nextpnr/nexus/arch.cc

1129 lines
40 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2020 gatecat <gatecat@ds0.me>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <boost/algorithm/string.hpp>
#include "embed.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx)
{
#define X(t) initialize_add(ctx, #t, ID_##t);
#include "constids.inc"
#undef X
}
// -----------------------------------------------------------------------
Arch::Arch(ArchArgs args) : args(args)
{
// Parse device string
if (boost::starts_with(args.device, "LIFCL") || boost::starts_with(args.device, "LFD2NX")) {
family = "LIFCL";
} else {
log_error("Unknown device string '%s' (expected device name like 'LIFCL-40-8SG72C')\n", args.device.c_str());
}
auto last_sep = args.device.rfind('-');
if (last_sep == std::string::npos)
log_error("Unknown device string '%s' (expected device name like 'LIFCL-40-8SG72C')\n", args.device.c_str());
device = args.device.substr(0, last_sep);
speed = args.device.substr(last_sep + 1, 1);
auto package_end = args.device.find_last_of("0123456789", args.device.substr(args.device.size() - 3) == "ES2"
? args.device.size() - 3
: std::string::npos);
if (package_end == std::string::npos || package_end < last_sep)
log_error("Unknown device string '%s' (expected device name like 'LIFCL-40-8SG72C')\n", args.device.c_str());
package = args.device.substr(last_sep + 2, (package_end - (last_sep + 2)) + 1);
rating = args.device.substr(package_end + 1);
// Check for 'ES' part
if (rating.size() > 1 && rating.substr(1) == "ES") {
variant = "ES";
} else if (rating.size() > 1 && rating.substr(1) == "ES2") {
// ES2 devices are production-equivalent from nextpnr's and bitstream point of view
variant = "";
} else {
variant = "";
}
// Load database
std::string chipdb = stringf("nexus/chipdb-%s.bin", family.c_str());
auto db_ptr = reinterpret_cast<const RelPtr<DatabasePOD> *>(get_chipdb(chipdb));
if (db_ptr == nullptr)
log_error("Failed to load chipdb '%s'\n", chipdb.c_str());
db = db_ptr->get();
// Check database version and family
if (db->version != bba_version) {
log_error("Provided database version %d is %s than nextpnr version %d, please rebuild database/nextpnr.\n",
int(db->version), (db->version > bba_version) ? "newer" : "older", int(bba_version));
}
if (db->family.get() != family) {
log_error("Database is for family '%s' but provided device is family '%s'.\n", db->family.get(),
family.c_str());
}
// Set up chip_info
chip_info = nullptr;
for (auto &chip : db->chips) {
if (chip.device_name.get() == device) {
chip_info = &chip;
break;
}
}
if (!chip_info)
log_error("Unknown device '%s'.\n", device.c_str());
// Set up bba IdStrings
for (size_t i = 0; i < db->ids->bba_id_strs.size(); i++) {
IdString::initialize_add(this, db->ids->bba_id_strs[i].get(), uint32_t(i) + db->ids->num_file_ids);
}
// Set up validity structures
tileStatus.resize(chip_info->grid.size());
for (size_t i = 0; i < chip_info->grid.size(); i++) {
tileStatus[i].boundcells.resize(db->loctypes[chip_info->grid[i].loc_type].bels.size());
}
// This structure is needed for a fast getBelByLocation because bels can have an offset
for (size_t i = 0; i < chip_info->grid.size(); i++) {
auto &loc = db->loctypes[chip_info->grid[i].loc_type];
for (unsigned j = 0; j < loc.bels.size(); j++) {
auto &bel = loc.bels[j];
int rel_bel_tile;
if (!rel_tile(i, bel.rel_x, bel.rel_y, rel_bel_tile))
continue;
auto &ts = tileStatus.at(rel_bel_tile);
if (int(ts.bels_by_z.size()) <= bel.z)
ts.bels_by_z.resize(bel.z + 1);
ts.bels_by_z[bel.z].tile = i;
ts.bels_by_z[bel.z].index = j;
}
auto &ts = tileStatus.at(i);
ts.boundwires.resize(loc.wires.size());
ts.boundpips.resize(loc.pips.size());
}
for (int i = 0; i < chip_info->width; i++) {
IdString x_id = idf("X%d", i);
x_ids.push_back(x_id);
id_to_x[x_id] = i;
}
for (int i = 0; i < chip_info->height; i++) {
IdString y_id = idf("Y%d", i);
y_ids.push_back(y_id);
id_to_y[y_id] = i;
}
init_cell_pin_data();
// Validate and set up package
package_idx = -1;
