nextpnr/nexus/pack.cc
gatecat 59a29e5f42 nexus: Use a toposort when preplacing clock primitives
Signed-off-by: gatecat <gatecat@ds0.me>
2024-05-17 06:31:43 +02:00

2729 lines
118 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2020 gatecat <gatecat@ds0.me>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <boost/algorithm/string.hpp>
#include <queue>
#include <set>
NEXTPNR_NAMESPACE_BEGIN
namespace {
bool is_enabled(CellInfo *ci, IdString prop) { return str_or_default(ci->params, prop, "") == "ENABLED"; }
} // namespace
Property Arch::parse_lattice_param_from_cell(const CellInfo *ci, IdString prop, int width, int64_t defval) const
{
auto fnd = ci->params.find(prop);
if (fnd == ci->params.end())
return Property(defval, width);
return this->parse_lattice_param(fnd->second, prop, width, nameOf(ci));
}
// Parse a possibly-Lattice-style (C literal in Verilog string) style parameter
Property Arch::parse_lattice_param(const Property &val, IdString prop, int width, const char *ci) const
{
if (val.is_string && !prop.in(id_CSDECODE_A, id_CSDECODE_B, id_CSDECODE_R, id_CSDECODE_W)) {
const std::string &s = val.str;
Property temp;
if (boost::starts_with(s, "0b")) {
for (int i = int(s.length()) - 1; i >= 2; i--) {
char c = s.at(i);
if (c != '0' && c != '1' && c != 'x')
log_error("Invalid binary digit '%c' in property %s.%s\n", c, ci, nameOf(prop));
temp.str.push_back(c);
}
} else if (boost::starts_with(s, "0x")) {
for (int i = int(s.length()) - 1; i >= 2; i--) {
char c = s.at(i);
int nibble;
if (c >= '0' && c <= '9')
nibble = (c - '0');
else if (c >= 'a' && c <= 'f')
nibble = (c - 'a') + 10;
else if (c >= 'A' && c <= 'F')
nibble = (c - 'A') + 10;
else
log_error("Invalid hex digit '%c' in property %s.%s\n", c, ci, nameOf(prop));
for (int j = 0; j < 4; j++)
temp.str.push_back(((nibble >> j) & 0x1) ? Property::S1 : Property::S0);
}
} else {
int64_t ival = 0;
try {
if (boost::starts_with(s, "0d"))
ival = std::stoll(s.substr(2));
else
ival = std::stoll(s);
} catch (std::runtime_error &e) {
log_error("Invalid decimal value for property %s.%s", ci, nameOf(prop));
}
temp = Property(ival);
}
if (int(temp.size()) > width) {
for (auto b : temp.str.substr(width)) {
if (b == Property::S1)
log_error("Found value for property %s.%s with width greater than %d\n", ci, nameOf(prop), width);
}
}
temp.update_intval();
return temp.extract(0, width);
} else {
if (int(val.str.size()) > width) {
for (auto b : val.str.substr(width)) {
if (b == Property::S1)
log_error("Found bitvector value for property %s.%s with width greater than %d - perhaps a string "
"was "
"converted to bits?\n",
ci, nameOf(prop), width);
}
}
return val.extract(0, width);
}
}
struct NexusPacker
{
Context *ctx;
// Generic cell transformation
// Given cell name map and port map
// If port name is not found in port map; it will be copied as-is but stripping []
struct XFormRule
{
IdString new_type;
dict<IdString, IdString> port_xform;
dict<IdString, std::vector<IdString>> port_multixform;
dict<IdString, IdString> param_xform;
std::vector<std::pair<IdString, std::string>> set_attrs;
std::vector<std::pair<IdString, Property>> set_params;
std::vector<std::pair<IdString, Property>> default_params;
std::vector<std::tuple<IdString, IdString, int, int64_t>> parse_params;
};
void xform_cell(const dict<IdString, XFormRule> &rules, CellInfo *ci)
{
auto &rule = rules.at(ci->type);
ci->type = rule.new_type;
std::vector<IdString> orig_port_names;
for (auto &port : ci->ports)
orig_port_names.push_back(port.first);
