nextpnr/common/route/awooter/rust/src/route.rs
Lofty 0bdadde9c0 awooter: refactor router
I was possessed by abstraction demons, I swear.
2023-12-06 17:47:12 +00:00

640 lines
19 KiB
Rust

use std::{
collections::{BinaryHeap, HashMap, HashSet},
time::Instant,
};
use colored::Colorize;
use indicatif::{MultiProgress, ProgressBar, ProgressStyle};
use itertools::Itertools;
use crate::{
npnr::{self, IdString, NetIndex, PipId, WireId},
partition,
};
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct Arc {
source_wire: WireId,
sink_wire: WireId,
net: NetIndex,
name: IdString,
}
impl Arc {
pub fn new(
source_wire: npnr::WireId,
sink_wire: npnr::WireId,
net: NetIndex,
name: IdString,
) -> Self {
Self {
source_wire,
sink_wire,
net,
name,
}
}
pub fn split(&self, ctx: &npnr::Context, pip: npnr::PipId) -> (Self, Self) {
let pip_src = ctx.pip_src_wire(pip);
let pip_dst = ctx.pip_dst_wire(pip);
(
Self {
source_wire: self.source_wire,
sink_wire: pip_src,
net: self.net,
name: self.name,
},
Self {
source_wire: pip_dst,
sink_wire: self.sink_wire,
net: self.net,
name: self.name,
},
)
}
pub fn source_wire(&self) -> npnr::WireId {
self.source_wire
}
pub fn sink_wire(&self) -> npnr::WireId {
self.sink_wire
}
pub fn net(&self) -> npnr::NetIndex {
self.net
}
}
#[derive(Copy, Clone)]
struct QueuedWire {
delay: f32,
congest: f32,
togo: f32,
criticality: f32,
wire: npnr::WireId,
from_pip: Option<npnr::PipId>,
}
impl QueuedWire {
pub fn new(
delay: f32,
congest: f32,
togo: f32,
criticality: f32,
wire: npnr::WireId,
from_pip: Option<npnr::PipId>,
) -> Self {
Self {
delay,
congest,
togo,
criticality,
wire,
from_pip,
}
}
fn score(&self) -> f32 {
(self.criticality * self.delay) + ((1.0 - self.criticality) * self.congest)
}
}
impl PartialEq for QueuedWire {
fn eq(&self, other: &Self) -> bool {
self.delay == other.delay
&& self.congest == other.congest
&& self.togo == other.togo
&& self.wire == other.wire
}
}
impl Eq for QueuedWire {}
impl Ord for QueuedWire {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
let me = self.score() + self.togo;
let other = other.score() + other.togo;
other.total_cmp(&me)
}
}
impl PartialOrd for QueuedWire {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
struct PerNetData {
wires: HashMap<WireId, (PipId, u32)>,
done_sinks: HashSet<WireId>,
}
struct PerWireData {
wire: WireId,
curr_cong: u32,
hist_cong: f32,
unavailable: bool,
reserved_net: Option<NetIndex>,
pip_fwd: PipId,
visited_fwd: bool,
pip_bwd: PipId,
visited_bwd: bool,
}
pub struct RouterThread<'a> {
box_ne: partition::Coord,
box_sw: partition::Coord,
arcs: &'a [Arc],
id: &'a str,
progress: &'a MultiProgress,
}
impl<'a> RouterThread<'a> {
pub fn new(
box_ne: partition::Coord,
box_sw: partition::Coord,
arcs: &'a [Arc],
id: &'a str,
progress: &'a MultiProgress,
) -> Self {
Self {
box_ne,
box_sw,
arcs,
id,
progress,
}
}
}
pub struct Router {
pressure: f32,
history: f32,
nets: Vec<PerNetData>,
wire_to_idx: HashMap<WireId, u32>,
flat_wires: Vec<PerWireData>,
dirty_wires: Vec<u32>,
}
impl Router {
pub fn new(nets: &npnr::Nets, wires: &[npnr::WireId], pressure: f32, history: f32) -> Self {
let mut net_vec = Vec::new();
let mut flat_wires = Vec::new();
let mut wire_to_idx = HashMap::new();
for _ in 0..nets.len() {
net_vec.push(PerNetData {
wires: HashMap::new(),
done_sinks: HashSet::new(),
});
}
for (idx, &wire) in wires.iter().enumerate() {
flat_wires.push(PerWireData {
wire,
