nextpnr/himbaechel/uarch/gowin/gowin.h
YRabbit 0639681b73 Gowin. Fix BSRAM block selection.
In the images generated by Gowin IDE, the signals for dynamic BSRAM
block selection (BLKSEL[2:0]) are not always connected directly to the
ports - some chips add LUT2, LUT3 or LUT4 to turn these signals into
Clock Enable.  Apparently there are chips with an error in the operation
of these ports.

Here we make such a decoder instead of using ports directly.

Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
2024-07-03 15:09:13 +02:00

186 lines
5.3 KiB
C++

#ifndef GOWIN_H
#define GOWIN_H
#include "nextpnr.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
// Return true if a cell is a LUT
inline bool type_is_lut(IdString cell_type) { return cell_type.in(id_LUT1, id_LUT2, id_LUT3, id_LUT4); }
inline bool is_lut(const CellInfo *cell) { return type_is_lut(cell->type); }
// Return true if a cell is a DFF
inline bool type_is_dff(IdString cell_type)
{
return cell_type.in(id_DFF, id_DFFE, id_DFFN, id_DFFNE, id_DFFS, id_DFFSE, id_DFFNS, id_DFFNSE, id_DFFR, id_DFFRE,
id_DFFNR, id_DFFNRE, id_DFFP, id_DFFPE, id_DFFNP, id_DFFNPE, id_DFFC, id_DFFCE, id_DFFNC,
id_DFFNCE);
}
inline bool is_dff(const CellInfo *cell) { return type_is_dff(cell->type); }
// Return true if a cell is a ALU
inline bool type_is_alu(IdString cell_type) { return cell_type == id_ALU; }
inline bool is_alu(const CellInfo *cell) { return type_is_alu(cell->type); }
inline bool type_is_diffio(IdString cell_type)
{
return cell_type.in(id_ELVDS_IOBUF, id_ELVDS_IBUF, id_ELVDS_TBUF, id_ELVDS_OBUF, id_TLVDS_IOBUF, id_TLVDS_IBUF,
id_TLVDS_TBUF, id_TLVDS_OBUF);
}
inline bool is_diffio(const CellInfo *cell) { return type_is_diffio(cell->type); }
// IOLOGIC input and output separately
inline bool type_is_iologico(IdString cell_type)
{
return cell_type.in(id_ODDR, id_ODDRC, id_OSER4, id_OSER8, id_OSER10, id_OVIDEO);
}
inline bool is_iologico(const CellInfo *cell) { return type_is_iologico(cell->type); }
inline bool type_is_iologici(IdString cell_type)
{
return cell_type.in(id_IDDR, id_IDDRC, id_IDES4, id_IDES8, id_IDES10, id_IVIDEO);
}
inline bool is_iologici(const CellInfo *cell) { return type_is_iologici(cell->type); }
// Return true if a cell is a SSRAM
inline bool type_is_ssram(IdString cell_type) { return cell_type.in(id_RAM16SDP1, id_RAM16SDP2, id_RAM16SDP4); }
inline bool is_ssram(const CellInfo *cell) { return type_is_ssram(cell->type); }
// Return true if a cell is a BSRAM
inline bool type_is_bsram(IdString cell_type)
{
return cell_type.in(id_SP, id_SPX9, id_pROM, id_pROMX9, id_ROM, id_SDP, id_SDPB, id_SDPX9B, id_DP, id_DPB,
id_DPX9B);
}
inline bool is_bsram(const CellInfo *cell) { return type_is_bsram(cell->type); }
// Return true if a cell is a DSP