for (auto pname : orig_port_names) {
if (rule.port_multixform.count(pname)) {
auto old_port = ci->ports.at(pname);
ci->disconnectPort(pname);
ci->ports.erase(pname);
for (auto new_name : rule.port_multixform.at(pname)) {
ci->ports[new_name].name = new_name;
ci->ports[new_name].type = old_port.type;
ci->connectPort(new_name, old_port.net);
}
} else {
IdString new_name;
if (rule.port_xform.count(pname)) {
new_name = rule.port_xform.at(pname);
} else {
std::string stripped_name;
for (auto c : pname.str(ctx))
if (c != '[' && c != ']')
stripped_name += c;
new_name = ctx->id(stripped_name);
}
if (new_name != pname) {
ci->renamePort(pname, new_name);
}
}
}
std::vector<IdString> xform_params;
for (auto &param : ci->params)
if (rule.param_xform.count(param.first))
xform_params.push_back(param.first);
for (auto param : xform_params)
ci->params[rule.param_xform.at(param)] = ci->params[param];
for (auto &attr : rule.set_attrs)
ci->attrs[attr.first] = attr.second;
for (auto &param : rule.default_params)
if (!ci->params.count(param.first))
ci->params[param.first] = param.second;
{
IdString old_param, new_param;
int width;
int64_t def;
for (const auto &p : rule.parse_params) {
std::tie(old_param, new_param, width, def) = p;
ci->params[new_param] = ctx->parse_lattice_param_from_cell(ci, old_param, width, def);
}
}
for (auto &param : rule.set_params)
ci->params[param.first] = param.second;
}
void generic_xform(const dict<IdString, XFormRule> &rules, bool print_summary = false)
{
std::map<std::string, int> cell_count;
std::map<std::string, int> new_types;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (rules.count(ci->type)) {
cell_count[ci->type.str(ctx)]++;
xform_cell(rules, ci);
new_types[ci->type.str(ctx)]++;
}
}
if (print_summary) {
for (auto &nt : new_types) {
log_info(" Created %d %s cells from:\n", nt.second, nt.first.c_str());
for (auto &cc : cell_count) {
if (rules.at(ctx->id(cc.first)).new_type != ctx->id(nt.first))
continue;
log_info(" %6dx %s\n", cc.second, cc.first.c_str());
}
}
}
}
void pack_luts()
{
log_info("Packing LUTs...\n");
dict<IdString, XFormRule> lut_rules;
lut_rules[id_LUT4].new_type = id_OXIDE_COMB;
lut_rules[id_LUT4].port_xform[id_Z] = id_F;
lut_rules[id_LUT4].parse_params.emplace_back(id_INIT, id_INIT, 16, 0);
lut_rules[id_INV].new_type = id_OXIDE_COMB;
lut_rules[id_INV].port_xform[id_Z] = id_F;
lut_rules[id_INV].port_xform[id_A] = id_A;
lut_rules[id_INV].set_params.emplace_back(id_INIT, 0x5555);
lut_rules[id_VHI].new_type = id_OXIDE_COMB;
lut_rules[id_VHI].port_xform[id_Z] = id_F;
lut_rules[id_VHI].set_params.emplace_back(id_INIT, 0xFFFF);
lut_rules[id_VLO].new_type = id_OXIDE_COMB;
lut_rules[id_VLO].port_xform[id_Z] = id_F;
lut_rules[id_VLO].set_params.emplace_back(id_INIT, 0x0000);
generic_xform(lut_rules);
}
void pack_ffs()
{
log_info("Packing FFs...\n");
dict<IdString, XFormRule> ff_rules;
for (auto type : {id_FD1P3BX, id_FD1P3DX, id_FD1P3IX, id_FD1P3JX}) {
ff_rules[type].new_type = id_OXIDE_FF;
ff_rules[type].port_xform[id_CK] = id_CLK;
ff_rules[type].port_xform[id_D] = id_M; // will be rerouted to DI later if applicable
ff_rules[type].port_xform[id_SP] = id_CE;
ff_rules[type].port_xform[id_Q] = id_Q;
ff_rules[type].default_params.emplace_back(id_CLKMUX, std::string("CLK"));
ff_rules[type].default_params.emplace_back(id_CEMUX, std::string("CE"));
ff_rules[type].default_params.emplace_back(id_LSRMUX, std::string("LSR"));
ff_rules[type].set_params.emplace_back(id_LSRMODE, std::string("LSR"));