for (size_t i = 0; i < chip_info->packages.size(); i++) {
if (package == chip_info->packages[i].short_name.get()) {
package_idx = i;
break;
}
}
if (package_idx == -1) {
std::string all_packages = "";
for (auto &pkg : chip_info->packages) {
all_packages += " ";
all_packages += pkg.short_name.get();
}
log_error("Unknown package '%s'. Available package options:%s\n", package.c_str(), all_packages.c_str());
}
// Validate and set up speed grade
// Convert speed to speed grade (TODO: low power back bias mode too)
if (speed == "7")
speed = "10";
else if (speed == "8")
speed = "11";
else if (speed == "9")
speed = "12";
speed_grade = nullptr;
for (auto &sg : db->speed_grades) {
if (sg.name.get() == speed) {
speed_grade = &sg;
break;
}
}
if (!speed_grade)
log_error("Unknown speed grade '%s'.\n", speed.c_str());
BaseArch::init_cell_types();
BaseArch::init_bel_buckets();
if (device == "LIFCL-17") {
for (BelId bel : getBelsByTile(37, 10)) {
// These pips currently don't work, due to routing differences between the variants that the DB format needs
// some tweaks to accomodate properly
if (getBelType(bel) != id_DCC)
continue;
WireId w = getBelPinWire(bel, id_CLKI);
for (auto pip : getPipsUphill(w))
disabled_pips.insert(pip);
}
// TODO: find a better solution to disable these
WireId dcs_out =
getWireByName(IdStringList(std::array<IdString, 3>{x_ids.at(37), y_ids.at(10), id_JDCSOUT_DCS_DCSIP}));
for (auto dcs_pip : getPipsUphill(dcs_out))
disabled_pips.insert(dcs_pip);
NPNR_ASSERT(disabled_pips.size() == 6);
}
}
void Arch::list_devices()
{
std::vector<std::string> families{
"LIFCL",
};
log("Supported devices: \n");
for (auto fam : families) {
std::string chipdb = stringf("nexus/chipdb-%s.bin", fam.c_str());
auto db_ptr = reinterpret_cast<const RelPtr<DatabasePOD> *>(get_chipdb(chipdb));
if (!db_ptr)
continue; // chipdb not available
// enumerate chips
for (auto &chip : db_ptr->get()->chips) {
// enumerate packages
for (auto &pkg : chip.packages) {
// enumerate suffices
for (auto speedgrade : {"7", "8", "9"}) { // TODO: these might depend on family
for (auto rating : {"I", "C"}) {
for (auto suffix : {"", "ES", "ES2"}) {
log(" %s-%s%s%s%s\n", chip.device_name.get(), speedgrade, pkg.short_name.get(), rating,
suffix);
}
}
}
}
}
}
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const { return args.device; }
IdString Arch::archArgsToId(ArchArgs args) const { return id(args.device); }
// -----------------------------------------------------------------------
BelId Arch::getBelByName(IdStringList name) const
{
if (name.size() != 3)
return BelId();
int x = id_to_x.at(name[0]);
int y = id_to_y.at(name[1]);
NPNR_ASSERT(x >= 0 && x < chip_info->width);
NPNR_ASSERT(y >= 0 && y < chip_info->height);
auto &tile = db->loctypes[chip_info->grid[y * chip_info->width + x].loc_type];
for (size_t i = 0; i < tile.bels.size(); i++) {
if (tile.bels[i].name == name[2].index) {
BelId ret;
ret.tile = y * chip_info->width + x;
ret.index = i;
return ret;
}
}
return BelId();
}
std::vector<BelId> Arch::getBelsByTile(int x, int y) const
{
std::vector<BelId> bels;
for (auto bel : tileStatus.at(y * chip_info->width + x).bels_by_z)
if (bel != BelId())
bels.push_back(bel);
return bels;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
// Binary search on wire IdString, by ID
int num_bel_wires = bel_data(bel).ports.size();
const BelWirePOD *bel_ports = bel_data(bel).ports.get();
if (num_bel_wires < 7) {
for (int i = 0; i < num_bel_wires; i++) {
if (int(bel_ports[i].port) == pin.index) {
return canonical_wire(bel.tile, bel_ports[i].wire_index);
}
}
} else {
int b = 0, e = num_bel_wires - 1;
while (b <= e) {
int i = (b + e) / 2;
if (int(bel_ports[i].port) == pin.index) {
return canonical_wire(bel.tile, bel_ports[i].wire_index);
}
if (int(bel_ports[i].port) > pin.index)
e = i - 1;
else
b = i + 1;
}
}
return WireId();
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
// Binary search on wire IdString, by ID
int num_bel_wires = bel_data(bel).ports.size();