curr_cong: 0,
hist_cong: 0.0,
unavailable: false,
reserved_net: None,
pip_fwd: PipId::null(),
visited_fwd: false,
pip_bwd: PipId::null(),
visited_bwd: false,
});
wire_to_idx.insert(wire, idx as u32);
}
Self {
pressure,
history,
nets: net_vec,
wire_to_idx: HashMap::new(),
flat_wires: Vec::new(),
dirty_wires: Vec::new(),
}
}
pub fn route(&mut self, ctx: &npnr::Context, nets: &npnr::Nets, this: &RouterThread) {
let mut delay = HashMap::new();
for arc in this.arcs {
delay.insert(arc, 1.0_f32);
}
let start = Instant::now();
let mut max_delay = 1.0;
let mut least_overuse = usize::MAX;
let mut iters_since_improvement = 0;
let mut route_arcs = Vec::from_iter(this.arcs.iter());
let progress = this.progress.add(ProgressBar::new(0));
progress.set_style(
ProgressStyle::with_template("[{elapsed}] [{bar:40.magenta/red}] {msg:30!}")
.unwrap()
.progress_chars("━╸ "),
);
let mut iterations = 0;
loop {
iterations += 1;
progress.set_position(0);
progress.set_length(route_arcs.len() as u64);
for arc in route_arcs.iter().sorted_by(|&i, &j| {
(delay.get(j).unwrap() / max_delay).total_cmp(&(delay.get(i).unwrap() / max_delay))
}) {
let name = ctx.name_of(arc.name).to_str().unwrap();
progress.inc(1);
let criticality = (delay.get(arc).unwrap() / max_delay).min(0.99).powf(2.5) + 0.1;
progress.set_message(format!("{} @ {}: {}", this.id, iterations, name));
*delay.get_mut(arc).unwrap() = self.route_arc(ctx, nets, arc, criticality);
}
let mut overused = HashSet::new();
for wd in self.flat_wires.iter_mut().filter(|wd| wd.curr_cong > 1) {
overused.insert(wd.wire);
wd.hist_cong += (wd.curr_cong as f32) * self.history;
}
if overused.is_empty() {
break;
} else if overused.len() < least_overuse {
least_overuse = overused.len();
iters_since_improvement = 0;
progress.println(format!(
"{} @ {}: {} wires overused {}",
this.id,
iterations,
overused.len(),
"(new best)".bold()
));
} else {
iters_since_improvement += 1;
progress.println(format!(
"{} @ {}: {} wires overused",
this.id,
iterations,
overused.len()
));
}
let mut next_arcs = Vec::new();
for arc in this.arcs {
for wire in self.nets[arc.net.into_inner() as usize].wires.keys() {
if overused.contains(wire) {
next_arcs.push(arc);
}
}
}
for &arc in &route_arcs {
self.ripup_arc(ctx, arc);
}
for net in &mut self.nets {
net.done_sinks.clear();
}
if iters_since_improvement > 50 {
iters_since_improvement = 0;
least_overuse = usize::MAX;
progress.println(format!(
"{} @ {}: {}",
this.id,
iterations,
"bored; rerouting everything".bold()
));
route_arcs = Vec::from_iter(this.arcs.iter());
} else {
route_arcs = next_arcs;
}
max_delay = this
.arcs
.iter()
.map(|arc| *delay.get(arc).unwrap())
.reduce(f32::max)
.unwrap();
}
let now = (Instant::now() - start).as_secs_f32();
progress.println(format!(
"{} @ {}: {} in {:.0}m{:.03}s",
this.id,
iterations,
"routing complete".green(),
now / 60.0,
now % 60.0
));
progress.finish_and_clear();
}
fn can_visit_pip(&self, ctx: &npnr::Context, nets: &npnr::Nets, arc: &Arc, pip: PipId) -> bool {
let wire = ctx.pip_dst_wire(pip);
let sink = *self.wire_to_idx.get(&wire).unwrap();
let nd = &self.nets[arc.net().into_inner() as usize];
let nwd = &self.flat_wires[sink as usize];
/*let pip_coord = partition::Coord::from(ctx.pip_location(pip));
if pip_coord.is_north_of(&self.box_ne) || pip_coord.is_east_of(&self.box_ne) {
return false;
}
if pip_coord.is_south_of(&self.box_sw) || pip_coord.is_west_of(&self.box_sw) {
return false;