}
// Async preload
ff_rules[id_FD1P3BX].set_params.emplace_back(id_SRMODE, std::string("ASYNC"));
ff_rules[id_FD1P3BX].set_params.emplace_back(id_REGSET, std::string("SET"));
ff_rules[id_FD1P3BX].port_xform[id_PD] = id_LSR;
// Async clear
ff_rules[id_FD1P3DX].set_params.emplace_back(id_SRMODE, std::string("ASYNC"));
ff_rules[id_FD1P3DX].set_params.emplace_back(id_REGSET, std::string("RESET"));
ff_rules[id_FD1P3DX].port_xform[id_CD] = id_LSR;
// Sync preload
ff_rules[id_FD1P3JX].set_params.emplace_back(id_SRMODE, std::string("LSR_OVER_CE"));
ff_rules[id_FD1P3JX].set_params.emplace_back(id_REGSET, std::string("SET"));
ff_rules[id_FD1P3JX].port_xform[id_PD] = id_LSR;
// Sync clear
ff_rules[id_FD1P3IX].set_params.emplace_back(id_SRMODE, std::string("LSR_OVER_CE"));
ff_rules[id_FD1P3IX].set_params.emplace_back(id_REGSET, std::string("RESET"));
ff_rules[id_FD1P3IX].port_xform[id_CD] = id_LSR;
generic_xform(ff_rules, true);
}
dict<IdString, BelId> reference_bels;
void autocreate_ports(CellInfo *cell)
{
// Automatically create ports for all inputs, and maybe outputs, of a cell; even if they were left off the
// instantiation so we can tie them to constants as appropriate This also checks for any cells that don't have
// corresponding bels
if (!reference_bels.count(cell->type)) {
// We need to look up a corresponding bel to get the list of input ports
BelId ref_bel;
for (BelId bel : ctx->getBels()) {
if (ctx->getBelType(bel) != cell->type)
continue;
ref_bel = bel;
break;
}
if (ref_bel == BelId())
log_error("Cell type '%s' instantiated as '%s' is not supported by this device.\n",
ctx->nameOf(cell->type), ctx->nameOf(cell));
reference_bels[cell->type] = ref_bel;
}
BelId bel = reference_bels.at(cell->type);
for (IdString pin : ctx->getBelPins(bel)) {
PortType dir = ctx->getBelPinType(bel, pin);
if (dir != PORT_IN)
continue;
if (cell->ports.count(pin))
continue;
if (cell->type == id_OXIDE_COMB && pin == id_SEL)
continue; // doesn't always exist and not needed
cell->ports[pin].name = pin;
cell->ports[pin].type = dir;
}
}
NetInfo *get_const_net(IdString type)
{
// Gets a constant net, given the driver type (VHI or VLO)
// If one doesn't exist already; then create it
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != type)
continue;
NetInfo *z = ci->getPort(id_Z);
if (z == nullptr)
continue;
return z;
}
NetInfo *new_net = ctx->createNet(ctx->idf("$CONST_%s_NET_", type.c_str(ctx)));
CellInfo *new_cell = ctx->createCell(ctx->idf("$CONST_%s_DRV_", type.c_str(ctx)), type);
new_cell->addOutput(id_Z);
new_cell->connectPort(id_Z, new_net);
if (type == id_VCC_DRV)
new_net->constant_value = id_VCC_DRV;
return new_net;
}
CellPinMux get_pin_needed_muxval(CellInfo *cell, IdString port)
{
NetInfo *net = cell->getPort(port);
if (net == nullptr || net->driver.cell == nullptr) {
// Pin is disconnected
// If a mux value exists already, honour it
CellPinMux exist_mux = ctx->get_cell_pinmux(cell, port);
if (exist_mux != PINMUX_SIG)
return exist_mux;
// Otherwise, look up the default value and use that
CellPinStyle pin_style = ctx->get_cell_pin_style(cell, port);
if ((pin_style & PINDEF_MASK) == PINDEF_0)
return PINMUX_0;
else if ((pin_style & PINDEF_MASK) == PINDEF_1)
return PINMUX_1;
else
return PINMUX_SIG;
}
// Look to see if the driver is an inverter or constant
IdString drv_type = net->driver.cell->type;
if (drv_type == id_INV)
return PINMUX_INV;
else if (drv_type == id_VLO)
return PINMUX_0;
else if (drv_type == id_VHI)
return PINMUX_1;
else