const BelWirePOD *bel_ports = bel_data(bel).ports.get();
if (num_bel_wires < 7) {
for (int i = 0; i < num_bel_wires; i++) {
if (int(bel_ports[i].port) == pin.index) {
return PortType(bel_ports[i].type);
}
}
} else {
int b = 0, e = num_bel_wires - 1;
while (b <= e) {
int i = (b + e) / 2;
if (int(bel_ports[i].port) == pin.index) {
return PortType(bel_ports[i].type);
}
if (int(bel_ports[i].port) > pin.index)
e = i - 1;
else
b = i + 1;
}
}
NPNR_ASSERT_FALSE("unknown bel pin");
}
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> ret;
for (auto &p : bel_data(bel).ports)
ret.push_back(IdString(p.port));
return ret;
}
std::vector<std::pair<IdString, std::string>> Arch::getBelAttrs(BelId bel) const
{
std::vector<std::pair<IdString, std::string>> ret;
ret.emplace_back(id_INDEX, stringf("%d", bel.index));
ret.emplace_back(id_GRID_X, stringf("%d", bel.tile % chip_info->width));
ret.emplace_back(id_GRID_Y, stringf("%d", bel.tile / chip_info->width));
ret.emplace_back(id_BEL_Z, stringf("%d", bel_data(bel).z));
ret.emplace_back(id_BEL_TYPE, nameOf(getBelType(bel)));
return ret;
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdStringList name) const
{
if (name.size() != 3)
return WireId();
int x = id_to_x.at(name[0]);
int y = id_to_y.at(name[1]);
NPNR_ASSERT(x >= 0 && x < chip_info->width);
NPNR_ASSERT(y >= 0 && y < chip_info->height);
auto &tile = db->loctypes[chip_info->grid[y * chip_info->width + x].loc_type];
for (size_t i = 0; i < tile.wires.size(); i++) {
if (tile.wires[i].name == name[2].index) {
WireId ret;
ret.tile = y * chip_info->width + x;
ret.index = i;
return ret;
}
}
return WireId();
}
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const
{
std::vector<std::pair<IdString, std::string>> ret;
ret.emplace_back(id_INDEX, stringf("%d", wire.index));
ret.emplace_back(id_GRID_X, stringf("%d", wire.tile % chip_info->width));
ret.emplace_back(id_GRID_Y, stringf("%d", wire.tile / chip_info->width));
ret.emplace_back(id_FLAGS, stringf("%u", wire_data(wire).flags));
return ret;
}
IdString Arch::getWireType(WireId wire) const
{
IdString basename(wire_data(wire).name);
const std::string &basename_str = basename.str(this);
// Interconnect - derive a type
if ((basename_str[0] == 'H' || basename_str[0] == 'V') && basename_str[1] == '0')
return id(basename_str.substr(0, 4));
else
return id_GENERAL;
}
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdStringList name) const
{
if (name.size() != 5)
return PipId();
int x = id_to_x.at(name[0]);
int y = id_to_y.at(name[1]);
NPNR_ASSERT(x >= 0 && x < chip_info->width);
NPNR_ASSERT(y >= 0 && y < chip_info->height);
PipId ret;
ret.tile = y * chip_info->width + x;
ret.index = std::stoi(name[2].str(this));
return ret;
}
IdStringList Arch::getPipName(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
std::array<IdString, 5> ids{x_ids.at(pip.tile % chip_info->width), y_ids.at(pip.tile / chip_info->width),
idf("%d", pip.index), IdString(loc_data(pip).wires[pip_data(pip).to_wire].name),
IdString(loc_data(pip).wires[pip_data(pip).from_wire].name)};
return IdStringList(ids);
}
IdString Arch::getPipType(PipId pip) const { return IdString(); }
std::vector<std::pair<IdString, std::string>> Arch::getPipAttrs(PipId pip) const
{
std::vector<std::pair<IdString, std::string>> ret;
ret.emplace_back(id_INDEX, stringf("%d", pip.index));
ret.emplace_back(id_GRID_X, stringf("%d", pip.tile % chip_info->width));
ret.emplace_back(id_GRID_Y, stringf("%d", pip.tile / chip_info->width));
ret.emplace_back(id_FROM_TILE_WIRE, nameOf(IdString(loc_data(pip).wires[pip_data(pip).from_wire].name)));
ret.emplace_back(id_TO_TILE_WIRE, nameOf(IdString(loc_data(pip).wires[pip_data(pip).to_wire].name)));
return ret;
}
// -----------------------------------------------------------------------
namespace {
const float bel_ofs_x = 0.7, bel_ofs_y = 0.0375;
const float bel_sp_x = 0.1, bel_sp_y = 0.1;
const float bel_width = 0.075, bel_height = 0.075;
} // namespace