inline bool type_is_dsp(IdString cell_type)
{
return cell_type.in(id_PADD9, id_PADD18, id_MULT9X9, id_MULT18X18, id_MULT36X36, id_ALU54D, id_MULTALU18X18,
id_MULTALU36X18, id_MULTADDALU18X18);
}
inline bool is_dsp(const CellInfo *cell) { return type_is_dsp(cell->type); }
// ==========================================
// extra data in the chip db
// ==========================================
NPNR_PACKED_STRUCT(struct Pad_extra_data_POD {
int32_t pll_tile;
int32_t pll_bel;
int32_t pll_type;
});
NPNR_PACKED_STRUCT(struct Tile_extra_data_POD {
int32_t class_id;
int16_t io16_x_off;
int16_t io16_y_off;
});
NPNR_PACKED_STRUCT(struct Bottom_io_cnd_POD {
int32_t wire_a_net;
int32_t wire_b_net;
});
NPNR_PACKED_STRUCT(struct Bottom_io_POD {
// simple OBUF
static constexpr int8_t NORMAL = 0;
// DDR
static constexpr int8_t DDR = 1;
RelSlice<Bottom_io_cnd_POD> conditions;
});
NPNR_PACKED_STRUCT(struct Extra_chip_data_POD {
int32_t chip_flags;
Bottom_io_POD bottom_io;
RelSlice<IdString> diff_io_types;
// chip flags
static constexpr int32_t HAS_SP32 = 1;
static constexpr int32_t NEED_SP_FIX = 2;
static constexpr int32_t NEED_BSRAM_OUTREG_FIX = 4;
static constexpr int32_t NEED_BLKSEL_FIX = 8;
});
} // namespace
// Bels Z ranges. It is desirable that these numbers be synchronized with the chipdb generator
namespace BelZ {
enum
{
LUT0_Z = 0,
LUT7_Z = 14,
MUX20_Z = 16,
MUX21_Z = 18,
MUX23_Z = 22,
MUX27_Z = 29,
ALU0_Z = 30, // :35, 6 ALU
RAMW_Z = 36, // RAM16SDP4
IOBA_Z = 50,
IOBB_Z = 51, // +IOBC...IOBL
IOLOGICA_Z = 70,
IDES16_Z = 74,
OSER16_Z = 75,
BUFG_Z = 76, // : 81 reserve just in case
BSRAM_Z = 100,
OSC_Z = 274,
PLL_Z = 275,
GSR_Z = 276,
VCC_Z = 277,
VSS_Z = 278,
// The two least significant bits encode Z for 9-bit adders and
// multipliers, if they are equal to 0, then we get Z of their common
// 18-bit equivalent.
DSP_Z = 509, // DSP
DSP_0_Z = 511, // DSP macro 0
PADD18_0_0_Z = 512,
PADD9_0_0_Z = 512 + 1,
PADD9_0_1_Z = 512 + 2,
PADD18_0_1_Z = 516,
PADD9_0_2_Z = 516 + 1,
PADD9_0_3_Z = 516 + 2,
MULT18X18_0_0_Z = 520,
MULT9X9_0_0_Z = 520 + 1,
MULT9X9_0_1_Z = 520 + 2,
MULT18X18_0_1_Z = 524,
MULT9X9_0_2_Z = 524 + 1,
MULT9X9_0_3_Z = 524 + 2,
ALU54D_0_Z = 524 + 3,
MULTALU18X18_0_Z = 528,
MULTALU36X18_0_Z = 528 + 1,
MULTADDALU18X18_0_Z = 528 + 2,
MULT36X36_Z = 528 + 3,
DSP_1_Z = 543, // DSP macro 1
PADD18_1_0_Z = 544,
PADD9_1_0_Z = 544 + 1,
PADD9_1_1_Z = 544 + 2,
PADD18_1_1_Z = 548,
PADD9_1_2_Z = 548 + 1,
PADD9_1_3_Z = 548 + 2,
MULT18X18_1_0_Z = 552,
MULT9X9_1_0_Z = 552 + 1,
MULT9X9_1_1_Z = 552 + 2,
MULT18X18_1_1_Z = 556,
MULT9X9_1_2_Z = 556 + 1,
MULT9X9_1_3_Z = 556 + 2,
ALU54D_1_Z = 556 + 3,
MULTALU18X18_1_Z = 560,
MULTALU36X18_1_Z = 560 + 1,
MULTADDALU18X18_1_Z = 560 + 2
};
}
NEXTPNR_NAMESPACE_END
#endif