return PINMUX_SIG;
}
void uninvert_port(CellInfo *cell, IdString port)
{
// Rewire a port so it is driven by the input to an inverter
NetInfo *net = cell->getPort(port);
NPNR_ASSERT(net != nullptr && net->driver.cell != nullptr && net->driver.cell->type == id_INV);
CellInfo *inv = net->driver.cell;
cell->disconnectPort(port);
NetInfo *inv_a = inv->getPort(id_A);
if (inv_a != nullptr) {
cell->connectPort(port, inv_a);
}
}
void trim_design()
{
// Remove unused inverters and high/low drivers
std::vector<IdString> trim_cells;
std::vector<IdString> trim_nets;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_INV && ci->type != id_VLO && ci->type != id_VHI && ci->type != id_VCC_DRV)
continue;
NetInfo *z = ci->getPort(id_Z);
if (z == nullptr) {
trim_cells.push_back(ci->name);
continue;
}
if (!z->users.empty())
continue;
ci->disconnectPort(id_A);
trim_cells.push_back(ci->name);
trim_nets.push_back(z->name);
}
for (IdString rem_net : trim_nets)
ctx->nets.erase(rem_net);
for (IdString rem_cell : trim_cells)
ctx->cells.erase(rem_cell);
}
std::string remove_brackets(const std::string &name)
{
std::string new_name;
new_name.reserve(name.size());
for (char c : name)
if (c != '[' && c != ']')
new_name.push_back(c);
return new_name;
}
void prim_to_core(CellInfo *cell, IdString new_type = {})
{
// Convert a primitive to a '_CORE' variant
if (new_type == IdString())
new_type = ctx->id(cell->type.str(ctx) + "_CORE");
cell->type = new_type;
std::set<IdString> port_names;
for (auto port : cell->ports)
port_names.insert(port.first);
for (IdString port : port_names) {
IdString new_name = ctx->id(remove_brackets(port.str(ctx)));
if (new_name != port)
cell->renamePort(port, new_name);
}
}
NetInfo *gnd_net = nullptr, *vcc_net = nullptr, *dedi_vcc_net = nullptr;
void process_inv_constants(CellInfo *cell)
{
// Automatically create any extra inputs needed; so we can set them accordingly
autocreate_ports(cell);
for (auto &port : cell->ports) {
// Iterate over all inputs
if (port.second.type != PORT_IN)
continue;
IdString port_name = port.first;
CellPinMux req_mux = get_pin_needed_muxval(cell, port_name);
if (req_mux == PINMUX_SIG) {
// No special setting required, ignore
continue;
}
CellPinStyle pin_style = ctx->get_cell_pin_style(cell, port_name);
if (req_mux == PINMUX_INV) {
// Pin is inverted. If there is a hard inverter; then use it
if (pin_style & PINOPT_INV) {
uninvert_port(cell, port_name);
ctx->set_cell_pinmux(cell, port_name, PINMUX_INV);
}
} else if (req_mux == PINMUX_0 || req_mux == PINMUX_1) {
// Pin is tied to a constant
// If there is a hard constant option; use it
if ((pin_style & int(req_mux)) == req_mux) {
if ((cell->type == id_OXIDE_COMB) && (req_mux == PINMUX_1)) {
// We need to add a connection to the dedicated Vcc resource that can feed these cell ports
cell->disconnectPort(port_name);
cell->connectPort(port_name, dedi_vcc_net);
continue;
}
cell->disconnectPort(port_name);
ctx->set_cell_pinmux(cell, port_name, req_mux);
} else if (port.second.net == nullptr) {
// If the port is disconnected; and there is no hard constant
// then we need to connect it to the relevant soft-constant net
cell->connectPort(port_name, (req_mux == PINMUX_1) ? vcc_net : gnd_net);
}
}
}
}
void prepare_io()
{
// Find the actual IO buffer corresponding to a port; and copy attributes across to it
// Note that this relies on Yosys to do IO buffer inference, to match vendor tooling behaviour
// In all cases the nextpnr-inserted IO buffers are removed as redundant.
