.at(xform.first);
cc.tiles.erase(xform.first);
}
}
}
void tieoff_dsp_ports(Context *ctx, ChipConfig &cc, CellInfo *ci)
{
for (auto port : ci->ports) {
if (port.second.net == nullptr && port.second.type == PORT_IN) {
if (port.first.str(ctx).substr(0, 3) == "CLK" || port.first.str(ctx).substr(0, 2) == "CE" ||
port.first.str(ctx).substr(0, 3) == "RST" || port.first.str(ctx).substr(0, 3) == "SRO" ||
port.first.str(ctx).substr(0, 3) == "SRI" || port.first.str(ctx).substr(0, 2) == "RO" ||
port.first.str(ctx).substr(0, 2) == "MA" || port.first.str(ctx).substr(0, 2) == "MB" ||
port.first.str(ctx).substr(0, 3) == "CFB" || port.first.str(ctx).substr(0, 3) == "CIN" ||
port.first.str(ctx).substr(0, 6) == "SOURCE" || port.first.str(ctx).substr(0, 6) == "SIGNED" ||
port.first.str(ctx).substr(0, 2) == "OP")
continue;
bool value = bool_or_default(ci->params, ctx->id(port.first.str(ctx) + "MUX"), false);
tie_cib_signal(ctx, cc, ctx->getBelPinWire(ci->bel, port.first), value);
}
}
}
static void set_pip(Context *ctx, ChipConfig &cc, PipId pip)
{
std::string tile = ctx->getPipTilename(pip);
std::string source = get_trellis_wirename(ctx, pip.location, ctx->getPipSrcWire(pip));
std::string sink = get_trellis_wirename(ctx, pip.location, ctx->getPipDstWire(pip));
cc.tiles[tile].add_arc(sink, source);
}
void write_bitstream(Context *ctx, std::string base_config_file, std::string text_config_file)
{
ChipConfig cc;
std::set<std::string> cib_tiles = {"CIB", "CIB_LR", "CIB_LR_S", "CIB_EFB0", "CIB_EFB1"};
if (!base_config_file.empty()) {
std::ifstream config_file(base_config_file);
if (!config_file) {
log_error("failed to open base config file '%s'\n", base_config_file.c_str());
}
config_file >> cc;
} else {
cc.chip_name = ctx->getChipName();
// TODO: .bit metadata
}
// Add all set, configurable pips to the config
for (auto pip : ctx->getPips()) {
if (ctx->getBoundPipNet(pip) != nullptr) {
if (ctx->getPipClass(pip) == 0) { // ignore fixed pips
std::string source = get_trellis_wirename(ctx, pip.location, ctx->getPipSrcWire(pip));
if (source.find("CLKI_PLL") != std::string::npos) {
// Special case - must set pip in all relevant tiles
for (auto equiv_pip : ctx->getPipsUphill(ctx->getPipDstWire(pip))) {
if (ctx->getPipSrcWire(equiv_pip) == ctx->getPipSrcWire(pip))
set_pip(ctx, cc, equiv_pip);
}
} else {
set_pip(ctx, cc, pip);
}
}
}
}
// Find bank voltages
std::unordered_map<int, IOVoltage> bankVcc;
std::unordered_map<int, bool> bankLvds;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->bel != BelId() && ci->type == ctx->id("TRELLIS_IO")) {
int bank = ctx->getPioBelBank(ci->bel);
std::string dir = str_or_default(ci->params, ctx->id("DIR"), "INPUT");
std::string iotype = str_or_default(ci->attrs, ctx->id("IO_TYPE"), "LVCMOS33");
if (dir != "INPUT") {
IOVoltage vcc = get_vccio(ioType_from_str(iotype));
if (bankVcc.find(bank) != bankVcc.end()) {
// TODO: strong and weak constraints
if (bankVcc[bank] != vcc) {
log_error("Error processing '%s': incompatible IO voltages %s and %s on bank %d.",
cell.first.c_str(ctx), iovoltage_to_str(bankVcc[bank]).c_str(),
iovoltage_to_str(vcc).c_str(), bank);
}
} else {
bankVcc[bank] = vcc;
}
}