}*/
if !ctx.pip_avail_for_net(pip, nets.net_from_index(arc.net())) {
return false;
}
if nwd.unavailable {
return false;
}
if let Some(net) = nwd.reserved_net && net != arc.net() {
return false;
}
// Don't allow the same wire to be bound to the same net with a different driving pip
if let Some((found_pip, _)) = nd.wires.get(&wire) && *found_pip != pip {
return false;
}
true
}
fn step<F1, F2, F3, F4, F5, I>(
&mut self,
ctx: &npnr::Context,
nets: &npnr::Nets,
arc: &Arc,
criticality: f32,
queue: &mut BinaryHeap<QueuedWire>,
midpoint: &mut Option<u32>,
target: WireId,
was_visited: F1,
set_visited: F2,
is_done: F3,
pip_iter: F4,
pip_wire: F5,
) -> bool
where
F1: Fn(&Self, u32) -> bool,
F2: Fn(&mut Self, u32, PipId),
F3: Fn(&Self, u32) -> bool,
F4: Fn(&npnr::Context, WireId) -> I,
F5: Fn(&npnr::Context, PipId) -> WireId,
I: Iterator<Item = PipId>,
{
if let Some(source) = queue.pop() {
let source_idx = *self.wire_to_idx.get(&source.wire).unwrap();
if was_visited(self, source_idx) {
return true;
}
if let Some(pip) = source.from_pip {
set_visited(self, source_idx, pip);
}
if is_done(self, source_idx) {
*midpoint = Some(source_idx);
return false;
}
for pip in pip_iter(ctx, source.wire) {
if !self.can_visit_pip(ctx, nets, arc, pip) {
continue;
}
let wire = pip_wire(ctx, pip);
let sink = *self.wire_to_idx.get(&wire).unwrap();
if was_visited(self, sink) {
continue;
}
set_visited(self, sink, pip);
let nwd = &self.flat_wires[sink as usize];
let node_delay = ctx.pip_delay(pip) + ctx.wire_delay(wire) + ctx.delay_epsilon();
let sum_delay = source.delay + node_delay;
let congest = source.congest
+ (node_delay + nwd.hist_cong) * (1.0 + (nwd.curr_cong as f32 * self.pressure));
let qw = QueuedWire::new(
sum_delay,
congest,
ctx.estimate_delay(wire, target),
criticality,
wire,
Some(pip),
);
queue.push(qw);
}
return true;
}
false
}
fn route_arc(
&mut self,
ctx: &npnr::Context,
nets: &npnr::Nets,
arc: &Arc,
criticality: f32,
) -> f32 {
if arc.source_wire == arc.sink_wire {
return 0.0;
}
let mut fwd_queue = BinaryHeap::new();
fwd_queue.push(QueuedWire::new(
0.0,
0.0,
ctx.estimate_delay(arc.source_wire, arc.sink_wire),
criticality,
arc.source_wire,
None,
));
let mut bwd_queue = BinaryHeap::new();
bwd_queue.push(QueuedWire::new(
0.0,
0.0,
ctx.estimate_delay(arc.source_wire, arc.sink_wire),
criticality,
arc.sink_wire,
None,
));
let mut midpoint = None;
let source_wire = *self.wire_to_idx.get(&arc.source_wire).unwrap();
let sink_wire = *self.wire_to_idx.get(&arc.sink_wire).unwrap();
self.dirty_wires.push(source_wire);
self.dirty_wires.push(sink_wire);
let nd = &self.nets[arc.net().into_inner() as usize];
if nd.done_sinks.contains(&arc.sink_wire()) {
midpoint = Some(*self.wire_to_idx.get(&arc.sink_wire).unwrap());
let mut wire = arc.sink_wire();
while wire != arc.source_wire() {
let driver = nd.wires.get(&wire).unwrap().0;
self.set_visited_fwd(self.wire_to_idx[&wire], driver);
wire = ctx.pip_src_wire(driver);
}
} else {
while midpoint.is_none() {
// Step forward
if !self.step(
ctx,
nets,
arc,
criticality,
&mut fwd_queue,
&mut midpoint,
arc.sink_wire,
Self::was_visited_fwd,
Self::set_visited_fwd,
Self::was_visited_bwd,
npnr::Context::get_downhill_pips,
npnr::Context::pip_dst_wire,
) {
break;
}
// Step backward
if !self.step(
ctx,
nets,
arc,
criticality,
&mut bwd_queue,
&mut midpoint,
arc.source_wire,
Self::was_visited_bwd,
Self::set_visited_bwd,
Self::was_visited_fwd,