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const
{
std::vector<GraphicElement> ret;
switch (decal.type) {
case DecalId::TYPE_BEL: {
auto style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
if (decal.index != -1) {
int slice = (decal.index >> 3) & 0x3;
int bel = decal.index & 0x7;
float x1, x2, y1, y2;
if (bel == BEL_RAMW) {
x1 = bel_ofs_x;
y1 = bel_ofs_y + 2 * bel_sp_y * slice;
x2 = x1 + bel_sp_x + bel_width;
y2 = y1 + bel_height;
} else {
x1 = bel_ofs_x + bel_sp_x * (bel >> 1);
y1 = bel_ofs_y + 2 * bel_sp_y * slice + bel_sp_y * (bel & 0x1);
if (slice >= 2)
y1 += bel_sp_y * 1.5;
x2 = x1 + bel_width;
y2 = y1 + bel_height;
}
ret.emplace_back(GraphicElement::TYPE_BOX, style, x1, y1, x2, y2, 1);
}
break;
};
default:
break;
}
return ret;
}
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_BEL;
if (tile_is(bel, LOC_LOGIC))
decalxy.decal.index = bel_data(bel).z;
else
decalxy.decal.index = -1;
decalxy.decal.active = (getBoundBelCell(bel) != nullptr);
decalxy.x = bel.tile % chip_info->width;
decalxy.y = bel.tile / chip_info->width;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const { return {}; }
DecalXY Arch::getPipDecal(PipId pip) const { return {}; };
DecalXY Arch::getGroupDecal(GroupId pip) const { return {}; };
// -----------------------------------------------------------------------
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const
{
auto lookup_port = [&](IdString p) {
auto fnd = cell->tmg_portmap.find(p);
return fnd == cell->tmg_portmap.end() ? p : fnd->second;
};
if (cell->type == id_OXIDE_COMB) {
if (cell->lutInfo.is_carry) {
bool result = lookup_cell_delay(cell->tmg_index, lookup_port(fromPort), lookup_port(toPort), delay);
// Because CCU2 = 2x OXIDE_COMB
if (result && fromPort == id_FCI && toPort == id_FCO) {
delay = DelayQuad(delay.minDelay() / 2, delay.maxDelay() / 2);
}
return result;
} else {
if (toPort.in(id_F, id_OFX))
return lookup_cell_delay(cell->tmg_index, fromPort, toPort, delay);
}
} else if (is_dsp_cell(cell)) {
if (fromPort == id_CLK)
return false; // don't include delays that are actually clock-to-out here
return lookup_cell_delay(cell->tmg_index, lookup_port(fromPort), lookup_port(toPort), delay);
} else if (cell->type == id_DCS) {
if (fromPort.in(id_SELFORCE, id_SEL)) {
return false;
}
int index = get_cell_timing_idx(id_DCS, id_DCS);
return lookup_cell_delay(index, fromPort, toPort, delay);
} else if (cell->type == id_DCC) {
if (fromPort == id_CLKI && toPort == id_CLKO) {
// TODO: Use actual DCC delays
delay.rise.min_delay = 1;
delay.rise.max_delay = 1;
delay.fall.min_delay = 1;
delay.fall.max_delay = 1;
return true;
}
}
return false;
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
auto disconnected = [cell](IdString p) { return !cell->ports.count(p) || cell->ports.at(p).net == nullptr; };
auto lookup_port = [&](IdString p) {
auto fnd = cell->tmg_portmap.find(p);
return fnd == cell->tmg_portmap.end() ? p : fnd->second;
};
clockInfoCount = 0;
if (cell->type == id_OXIDE_COMB) {
if (port.in(id_A, id_B, id_C, id_D, id_SEL, id_F1, id_FCI, id_WDI))
return TMG_COMB_INPUT;
if (port.in(id_F, id_OFX, id_FCO)) {
if (disconnected(id_A) && disconnected(id_B) && disconnected(id_C) && disconnected(id_D) &&
disconnected(id_FCI) && disconnected(id_SEL) && disconnected(id_WDI))
return TMG_IGNORE;
else
return TMG_COMB_OUTPUT;
}
} else if (cell->type == id_OXIDE_FF) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
else if (port == id_Q) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
} else if (cell->type == id_RAMW) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
else if (port.in(id_WDO0, id_WDO1, id_WDO2, id_WDO3)) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else if (port.in(id_A0, id_A1, id_B0, id_B1, id_C0, id_C1, id_D0, id_D1)) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
} else if (cell->type == id_OXIDE_EBR) {
if (port.in(id_DWS0, id_DWS1, id_DWS2, id_DWS3, id_DWS4))
return TMG_IGNORE;
if (port.in(id_CLKA, id_CLKB))
return TMG_CLOCK_INPUT;