if (iotype == "LVDS")
bankLvds[bank] = true;
}
}
// Set all bankref tiles to appropriate VccIO
for (int y = 0; y < ctx->getGridDimY(); y++) {
for (int x = 0; x < ctx->getGridDimX(); x++) {
auto tiles = ctx->getTilesAtLocation(y, x);
for (auto tile : tiles) {
std::string type = tile.second;
if (type.find("BANKREF") != std::string::npos && type != "BANKREF8") {
int bank = std::stoi(type.substr(7));
if (bankVcc.find(bank) != bankVcc.end())
cc.tiles[tile.first].add_enum("BANK.VCCIO", iovoltage_to_str(bankVcc[bank]));
if (bankLvds[bank]) {
cc.tiles[tile.first].add_enum("BANK.DIFF_REF", "ON");
cc.tiles[tile.first].add_enum("BANK.LVDSO", "ON");
}
}
}
}
}
// Configure slices
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->bel == BelId()) {
log_warning("found unplaced cell '%s' during bitstream gen\n", ci->name.c_str(ctx));
}
BelId bel = ci->bel;
if (ci->type == ctx->id("TRELLIS_SLICE")) {
std::string tname = ctx->getTileByTypeAndLocation(bel.location.y, bel.location.x, "PLC2");
std::string slice = ctx->locInfo(bel)->bel_data[bel.index].name.get();
int lut0_init = int_or_default(ci->params, ctx->id("LUT0_INITVAL"));
int lut1_init = int_or_default(ci->params, ctx->id("LUT1_INITVAL"));
cc.tiles[tname].add_word(slice + ".K0.INIT", int_to_bitvector(lut0_init, 16));
cc.tiles[tname].add_word(slice + ".K1.INIT", int_to_bitvector(lut1_init, 16));
cc.tiles[tname].add_enum(slice + ".MODE", str_or_default(ci->params, ctx->id("MODE"), "LOGIC"));
cc.tiles[tname].add_enum(slice + ".GSR", str_or_default(ci->params, ctx->id("GSR"), "ENABLED"));
cc.tiles[tname].add_enum(slice + ".REG0.SD", str_or_default(ci->params, ctx->id("REG0_SD"), "0"));
cc.tiles[tname].add_enum(slice + ".REG1.SD", str_or_default(ci->params, ctx->id("REG1_SD"), "0"));
cc.tiles[tname].add_enum(slice + ".REG0.REGSET",
str_or_default(ci->params, ctx->id("REG0_REGSET"), "RESET"));
cc.tiles[tname].add_enum(slice + ".REG1.REGSET",
str_or_default(ci->params, ctx->id("REG1_REGSET"), "RESET"));
cc.tiles[tname].add_enum(slice + ".CEMUX", str_or_default(ci->params, ctx->id("CEMUX"), "1"));
if (ci->sliceInfo.using_dff) {
NetInfo *lsrnet = nullptr;
if (ci->ports.find(ctx->id("LSR")) != ci->ports.end() && ci->ports.at(ctx->id("LSR")).net != nullptr)
lsrnet = ci->ports.at(ctx->id("LSR")).net;
if (ctx->getBoundWireNet(ctx->getWireByName(
ctx->id(fmt_str("X" << bel.location.x << "/Y" << bel.location.y << "/LSR0")))) == lsrnet) {
cc.tiles[tname].add_enum("LSR0.SRMODE",
str_or_default(ci->params, ctx->id("SRMODE"), "LSR_OVER_CE"));
cc.tiles[tname].add_enum("LSR0.LSRMUX", str_or_default(ci->params, ctx->id("LSRMUX"), "LSR"));
} else if (ctx->getBoundWireNet(ctx->getWireByName(ctx->id(
fmt_str("X" << bel.location.x << "/Y" << bel.location.y << "/LSR1")))) == lsrnet) {
cc.tiles[tname].add_enum("LSR1.SRMODE",
str_or_default(ci->params, ctx->id("SRMODE"), "LSR_OVER_CE"));
cc.tiles[tname].add_enum("LSR1.LSRMUX", str_or_default(ci->params, ctx->id("LSRMUX"), "LSR"));
}
NetInfo *clknet = nullptr;
if (ci->ports.find(ctx->id("CLK")) != ci->ports.end() && ci->ports.at(ctx->id("CLK")).net != nullptr)
clknet = ci->ports.at(ctx->id("CLK")).net;
if (ctx->getBoundWireNet(ctx->getWireByName(