npnr::Context::get_uphill_pips,
npnr::Context::pip_src_wire,
) {
break;
}
self.flat_wires[source_wire as usize].visited_fwd = true;
self.flat_wires[sink_wire as usize].visited_bwd = true;
}
}
assert!(
midpoint.is_some(),
"didn't find sink wire for net {} between {} and {}",
ctx.name_of(arc.name).to_str().unwrap(),
ctx.name_of_wire(arc.source_wire).to_str().unwrap(),
ctx.name_of_wire(arc.sink_wire).to_str().unwrap(),
);
let mut wire = midpoint.unwrap();
let mut calculated_delay = 0.0;
while wire != source_wire {
let pip = self.flat_wires[wire as usize].pip_fwd;
assert!(pip != PipId::null());
let node_delay = ctx.pip_delay(pip)
+ ctx.wire_delay(self.flat_wires[wire as usize].wire)
+ ctx.delay_epsilon();
calculated_delay += node_delay;
self.bind_pip_internal(arc.net(), wire, pip);
wire = *self.wire_to_idx.get(&ctx.pip_src_wire(pip)).unwrap();
}
let mut wire = midpoint.unwrap();
while wire != sink_wire {
let pip = self.flat_wires[wire as usize].pip_bwd;
assert!(pip != PipId::null());
// do note that the order is inverted from the fwd loop
wire = *self.wire_to_idx.get(&ctx.pip_dst_wire(pip)).unwrap();
let node_delay = ctx.pip_delay(pip)
+ ctx.wire_delay(self.flat_wires[wire as usize].wire)
+ ctx.delay_epsilon();
calculated_delay += node_delay;
self.bind_pip_internal(arc.net(), wire, pip);
}
let nd = &mut self.nets[arc.net().into_inner() as usize];
nd.done_sinks.insert(arc.sink_wire());
self.reset_wires();
calculated_delay
}
fn was_visited_fwd(&self, wire: u32) -> bool {
self.flat_wires[wire as usize].visited_fwd
}
fn was_visited_bwd(&self, wire: u32) -> bool {
self.flat_wires[wire as usize].visited_bwd
}
fn set_visited_fwd(&mut self, wire: u32, pip: PipId) {
let wd = &mut self.flat_wires[wire as usize];
if !wd.visited_fwd {
self.dirty_wires.push(wire);
}
wd.pip_fwd = pip;
wd.visited_fwd = true;
}
fn set_visited_bwd(&mut self, wire: u32, pip: PipId) {
let wd = &mut self.flat_wires[wire as usize];
if !wd.visited_bwd {
self.dirty_wires.push(wire);
}
wd.pip_bwd = pip;
wd.visited_bwd = true;
}
fn bind_pip_internal(&mut self, netindex: NetIndex, wire: u32, pip: PipId) {
let wireid = self.flat_wires[wire as usize].wire;
let net = &mut self.nets[netindex.into_inner() as usize];
if let Some((bound_pip, usage)) = net.wires.get_mut(&wireid) {
assert!(*bound_pip == pip);
*usage += 1;
} else {
net.wires.insert(wireid, (pip, 1));
self.flat_wires[wire as usize].curr_cong += 1;
}
}
fn unbind_pip_internal(&mut self, net: NetIndex, wire: WireId) {
let net = net.into_inner() as usize;
let wireidx = *self.wire_to_idx.get(&wire).unwrap() as usize;
let (_pip, usage) = self.nets[net].wires.get_mut(&wire).unwrap();
*usage -= 1;
if *usage == 0 {
self.flat_wires[wireidx].curr_cong -= 1;
self.nets[net].wires.remove(&wire);
}
}
fn ripup_arc(&mut self, ctx: &npnr::Context, arc: &Arc) {
let net = arc.net().into_inner() as usize;
let source_wire = arc.source_wire;
let mut wire = arc.sink_wire;
while wire != source_wire {
let pip = self.nets[net].wires.get(&wire).unwrap().0;
assert!(pip != PipId::null());
self.unbind_pip_internal(arc.net(), wire);
wire = ctx.pip_src_wire(pip);
}
}
fn reset_wires(&mut self) {
for &wire in &self.dirty_wires {
self.flat_wires[wire as usize].pip_fwd = PipId::null();
self.flat_wires[wire as usize].visited_fwd = false;
self.flat_wires[wire as usize].pip_bwd = PipId::null();
self.flat_wires[wire as usize].visited_bwd = false;
}
self.dirty_wires.clear();
}
}