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_IN) ? TMG_REGISTER_INPUT : TMG_REGISTER_OUTPUT;
} else if (cell->type == id_LRAM_CORE) {
if (port.in(id_OPCGLDCK, id_OPCGLOADCLK, id_SCANCLK, id_SCANRST, id_TBISTN, id_INITN, id_STDBYN, id_IGN,
id_DPS))
return TMG_IGNORE;
if (port == id_CLK)
return TMG_CLOCK_INPUT;
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_IN) ? TMG_REGISTER_INPUT : TMG_REGISTER_OUTPUT;
} else if (cell->type.in(id_MULT18_CORE, id_MULT18X36_CORE, id_MULT36_CORE)) {
return (cell->ports.at(port).type == PORT_IN) ? TMG_COMB_INPUT : TMG_COMB_OUTPUT;
} else if (cell->type.in(id_PREADD9_CORE, id_REG18_CORE, id_MULT9_CORE)) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
auto type = lookup_port_type(cell->tmg_index, lookup_port(port), cell->ports.at(port).type, id_CLK);
if (type == TMG_REGISTER_INPUT || type == TMG_REGISTER_OUTPUT)
clockInfoCount = 1;
return type;
} else if (cell->type == id_DCC) {
if (port == id_CLKI)
return TMG_COMB_INPUT;
else if (port == id_CLKO)
return TMG_COMB_OUTPUT;
} else if (cell->type == id_DCS) {
// FIXME: Making inputs TMG_CLOCK_INPUT and the output TMG_CLOCK_GEN
// yielded in error in the timing analyzer. For now keep those as
// regular combinational ports.
if (port.in(id_CLK0, id_CLK1))
return TMG_COMB_INPUT;
else if (port == id_DCSOUT) {
return TMG_COMB_OUTPUT;
}
return TMG_IGNORE;
}
return TMG_IGNORE;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
auto lookup_port = [&](IdString p) {
auto fnd = cell->tmg_portmap.find(p);
return fnd == cell->tmg_portmap.end() ? p : fnd->second;
};
TimingClockingInfo info;
if (cell->type == id_OXIDE_FF) {
info.edge = (cell->ffInfo.ctrlset.clkmux == ID_INV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
if (port == id_Q)
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, port, info.clockToQ));
else
lookup_cell_setuphold(cell->tmg_index, port, id_CLK, info.setup, info.hold);
} else if (cell->type == id_RAMW) {
info.edge = (cell->ffInfo.ctrlset.clkmux == ID_INV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
if (port.in(id_WDO0, id_WDO1, id_WDO2, id_WDO3))
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, port, info.clockToQ));
else
lookup_cell_setuphold(cell->tmg_index, port, id_CLK, info.setup, info.hold);
} else if (cell->type == id_OXIDE_EBR) {
if (cell->ports.at(port).type == PORT_IN) {
lookup_cell_setuphold_clock(cell->tmg_index, lookup_port(port), info.clock_port, info.setup, info.hold);
} else {
lookup_cell_clock_out(cell->tmg_index, lookup_port(port), info.clock_port, info.clockToQ);
}
// Lookup edge based on inversion
info.edge = (get_cell_pinmux(cell, info.clock_port) == PINMUX_INV) ? FALLING_EDGE : RISING_EDGE;
} else if (cell->type == id_LRAM_CORE) {
info.clock_port = id_CLK;
if (cell->ports.at(port).type == PORT_IN) {
lookup_cell_setuphold(cell->tmg_index, lookup_port(port), id_CLK, info.setup, info.hold);
} else {
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, lookup_port(port), info.clockToQ));
}
info.edge = (get_cell_pinmux(cell, info.clock_port) == PINMUX_INV) ? FALLING_EDGE : RISING_EDGE;
} else if (cell->type.in(id_PREADD9_CORE, id_REG18_CORE, id_MULT9_CORE)) {
info.clock_port = id_CLK;
if (cell->ports.at(port).type == PORT_IN) {
lookup_cell_setuphold(cell->tmg_index, lookup_port(port), id_CLK, info.setup, info.hold);
} else {
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, lookup_port(port), info.clockToQ));
}
info.edge = (get_cell_pinmux(cell, info.clock_port) == PINMUX_INV) ? FALLING_EDGE : RISING_EDGE;
} else {
NPNR_ASSERT_FALSE("missing clocking info");
}
return info;
}
// -----------------------------------------------------------------------
delay_t Arch::getRipupDelayPenalty() const { return 250; }
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
const auto &dst_data = wire_data(dst);
if (src.tile == 0 && dst_data.name == ID_LOCAL_VCC)
return 0;
int src_x = src.tile % chip_info->width, src_y = src.tile / chip_info->width;