ctx->id(fmt_str("X" << bel.location.x << "/Y" << bel.location.y << "/CLK0")))) == clknet) {
cc.tiles[tname].add_enum("CLK0.CLKMUX", str_or_default(ci->params, ctx->id("CLKMUX"), "CLK"));
} else if (ctx->getBoundWireNet(ctx->getWireByName(ctx->id(
fmt_str("X" << bel.location.x << "/Y" << bel.location.y << "/CLK1")))) == clknet) {
cc.tiles[tname].add_enum("CLK1.CLKMUX", str_or_default(ci->params, ctx->id("CLKMUX"), "CLK"));
}
}
if (str_or_default(ci->params, ctx->id("MODE"), "LOGIC") == "CCU2") {
cc.tiles[tname].add_enum(slice + ".CCU2.INJECT1_0",
str_or_default(ci->params, ctx->id("INJECT1_0"), "YES"));
cc.tiles[tname].add_enum(slice + ".CCU2.INJECT1_1",
str_or_default(ci->params, ctx->id("INJECT1_1"), "YES"));
} else {
// Don't interfere with cascade mux wiring
cc.tiles[tname].add_enum(slice + ".CCU2.INJECT1_0",
str_or_default(ci->params, ctx->id("INJECT1_0"), "_NONE_"));
cc.tiles[tname].add_enum(slice + ".CCU2.INJECT1_1",
str_or_default(ci->params, ctx->id("INJECT1_1"), "_NONE_"));
}
if (str_or_default(ci->params, ctx->id("MODE"), "LOGIC") == "DPRAM" && slice == "SLICEA") {
cc.tiles[tname].add_enum(slice + ".WREMUX", str_or_default(ci->params, ctx->id("WREMUX"), "WRE"));
std::string wckmux = str_or_default(ci->params, ctx->id("WCKMUX"), "WCK");
wckmux = (wckmux == "WCK") ? "CLK" : wckmux;
cc.tiles[tname].add_enum("CLK1.CLKMUX", wckmux);
}
// Tie unused inputs high
for (auto input : {id_A0, id_B0, id_C0, id_D0, id_A1, id_B1, id_C1, id_D1}) {
if (ci->ports.find(input) == ci->ports.end() || ci->ports.at(input).net == nullptr) {
cc.tiles[tname].add_enum(slice + "." + input.str(ctx) + "MUX", "1");
}
}
// TODO: CLKMUX
} else if (ci->type == ctx->id("TRELLIS_IO")) {
std::string pio = ctx->locInfo(bel)->bel_data[bel.index].name.get();
std::string iotype = str_or_default(ci->attrs, ctx->id("IO_TYPE"), "LVCMOS33");
std::string dir = str_or_default(ci->params, ctx->id("DIR"), "INPUT");
std::string pio_tile = get_pio_tile(ctx, bel);
std::string pic_tile = get_pic_tile(ctx, bel);
cc.tiles[pio_tile].add_enum(pio + ".BASE_TYPE", dir + "_" + iotype);
cc.tiles[pic_tile].add_enum(pio + ".BASE_TYPE", dir + "_" + iotype);
if (is_differential(ioType_from_str(iotype))) {
// Explicitly disable other pair
std::string other;
if (pio == "PIOA")
other = "PIOB";
else if (pio == "PIOC")
other = "PIOD";
else
log_error("cannot place differential IO at location %s\n", pio.c_str());
// cc.tiles[pio_tile].add_enum(other + ".BASE_TYPE", "_NONE_");
// cc.tiles[pic_tile].add_enum(other + ".BASE_TYPE", "_NONE_");
cc.tiles[pio_tile].add_enum(other + ".PULLMODE", "NONE");
cc.tiles[pio_tile].add_enum(pio + ".PULLMODE", "NONE");
}
if (dir != "INPUT" &&
(ci->ports.find(ctx->id("T")) == ci->ports.end() || ci->ports.at(ctx->id("T")).net == nullptr)) {
// Tie tristate low if unconnected for outputs or bidir
std::string jpt = fmt_str("X" << bel.location.x << "/Y" << bel.location.y << "/JPADDT" << pio.back());
WireId jpt_wire = ctx->getWireByName(ctx->id(jpt));
PipId jpt_pip = *ctx->getPipsUphill(jpt_wire).begin();
WireId cib_wire = ctx->getPipSrcWire(jpt_pip);
std::string cib_tile =
ctx->getTileByTypeAndLocation(cib_wire.location.y, cib_wire.location.x, cib_tiles);