for (auto &port : ctx->ports) {
if (!ctx->cells.count(port.first))
log_error("Port '%s' doesn't seem to have a corresponding top level IO\n", ctx->nameOf(port.first));
CellInfo *ci = ctx->cells.at(port.first).get();
PortRef top_port;
top_port.cell = nullptr;
bool is_npnr_iob = false;
if (ci->type == ctx->id("$nextpnr_ibuf") || ci->type == ctx->id("$nextpnr_iobuf")) {
// Might have an input buffer (IB etc) connected to it
is_npnr_iob = true;
NetInfo *o = ci->getPort(id_O);
if (o == nullptr)
;
else if (o->users.entries() > 1)
log_error("Top level pin '%s' has multiple input buffers\n", ctx->nameOf(port.first));
else if (o->users.entries() == 1)
top_port = *o->users.begin();
}
if (ci->type == ctx->id("$nextpnr_obuf") || ci->type == ctx->id("$nextpnr_iobuf")) {
// Might have an output buffer (OB etc) connected to it
is_npnr_iob = true;
NetInfo *i = ci->getPort(id_I);
if (i != nullptr && i->driver.cell != nullptr) {
if (top_port.cell != nullptr)
log_error("Top level pin '%s' has multiple input/output buffers\n", ctx->nameOf(port.first));
top_port = i->driver;
}
// Edge case of a bidirectional buffer driving an output pin
if (i->users.entries() > 2) {
log_error("Top level pin '%s' has illegal buffer configuration\n", ctx->nameOf(port.first));
} else if (i->users.entries() == 2) {
if (top_port.cell != nullptr)
log_error("Top level pin '%s' has illegal buffer configuration\n", ctx->nameOf(port.first));
for (auto &usr : i->users) {
if (usr.cell->type == ctx->id("$nextpnr_obuf") || usr.cell->type == ctx->id("$nextpnr_iobuf"))
continue;
top_port = usr;
break;
}
}
}
if (!is_npnr_iob)
log_error("Port '%s' doesn't seem to have a corresponding top level IO (internal cell type mismatch)\n",
ctx->nameOf(port.first));
if (top_port.cell == nullptr) {
log_info("Trimming port '%s' as it is unused.\n", ctx->nameOf(port.first));
} else {
// Copy attributes to real IO buffer
if (ctx->io_attr.count(port.first)) {
for (auto &kv : ctx->io_attr.at(port.first)) {
top_port.cell->attrs[kv.first] = kv.second;
}
}
// Make sure that top level net is set correctly
port.second.net = top_port.cell->ports.at(top_port.port).net;
}
// Now remove the nextpnr-inserted buffer
ci->disconnectPort(id_I);
ci->disconnectPort(id_O);
ctx->cells.erase(port.first);
}
}
BelId get_bel_attr(const CellInfo *ci)
{
if (!ci->attrs.count(id_BEL))
return BelId();
return ctx->getBelByNameStr(ci->attrs.at(id_BEL).as_string());
}
void pack_io()
{
pool<IdString> iob_types = {id_IB, id_OB, id_OBZ, id_BB, id_BB_I3C_A, id_SEIO33,
id_SEIO18, id_DIFFIO18, id_SEIO33_CORE, id_SEIO18_CORE, id_DIFFIO18_CORE};
dict<IdString, XFormRule> io_rules;
// For the low level primitives, make sure we always preserve their type
io_rules[id_SEIO33_CORE].new_type = id_SEIO33_CORE;
io_rules[id_SEIO18_CORE].new_type = id_SEIO18_CORE;
io_rules[id_DIFFIO18_CORE].new_type = id_DIFFIO18_CORE;
// Some IO buffer types need a bit of pin renaming, too
io_rules[id_SEIO33].new_type = id_SEIO33_CORE;
io_rules[id_SEIO33].port_xform[id_PADDI] = id_O;
io_rules[id_SEIO33].port_xform[id_PADDO] = id_I;
io_rules[id_SEIO33].port_xform[id_PADDT] = id_T;
io_rules[id_SEIO33].port_xform[id_IOPAD] = id_B;
io_rules[id_BB_I3C_A] = XFormRule(io_rules[id_SEIO33]);
io_rules[id_SEIO18] = XFormRule(io_rules[id_SEIO33]);
io_rules[id_SEIO18].new_type = id_SEIO18_CORE;
io_rules[id_DIFFIO18] = XFormRule(io_rules[id_SEIO33]);
io_rules[id_DIFFIO18].new_type = id_DIFFIO18_CORE;
// Stage 0: deal with top level inserted IO buffers
prepare_io();
// Stage 1: setup constraints
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
// Iterate through all IO buffer primitives
if (!iob_types.count(ci->type))
continue;
// We need all IO constrained so we can pick the right IO bel type