int dst_x = dst.tile % chip_info->width, dst_y = dst.tile / chip_info->width;
int dist_x = std::abs(src_x - dst_x);
int dist_y = std::abs(src_y - dst_y);
return estimate_delay_mult * (dist_x + dist_y) + 250;
}
delay_t Arch::predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const
{
NPNR_UNUSED(src_pin);
if (dst_pin == id_FCI)
return 0;
int src_x = src_bel.tile % chip_info->width, src_y = src_bel.tile / chip_info->width;
int dst_x = dst_bel.tile % chip_info->width, dst_y = dst_bel.tile / chip_info->width;
int dist_x = std::abs(src_x - dst_x);
int dist_y = std::abs(src_y - dst_y);
return 100 * dist_x + 100 * dist_y + 250;
}
BoundingBox Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
BoundingBox bb;
int src_x = src.tile % chip_info->width, src_y = src.tile / chip_info->width;
int dst_x = dst.tile % chip_info->width, dst_y = dst.tile / chip_info->width;
bb.x0 = src_x;
bb.y0 = src_y;
bb.x1 = src_x;
bb.y1 = src_y;
auto extend = [&](int x, int y) {
bb.x0 = std::min(bb.x0, x);
bb.x1 = std::max(bb.x1, x);
bb.y0 = std::min(bb.y0, y);
bb.y1 = std::max(bb.y1, y);
};
extend(dst_x, dst_y);
if (dsp_wires.count(src) || dsp_wires.count(dst)) {
bb.x0 = std::max<int>(0, bb.x0 - 6);
bb.x1 = std::min<int>(chip_info->width, bb.x1 + 6);
}
if (lram_wires.count(src) || lram_wires.count(dst)) {
bb.y0 = std::max<int>(0, bb.y0 - 7);
bb.y1 = std::min<int>(chip_info->width, bb.y1 + 7);
}
return bb;
}
// -----------------------------------------------------------------------
bool Arch::place()
{
estimate_delay_mult = 75;
if (getCtx()->settings.count(getCtx()->id("estimate-delay-mult")))
estimate_delay_mult = getCtx()->setting<int>("estimate-delay-mult");
std::string placer = str_or_default(settings, id_placer, defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
cfg.ioBufTypes.insert(id_SEIO33_CORE);
cfg.ioBufTypes.insert(id_SEIO18_CORE);
cfg.ioBufTypes.insert(id_OSC_CORE);
cfg.cellGroups.emplace_back();
cfg.cellGroups.back().insert({id_OXIDE_COMB});
cfg.cellGroups.back().insert({id_OXIDE_FF});
cfg.beta = 0.5;
cfg.criticalityExponent = 7;
if (!placer_heap(getCtx(), cfg))
return false;
} else if (placer == "sa") {
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
} else {
log_error("Nexus architecture does not support placer '%s'\n", placer.c_str());
}
post_place_opt();
getCtx()->attrs[id_step] = std::string("place");
archInfoToAttributes();
return true;
}
void Arch::pre_routing()
{
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
if (ci->type.in(id_MULT9_CORE, id_PREADD9_CORE, id_MULT18_CORE, id_MULT18X36_CORE, id_MULT36_CORE,
id_REG18_CORE, id_ACC54_CORE)) {
for (auto &port : ci->ports) {
WireId wire = getBelPinWire(ci->bel, port.first);
if (wire != WireId())
dsp_wires.insert(wire);
}
}
if (ci->type == id_LRAM_CORE) {
for (auto &port : ci->ports) {
WireId wire = getBelPinWire(ci->bel, port.first);
if (wire != WireId())
lram_wires.insert(wire);
}
}
}
}
namespace {
float router2_base_cost(Context *ctx, WireId wire, PipId pip, float crit_weight)
{
(void)crit_weight; // unused
if (pip != PipId()) {
auto &data = ctx->pip_data(pip);
if (data.flags & PIP_ZERO_RR_COST)
return 1e-12;
if (data.flags & PIP_DRMUX_C)
return 1e15;
}
return ctx->getDelayNS(ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(wire).maxDelay() +
ctx->getDelayEpsilon());
}
} // namespace
bool Arch::route()
{
pre_routing();
route_globals();
std::string router = str_or_default(settings, id_router, defaultRouter);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
Router2Cfg cfg(getCtx());
cfg.get_base_cost = router2_base_cost;
router2(getCtx(), cfg);
result = true;
} else {
log_error("Nexus architecture does not support router '%s'\n", router.c_str());
}
getCtx()->attrs[id_step] = std::string("route");
archInfoToAttributes();
return result;
}
// -----------------------------------------------------------------------
CellPinMux Arch::get_cell_pinmux(const CellInfo *cell, IdString pin) const
{
IdString param = idf("%sMUX", pin.c_str(this));