std::string cib_wirename = ctx->locInfo(cib_wire)->wire_data[cib_wire.index].name.get();
cc.tiles[cib_tile].add_enum("CIB." + cib_wirename + "MUX", "0");
}
if (dir == "INPUT" && !is_differential(ioType_from_str(iotype))) {
cc.tiles[pio_tile].add_enum(pio + ".HYSTERESIS", "ON");
}
if (ci->attrs.count(ctx->id("SLEWRATE")))
cc.tiles[pio_tile].add_enum(pio + ".SLEWRATE", str_or_default(ci->attrs, ctx->id("SLEWRATE"), "SLOW"));
} else if (ci->type == ctx->id("DCCA")) {
// Nothing to do
} else if (ci->type == ctx->id("DP16KD")) {
TileGroup tg;
Loc loc = ctx->getBelLocation(ci->bel);
tg.tiles = get_bram_tiles(ctx, ci->bel);
std::string ebr = "EBR" + std::to_string(loc.z);
tg.config.add_enum(ebr + ".MODE", "DP16KD");
auto csd_a = str_to_bitvector(str_or_default(ci->params, ctx->id("CSDECODE_A"), "0b000"), 3),
csd_b = str_to_bitvector(str_or_default(ci->params, ctx->id("CSDECODE_B"), "0b000"), 3);
tg.config.add_enum(ebr + ".DP16KD.DATA_WIDTH_A", str_or_default(ci->params, ctx->id("DATA_WIDTH_A"), "18"));
tg.config.add_enum(ebr + ".DP16KD.DATA_WIDTH_B", str_or_default(ci->params, ctx->id("DATA_WIDTH_B"), "18"));
tg.config.add_enum(ebr + ".DP16KD.WRITEMODE_A",
str_or_default(ci->params, ctx->id("WRITEMODE_A"), "NORMAL"));
tg.config.add_enum(ebr + ".DP16KD.WRITEMODE_B",
str_or_default(ci->params, ctx->id("WRITEMODE_B"), "NORMAL"));
tg.config.add_enum(ebr + ".REGMODE_A", str_or_default(ci->params, ctx->id("REGMODE_A"), "NOREG"));
tg.config.add_enum(ebr + ".REGMODE_B", str_or_default(ci->params, ctx->id("REGMODE_B"), "NOREG"));
tg.config.add_enum(ebr + ".RESETMODE", str_or_default(ci->params, ctx->id("RESETMODE"), "SYNC"));
tg.config.add_enum(ebr + ".ASYNC_RESET_RELEASE",
str_or_default(ci->params, ctx->id("ASYNC_RESET_RELEASE"), "SYNC"));
tg.config.add_enum(ebr + ".GSR", str_or_default(ci->params, ctx->id("GSR"), "DISABLED"));
tg.config.add_word(ebr + ".WID",
int_to_bitvector(bit_reverse(int_or_default(ci->attrs, ctx->id("WID"), 0), 9), 9));
// Tie signals as appropriate
for (auto port : ci->ports) {
if (port.second.net == nullptr && port.second.type == PORT_IN) {
if (port.first == id_CLKA || port.first == id_CLKB || port.first == id_WEA ||
port.first == id_WEB || port.first == id_RSTA || port.first == id_RSTB) {
// CIB clock or LSR. Tie to "1" (also 0 in prjtrellis db?) in CIB
// If MUX doesn't exist, set to INV to emulate default 0
tie_cib_signal(ctx, cc, ctx->getBelPinWire(ci->bel, port.first), true);
if (!ci->params.count(ctx->id(port.first.str(ctx) + "MUX")))
ci->params[ctx->id(port.first.str(ctx) + "MUX")] = "INV";
} else if (port.first == id_CEA || port.first == id_CEB || port.first == id_OCEA ||
port.first == id_OCEB) {
// CIB CE. Tie to "1" in CIB
// If MUX doesn't exist, set to passthru to emulate default 1
tie_cib_signal(ctx, cc, ctx->getBelPinWire(ci->bel, port.first), true);
if (!ci->params.count(ctx->id(port.first.str(ctx) + "MUX")))
ci->params[ctx->id(port.first.str(ctx) + "MUX")] = port.first.str(ctx);
} else if (port.first == id_CSA0 || port.first == id_CSA1 || port.first == id_CSA2 ||
port.first == id_CSB0 || port.first == id_CSB1 || port.first == id_CSB2) {
// CIB CE. Tie to "1" in CIB.
// If MUX doesn't exist, set to INV to emulate default 0
tie_cib_signal(ctx, cc, ctx->getBelPinWire(ci->bel, port.first), true);
if (!ci->params.count(ctx->id(port.first.str(ctx) + "MUX")))
ci->params[ctx->id(port.first.str(ctx) + "MUX")] = "INV";
} else {
// CIB ABCD signal
// Tie signals low unless explicit MUX param specified
bool value = bool_or_default(ci->params, ctx->id(port.first.str(ctx) + "MUX"), false);
tie_cib_signal(ctx, cc, ctx->getBelPinWire(ci->bel, port.first), value);
}
}
}
// Invert CSDECODE bits to emulate inversion muxes on CSA/CSB signals
for (auto port : {std::make_pair("CSA", std::ref(csd_a)), std::make_pair("CSB", std::ref(csd_b))}) {
for (int bit = 0; bit < 3; bit++) {
std::string sig = port.first + std::to_string(bit);
if (str_or_default(ci->params, ctx->id(sig + "MUX"), sig) == "INV")
port.second.at(bit) = !port.second.at(bit);
}
}
tg.config.add_enum(ebr + ".CLKAMUX", str_or_default(ci->params, ctx->id("CLKAMUX"), "CLKA"));
tg.config.add_enum(ebr + ".CLKBMUX", str_or_default(ci->params, ctx->id("CLKBMUX"), "CLKB"));
tg.config.add_enum(ebr + ".RSTAMUX", str_or_default(ci->params, ctx->id("RSTAMUX"), "RSTA"));
tg.config.add_enum(ebr + ".RSTBMUX", str_or_default(ci->params, ctx->id("RSTBMUX"), "RSTB"));
tg.config.add_enum(ebr + ".WEAMUX", str_or_default(ci->params, ctx->id("WEAMUX"), "WEA"));
tg.config.add_enum(ebr + ".WEBMUX", str_or_default(ci->params, ctx->id("WEBMUX"), "WEB"));
tg.config.add_enum(ebr + ".CEAMUX", str_or_default(ci->params, ctx->id("CEAMUX"), "CEA"));
tg.config.add_enum(ebr + ".CEBMUX", str_or_default(ci->params, ctx->id("CEBMUX"), "CEB"));
tg.config.add_enum(ebr + ".OCEAMUX", str_or_default(ci->params, ctx->id("OCEAMUX"), "OCEA"));
tg.config.add_enum(ebr + ".OCEBMUX", str_or_default(ci->params, ctx->id("OCEBMUX"), "OCEB"));
tg.config.add_word(ebr + ".CSDECODE_A", csd_a);
tg.config.add_word(ebr + ".CSDECODE_B", csd_b);
std::vector<uint16_t> init_data;
init_data.resize(2048, 0x0);
// INIT_00 .. INIT_3F
for (int i = 0; i <= 0x3F; i++) {
IdString param = ctx->id("INITVAL_" +
fmt_str(std::hex << std::uppercase << std::setw(2) << std::setfill('0') << i));
auto value = parse_init_str(str_or_default(ci->params, param, "0"), 320);
for (int j = 0; j < 16; j++) {
// INIT parameter consists of 16 18-bit words with 2-bit padding
int ofs = 20 * j;
for (int k = 0; k < 18; k++) {
if (value.at(ofs + k))
init_data.at(i * 32 + j * 2 + (k / 9)) |= (1 << (k % 9));
}
}
}
int wid = int_or_default(ci->attrs, ctx->id("WID"), 0);
NPNR_ASSERT(!cc.bram_data.count(wid));
cc.bram_data[wid] = init_data;
cc.tilegroups.push_back(tg);
} else if (ci->type == id_MULT18X18D) {
TileGroup tg;
Loc loc = ctx->getBelLocation(ci->bel);
tg.tiles = get_dsp_tiles(ctx, ci->bel);
std::string dsp = "MULT18_" + std::to_string(loc.z);
tg.config.add_enum(dsp + ".REG_INPUTA_CLK", str_or_default(ci->params, ctx->id("REG_INPUTA_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_INPUTA_CE", str_or_default(ci->params, ctx->id("REG_INPUTA_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_INPUTA_RST", str_or_default(ci->params, ctx->id("REG_INPUTA_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_INPUTB_CLK", str_or_default(ci->params, ctx->id("REG_INPUTB_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_INPUTB_CE", str_or_default(ci->params, ctx->id("REG_INPUTB_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_INPUTB_RST", str_or_default(ci->params, ctx->id("REG_INPUTB_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_INPUTC_CLK", str_or_default(ci->params, ctx->id("REG_INPUTC_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_PIPELINE_CLK",
str_or_default(ci->params, ctx->id("REG_PIPELINE_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_PIPELINE_CE", str_or_default(ci->params, ctx->id("REG_PIPELINE_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_PIPELINE_RST",