auto fnd_param = cell->params.find(param);
if (fnd_param == cell->params.end())
return PINMUX_SIG;
const std::string &pm = fnd_param->second.as_string();
if (pm == "0")
return PINMUX_0;
else if (pm == "1")
return PINMUX_1;
else if (pm == "INV")
return PINMUX_INV;
else if (pm == pin.c_str(this))
return PINMUX_SIG;
else {
log_error("Invalid %s setting '%s' for cell '%s'\n", nameOf(param), pm.c_str(), nameOf(cell));
NPNR_ASSERT_FALSE("unreachable");
}
}
void Arch::set_cell_pinmux(CellInfo *cell, IdString pin, CellPinMux state)
{
IdString param = idf("%sMUX", pin.c_str(this));
switch (state) {
case PINMUX_SIG:
cell->params.erase(param);
break;
case PINMUX_0:
cell->params[param] = std::string("0");
break;
case PINMUX_1:
cell->params[param] = std::string("1");
break;
case PINMUX_INV:
cell->params[param] = std::string("INV");
break;
default:
NPNR_ASSERT_FALSE("unreachable");
}
}
// -----------------------------------------------------------------------
const PadInfoPOD *Arch::get_pkg_pin_data(const std::string &pin) const
{
for (auto &pad : chip_info->pads) {
if (pin == pad.pins[package_idx].get())
return &pad;
}
return nullptr;
}
Loc Arch::get_pad_loc(const PadInfoPOD *pad) const
{
Loc loc;
switch (pad->side) {
case PIO_LEFT:
loc.x = 0;
loc.y = pad->offset;
break;
case PIO_RIGHT:
loc.x = chip_info->width - 1;
loc.y = pad->offset;
break;
case PIO_TOP:
loc.x = pad->offset;
loc.y = 0;
break;
case PIO_BOTTOM:
loc.x = pad->offset;
loc.y = chip_info->height - 1;
}
loc.z = pad->pio_index;
return loc;
}
BelId Arch::get_pad_pio_bel(const PadInfoPOD *pad) const
{
if (pad == nullptr || pad->offset == -1)
return BelId();
return getBelByLocation(get_pad_loc(pad));
}
const PadInfoPOD *Arch::get_bel_pad(BelId bel) const
{
Loc loc = getBelLocation(bel);
int side = -1, offset = -1;
// Convert (x, y) to (side, offset)
if (loc.x == 0) {
side = PIO_LEFT;
offset = loc.y;
} else if (loc.x == (chip_info->width - 1)) {
side = PIO_RIGHT;
offset = loc.y;
} else if (loc.y == 0) {
side = PIO_TOP;
offset = loc.x;
} else if (loc.y == (chip_info->height - 1)) {
side = PIO_BOTTOM;
offset = loc.x;
} else {
return nullptr;
}
// Lookup in the list of pads
for (auto &pad : chip_info->pads) {
if (pad.side == side && pad.offset == offset && pad.pio_index == loc.z)
return &pad;
}
return nullptr;
}
std::string Arch::get_pad_functions(const PadInfoPOD *pad) const
{
std::string s;
for (auto f : pad->func_strs) {
if (!s.empty())
s += '/';
s += IdString(f).str(this);
}
return s;
}
// -----------------------------------------------------------------------
// Helper for cell timing lookups
namespace {
template <typename Tres, typename Tgetter, typename Tkey>
int db_binary_search(const Tres *list, int count, Tgetter key_getter, Tkey key)
{
if (count < 7) {
for (int i = 0; i < count; i++) {
if (key_getter(list[i]) == key) {
return i;
}
}
} else {
int b = 0, e = count - 1;
while (b <= e) {
int i = (b + e) / 2;
if (key_getter(list[i]) == key) {
return i;
}
if (key_getter(list[i]) > key)
e = i - 1;
else
b = i + 1;
}
}
return -1;
}
} // namespace
bool Arch::is_dsp_cell(const CellInfo *cell) const
{
return cell->type.in(id_MULT18_CORE, id_MULT18X36_CORE, id_MULT36_CORE, id_PREADD9_CORE, id_REG18_CORE,
id_MULT9_CORE);
}
int Arch::get_cell_timing_idx(IdString cell_type, IdString cell_variant) const
{
return db_binary_search(
speed_grade->cell_types.get(), speed_grade->cell_types.size(),
[](const CellTimingPOD &ct) { return std::make_pair(ct.cell_type, ct.cell_variant); },
std::make_pair(cell_type.index, cell_variant.index));
}
bool Arch::lookup_cell_delay(int type_idx, IdString from_port, IdString to_port, DelayQuad &delay) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.prop_delays.get(), ct.prop_delays.size(),
[](const CellPropDelayPOD &pd) { return std::make_pair(pd.to_port, pd.from_port); },
std::make_pair(to_port.index, from_port.index));
if (dly_idx == -1)
return false;
delay = DelayQuad(ct.prop_delays[dly_idx].min_delay, ct.prop_delays[dly_idx].max_delay);