str_or_default(ci->params, ctx->id("REG_PIPELINE_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_OUTPUT_CLK", str_or_default(ci->params, ctx->id("REG_OUTPUT_CLK"), "NONE"));
if (dsp == "MULT18_0" || dsp == "MULT18_4")
tg.config.add_enum(dsp + ".REG_OUTPUT_RST",
str_or_default(ci->params, ctx->id("REG_OUTPUT_RST"), "RST0"));
tg.config.add_enum(dsp + ".CLK0_DIV", str_or_default(ci->params, ctx->id("CLK0_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".CLK1_DIV", str_or_default(ci->params, ctx->id("CLK1_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".CLK2_DIV", str_or_default(ci->params, ctx->id("CLK2_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".CLK3_DIV", str_or_default(ci->params, ctx->id("CLK3_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".GSR", str_or_default(ci->params, ctx->id("GSR"), "ENABLED"));
tg.config.add_enum(dsp + ".SOURCEB_MODE", str_or_default(ci->params, ctx->id("SOURCEB_MODE"), "B_SHIFT"));
tg.config.add_enum(dsp + ".RESETMODE", str_or_default(ci->params, ctx->id("RESETMODE"), "SYNC"));
tg.config.add_enum(dsp + ".MODE", "MULT18X18D");
if (str_or_default(ci->params, ctx->id("REG_OUTPUT_CLK"), "NONE") == "NONE")
tg.config.add_enum(dsp + ".CIBOUT_BYP", "ON");
if (loc.z < 4)
tg.config.add_enum("DSP_LEFT.CIBOUT", "ON");
else
tg.config.add_enum("DSP_RIGHT.CIBOUT", "ON");
// Some muxes default to INV, make all pass-thru
for (auto port : {"CLK", "CE", "RST"}) {
for (int i = 0; i < 4; i++) {
std::string sig = port + std::to_string(i);
tg.config.add_enum(dsp + "." + sig + "MUX", sig);
}
}
tieoff_dsp_ports(ctx, cc, ci);
cc.tilegroups.push_back(tg);
} else if (ci->type == id_ALU54B) {
TileGroup tg;
Loc loc = ctx->getBelLocation(ci->bel);
tg.tiles = get_dsp_tiles(ctx, ci->bel);
std::string dsp = "ALU54_" + std::to_string(loc.z);
tg.config.add_enum(dsp + ".REG_INPUTC0_CLK",
str_or_default(ci->params, ctx->id("REG_INPUTC0_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_INPUTC1_CLK",
str_or_default(ci->params, ctx->id("REG_INPUTC1_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OPCODEOP0_0_CLK",
str_or_default(ci->params, ctx->id("REG_OPCODEOP0_0_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OPCODEOP0_0_CE",
str_or_default(ci->params, ctx->id("REG_OPCODEOP0_0_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_OPCODEOP0_0_RST",
str_or_default(ci->params, ctx->id("REG_OPCODEOP0_0_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_OPCODEOP1_0_CLK",
str_or_default(ci->params, ctx->id("REG_OPCODEOP1_0_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OPCODEOP0_1_CLK",
str_or_default(ci->params, ctx->id("REG_OPCODEOP0_1_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OPCODEOP0_1_CE",
str_or_default(ci->params, ctx->id("REG_OPCODEOP0_1_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_OPCODEOP0_1_RST",
str_or_default(ci->params, ctx->id("REG_OPCODEOP0_1_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_OPCODEIN_0_CLK",
str_or_default(ci->params, ctx->id("REG_OPCODEIN_0_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OPCODEIN_0_CE",
str_or_default(ci->params, ctx->id("REG_OPCODEIN_0_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_OPCODEIN_0_RST",
str_or_default(ci->params, ctx->id("REG_OPCODEIN_0_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_OPCODEIN_1_CLK",
str_or_default(ci->params, ctx->id("REG_OPCODEIN_1_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OPCODEIN_1_CE",
str_or_default(ci->params, ctx->id("REG_OPCODEIN_1_CE"), "CE0"));
tg.config.add_enum(dsp + ".REG_OPCODEIN_1_RST",
str_or_default(ci->params, ctx->id("REG_OPCODEIN_1_RST"), "RST0"));
tg.config.add_enum(dsp + ".REG_OUTPUT0_CLK",
str_or_default(ci->params, ctx->id("REG_OUTPUT0_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_OUTPUT1_CLK",
str_or_default(ci->params, ctx->id("REG_OUTPUT1_CLK"), "NONE"));
tg.config.add_enum(dsp + ".REG_FLAG_CLK", str_or_default(ci->params, ctx->id("REG_FLAG_CLK"), "NONE"));
tg.config.add_enum(dsp + ".MCPAT_SOURCE", str_or_default(ci->params, ctx->id("MCPAT_SOURCE"), "STATIC"));
tg.config.add_enum(dsp + ".MASKPAT_SOURCE",
str_or_default(ci->params, ctx->id("MASKPAT_SOURCE"), "STATIC"));
tg.config.add_word(dsp + ".MASK01",
parse_init_str(str_or_default(ci->params, ctx->id("MASK01"), "0x00000000000000"), 56));
tg.config.add_enum(dsp + ".CLK0_DIV", str_or_default(ci->params, ctx->id("CLK0_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".CLK1_DIV", str_or_default(ci->params, ctx->id("CLK1_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".CLK2_DIV", str_or_default(ci->params, ctx->id("CLK2_DIV"), "ENABLED"));
tg.config.add_enum(dsp + ".CLK3_DIV", str_or_default(ci->params, ctx->id("CLK3_DIV"), "ENABLED"));
tg.config.add_word(dsp + ".MCPAT",
parse_init_str(str_or_default(ci->params, ctx->id("MCPAT"), "0x00000000000000"), 56));
tg.config.add_word(dsp + ".MASKPAT",
parse_init_str(str_or_default(ci->params, ctx->id("MASKPAT"), "0x00000000000000"), 56));
tg.config.add_word(dsp + ".RNDPAT",
parse_init_str(str_or_default(ci->params, ctx->id("RNDPAT"), "0x00000000000000"), 56));
tg.config.add_enum(dsp + ".GSR", str_or_default(ci->params, ctx->id("GSR"), "ENABLED"));
tg.config.add_enum(dsp + ".RESETMODE", str_or_default(ci->params, ctx->id("RESETMODE"), "SYNC"));
tg.config.add_enum(dsp + ".FORCE_ZERO_BARREL_SHIFT",
str_or_default(ci->params, ctx->id("FORCE_ZERO_BARREL_SHIFT"), "DISABLED"));
tg.config.add_enum(dsp + ".LEGACY", str_or_default(ci->params, ctx->id("LEGACY"), "DISABLED"));
tg.config.add_enum(dsp + ".MODE", "ALU54B");
if (loc.z < 4)
tg.config.add_enum("DSP_LEFT.CIBOUT", "ON");
else
tg.config.add_enum("DSP_RIGHT.CIBOUT", "ON");
if (str_or_default(ci->params, ctx->id("REG_FLAG_CLK"), "NONE") == "NONE") {
if (dsp == "ALU54_7") {
tg.config.add_enum("MULT18_5.CIBOUT_BYP", "ON");
} else if (dsp == "ALU54_3") {
tg.config.add_enum("MULT18_5.CIBOUT_BYP", "ON");
}
}
if (str_or_default(ci->params, ctx->id("REG_OUTPUT0_CLK"), "NONE") == "NONE") {
if (dsp == "ALU54_7") {
tg.config.add_enum("MULT18_4.CIBOUT_BYP", "ON");
} else if (dsp == "ALU54_3") {
tg.config.add_enum("MULT18_0.CIBOUT_BYP", "ON");
}
}
tieoff_dsp_ports(ctx, cc, ci);
cc.tilegroups.push_back(tg);
} else if (ci->type == id_EHXPLLL) {
TileGroup tg;
tg.tiles = get_pll_tiles(ctx, ci->bel);
tg.config.add_enum("MODE", "EHXPLLL");
tg.config.add_word("CLKI_DIV", int_to_bitvector(int_or_default(ci->params, ctx->id("CLKI_DIV"), 1) - 1, 7));
tg.config.add_word("CLKFB_DIV",
int_to_bitvector(int_or_default(ci->params, ctx->id("CLKFB_DIV"), 1) - 1, 7));
tg.config.add_enum("CLKOP_ENABLE", str_or_default(ci->params, ctx->id("CLKOP_ENABLE"), "ENABLED"));
tg.config.add_enum("CLKOS_ENABLE", str_or_default(ci->params, ctx->id("CLKOS_ENABLE"), "ENABLED"));
tg.config.add_enum("CLKOS2_ENABLE", str_or_default(ci->params, ctx->id("CLKOS2_ENABLE"), "ENABLED"));
tg.config.add_enum("CLKOS3_ENABLE", str_or_default(ci->params, ctx->id("CLKOS3_ENABLE"), "ENABLED"));
for (std::string out : {"CLKOP", "CLKOS", "CLKOS2", "CLKOS3"}) {
tg.config.add_word(out + "_DIV",
int_to_bitvector(int_or_default(ci->params, ctx->id(out + "_DIV"), 8) - 1, 7));
tg.config.add_word(out + "_CPHASE",
int_to_bitvector(int_or_default(ci->params, ctx->id(out + "_CPHASE"), 0), 7));
tg.config.add_word(out + "_FPHASE",
int_to_bitvector(int_or_default(ci->params, ctx->id(out + "_FPHASE"), 0), 3));
}
tg.config.add_enum("FEEDBK_PATH", str_or_default(ci->params, ctx->id("FEEDBK_PATH"), "CLKOP"));
tg.config.add_enum("CLKOP_TRIM_POL", str_or_default(ci->params, ctx->id("CLKOP_TRIM_POL"), "RISING"));
tg.config.add_enum("CLKOP_TRIM_DELAY", str_or_default(ci->params, ctx->id("CLKOP_TRIM_DELAY"), "0"));
tg.config.add_enum("CLKOS_TRIM_POL", str_or_default(ci->params, ctx->id("CLKOS_TRIM_POL"), "RISING"));
tg.config.add_enum("CLKOS_TRIM_DELAY", str_or_default(ci->params, ctx->id("CLKOS_TRIM_DELAY"), "0"));