return true;
}
void Arch::lookup_cell_setuphold(int type_idx, IdString from_port, IdString clock, DelayPair &setup,
DelayPair &hold) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.setup_holds.get(), ct.setup_holds.size(),
[](const CellSetupHoldPOD &sh) { return std::make_pair(sh.sig_port, sh.clock_port); },
std::make_pair(from_port.index, clock.index));
NPNR_ASSERT(dly_idx != -1);
setup.min_delay = ct.setup_holds[dly_idx].min_setup;
setup.max_delay = ct.setup_holds[dly_idx].max_setup;
hold.min_delay = ct.setup_holds[dly_idx].min_hold;
hold.max_delay = ct.setup_holds[dly_idx].max_hold;
}
void Arch::lookup_cell_setuphold_clock(int type_idx, IdString from_port, IdString &clock, DelayPair &setup,
DelayPair &hold) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.setup_holds.get(), ct.setup_holds.size(), [](const CellSetupHoldPOD &sh) { return sh.sig_port; },
from_port.index);
NPNR_ASSERT(dly_idx != -1);
clock = IdString(ct.setup_holds[dly_idx].clock_port);
setup.min_delay = ct.setup_holds[dly_idx].min_setup;
setup.max_delay = ct.setup_holds[dly_idx].max_setup;
hold.min_delay = ct.setup_holds[dly_idx].min_hold;
hold.max_delay = ct.setup_holds[dly_idx].max_hold;
}
void Arch::lookup_cell_clock_out(int type_idx, IdString to_port, IdString &clock, DelayQuad &delay) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.prop_delays.get(), ct.prop_delays.size(), [](const CellPropDelayPOD &pd) { return pd.to_port; },
to_port.index);
NPNR_ASSERT(dly_idx != -1);
clock = IdString(ct.prop_delays[dly_idx].from_port);
delay = DelayQuad(ct.prop_delays[dly_idx].min_delay, ct.prop_delays[dly_idx].max_delay);
}
TimingPortClass Arch::lookup_port_type(int type_idx, IdString port, PortType dir, IdString clock) const
{
if (dir == PORT_IN) {
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
// If a setup-hold entry exists, then this is a register input
int sh_idx = db_binary_search(
ct.setup_holds.get(), ct.setup_holds.size(),
[](const CellSetupHoldPOD &sh) { return std::make_pair(sh.sig_port, sh.clock_port); },
std::make_pair(port.index, clock.index));
return (sh_idx != -1) ? TMG_REGISTER_INPUT : TMG_COMB_INPUT;
} else {
DelayQuad dly;
// If a clock-to-out entry exists, then this is a register output
return lookup_cell_delay(type_idx, clock, port, dly) ? TMG_REGISTER_OUTPUT : TMG_COMB_OUTPUT;
}
}
// -----------------------------------------------------------------------
bool Arch::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
CellInfo *root_cell = cells.at(cluster).get();
placement.clear();
NPNR_ASSERT(root_bel != BelId());
Loc root_loc = getBelLocation(root_bel);
if (root_cell->constr_abs_z) {
// Coerce root to absolute z constraint
root_loc.z = root_cell->constr_z;
root_bel = getBelByLocation(root_loc);
if (root_bel == BelId() || !isValidBelForCellType(root_cell->type, root_bel))
return false;
}
placement.emplace_back(root_cell, root_bel);
for (auto child : root_cell->constr_children) {
Loc child_loc;
child_loc.x = root_loc.x + child->constr_x;
child_loc.y = root_loc.y + child->constr_y;
child_loc.z = child->constr_abs_z ? child->constr_z : (root_loc.z + child->constr_z);
BelId child_bel = getBelByLocation(child_loc);
if (child_bel == BelId() || !isValidBelForCellType(child->type, child_bel)) {
// Special case for DSPs where the delta is sometimes different
bool fixed = false;
if (child->type == id_REG18_CORE && root_cell->is_9x9_18x18) {
child_loc.x -= 1;
child_loc.z += 2;
child_bel = getBelByLocation(child_loc);
if (child_bel != BelId() && isValidBelForCellType(child->type, child_bel))
fixed = true;
}
if (!fixed)
return false;
}
placement.emplace_back(child, child_bel);
}
return true;
}
// -----------------------------------------------------------------------
const std::string Arch::defaultPlacer = "heap";
const std::vector<std::string> Arch::availablePlacers = {"sa", "heap"};
const std::string Arch::defaultRouter = "router2";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
NEXTPNR_NAMESPACE_END