tg.config.add_enum("OUTDIVIDER_MUXA", str_or_default(ci->params, ctx->id("OUTDIVIDER_MUXA"),
get_net_or_empty(ci, id_CLKOP) ? "DIVA" : "REFCLK"));
tg.config.add_enum("OUTDIVIDER_MUXB", str_or_default(ci->params, ctx->id("OUTDIVIDER_MUXB"),
get_net_or_empty(ci, id_CLKOP) ? "DIVB" : "REFCLK"));
tg.config.add_enum("OUTDIVIDER_MUXC", str_or_default(ci->params, ctx->id("OUTDIVIDER_MUXC"),
get_net_or_empty(ci, id_CLKOP) ? "DIVC" : "REFCLK"));
tg.config.add_enum("OUTDIVIDER_MUXD", str_or_default(ci->params, ctx->id("OUTDIVIDER_MUXD"),
get_net_or_empty(ci, id_CLKOP) ? "DIVD" : "REFCLK"));
tg.config.add_word("PLL_LOCK_MODE",
int_to_bitvector(int_or_default(ci->params, ctx->id("PLL_LOCK_MODE"), 0), 3));
tg.config.add_enum("STDBY_ENABLE", str_or_default(ci->params, ctx->id("STDBY_ENABLE"), "DISABLED"));
tg.config.add_enum("REFIN_RESET", str_or_default(ci->params, ctx->id("REFIN_RESET"), "DISABLED"));
tg.config.add_enum("SYNC_ENABLE", str_or_default(ci->params, ctx->id("SYNC_ENABLE"), "DISABLED"));
tg.config.add_enum("INT_LOCK_STICKY", str_or_default(ci->params, ctx->id("INT_LOCK_STICKY"), "ENABLED"));
tg.config.add_enum("DPHASE_SOURCE", str_or_default(ci->params, ctx->id("DPHASE_SOURCE"), "DISABLED"));
tg.config.add_enum("PLLRST_ENA", str_or_default(ci->params, ctx->id("PLLRST_ENA"), "DISABLED"));
tg.config.add_enum("INTFB_WAKE", str_or_default(ci->params, ctx->id("INTFB_WAKE"), "DISABLED"));
tg.config.add_word("KVCO", int_to_bitvector(int_or_default(ci->attrs, ctx->id("KVCO"), 0), 3));
tg.config.add_word("LPF_CAPACITOR",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("LPF_CAPACITOR"), 0), 2));
tg.config.add_word("LPF_RESISTOR",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("LPF_RESISTOR"), 0), 7));
tg.config.add_word("ICP_CURRENT",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("ICP_CURRENT"), 0), 5));
tg.config.add_word("FREQ_LOCK_ACCURACY",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("FREQ_LOCK_ACCURACY"), 0), 2));
tg.config.add_word("MFG_GMC_GAIN",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_GMC_GAIN"), 0), 3));
tg.config.add_word("MFG_GMC_TEST",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_GMC_TEST"), 14), 4));
tg.config.add_word("MFG1_TEST", int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG1_TEST"), 0), 3));
tg.config.add_word("MFG2_TEST", int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG2_TEST"), 0), 3));
tg.config.add_word("MFG_FORCE_VFILTER",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_FORCE_VFILTER"), 0), 1));
tg.config.add_word("MFG_ICP_TEST",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_ICP_TEST"), 0), 1));
tg.config.add_word("MFG_EN_UP", int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_EN_UP"), 0), 1));
tg.config.add_word("MFG_FLOAT_ICP",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_FLOAT_ICP"), 0), 1));
tg.config.add_word("MFG_GMC_PRESET",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_GMC_PRESET"), 0), 1));
tg.config.add_word("MFG_LF_PRESET",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_LF_PRESET"), 0), 1));
tg.config.add_word("MFG_GMC_RESET",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_GMC_RESET"), 0), 1));
tg.config.add_word("MFG_LF_RESET",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_LF_RESET"), 0), 1));
tg.config.add_word("MFG_LF_RESGRND",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_LF_RESGRND"), 0), 1));
tg.config.add_word("MFG_GMCREF_SEL",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_GMCREF_SEL"), 0), 2));
tg.config.add_word("MFG_ENABLE_FILTEROPAMP",
int_to_bitvector(int_or_default(ci->attrs, ctx->id("MFG_ENABLE_FILTEROPAMP"), 0), 1));
cc.tilegroups.push_back(tg);
} else {
NPNR_ASSERT_FALSE("unsupported cell type");
}
}
// Fixup tile names
fix_tile_names(ctx, cc);
// Configure chip
if (!text_config_file.empty()) {
std::ofstream out_config(text_config_file);
out_config << cc;
}
}
NEXTPNR_NAMESPACE_END