// An improvement would be to allocate unconstrained IO here
if (!ci->attrs.count(id_LOC))
log_error("Found unconstrained IO '%s', these are currently unsupported\n", ctx->nameOf(ci));
// Convert package pin constraint to bel constraint
std::string loc = ci->attrs.at(id_LOC).as_string();
auto pad_info = ctx->get_pkg_pin_data(loc);
if (pad_info == nullptr)
log_error("IO '%s' is constrained to invalid pin '%s'\n", ctx->nameOf(ci), loc.c_str());
auto func = ctx->get_pad_functions(pad_info);
BelId bel = ctx->get_pad_pio_bel(pad_info);
if (bel == BelId()) {
log_error("IO '%s' is constrained to pin %s (%s) which is not a general purpose IO pin.\n",
ctx->nameOf(ci), loc.c_str(), func.c_str());
} else {
// Get IO type for reporting purposes
std::string io_type = str_or_default(ci->attrs, id_IO_TYPE, "LVCMOS33");
bool is_wr_bel = (ctx->getBelType(bel) == id_SEIO33_CORE);
if (!ctx->io_types.count(io_type))
log_error("IO '%s' has an unsupported IO type '%s'\n", ctx->nameOf(ci), io_type.c_str());
bool is_wr_io = (ctx->io_types.at(io_type).style & IOBANK_WR);
if (is_wr_io != is_wr_bel) {
log_error("%s IO '%s' requires a %s bank but is placed on pin %s in a %s bank.\n", io_type.c_str(),
ctx->nameOf(ci), (is_wr_io ? "wide-range" : "high-performance"), loc.c_str(),
(is_wr_bel ? "wide-range" : "high-performance"));
}
if (ctx->is_io_type_diff(io_type)) {
// Convert from SEIO18 to DIFFIO18
if (ctx->getBelType(bel) != id_SEIO18_CORE)
log_error("IO '%s' uses differential type '%s' but is placed on wide range pin '%s'\n",
ctx->nameOf(ci), io_type.c_str(), loc.c_str());
Loc bel_loc = ctx->getBelLocation(bel);
if (bel_loc.z != 0)
log_error("IO '%s' uses differential type '%s' but is placed on 'B' side pin '%s'\n",
ctx->nameOf(ci), io_type.c_str(), loc.c_str());
bel_loc.z = 2;
bel = ctx->getBelByLocation(bel_loc);
}
log_info("Constraining %s IO '%s' to pin %s (%s%sbel %s)\n", io_type.c_str(), ctx->nameOf(ci),
loc.c_str(), func.c_str(), func.empty() ? "" : "; ", ctx->nameOfBel(bel));
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
}
}
// Stage 2: apply rules for primitives that need them
generic_xform(io_rules, false);
// Stage 3: all other IO primitives become their bel type
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
// Iterate through all IO buffer primitives
if (!iob_types.count(ci->type))
continue;
// Skip those dealt with in stage 2
if (io_rules.count(ci->type))
continue;
// For non-bidirectional IO, we also need to configure tristate and rename B
if (ci->type == id_IB) {
ctx->set_cell_pinmux(ci, id_T, PINMUX_1);
ci->renamePort(id_I, id_B);
} else if (ci->type == id_OB) {
ctx->set_cell_pinmux(ci, id_T, PINMUX_0);
ci->renamePort(id_O, id_B);
} else if (ci->type == id_OBZ) {
ctx->set_cell_pinmux(ci, id_T, PINMUX_SIG);
ci->renamePort(id_O, id_B);
}
// Get the IO bel
BelId bel = get_bel_attr(ci);
// Set the cell type to the bel type
IdString type = ctx->getBelType(bel);
NPNR_ASSERT(type != IdString());
ci->type = type;
}
}
void pack_constants()
{
// Make sure we have high and low nets available
vcc_net = get_const_net(id_VHI);
gnd_net = get_const_net(id_VLO);
dedi_vcc_net = get_const_net(id_VCC_DRV);
// Iterate through cells
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
// Skip certain cells at this point
if (ci->type != id_LUT4 && ci->type != id_INV && ci->type != id_VHI && ci->type != id_VLO &&
ci->type != id_VCC_DRV)
process_inv_constants(ci);
}
// Remove superfluous inverters and constant drivers
trim_design();
}
// Using a BFS, search for bels of a given type either upstream or downstream of another cell
void find_connected_bels(const CellInfo *cell, IdString port, IdString dest_type, IdString dest_pin, int iter_limit,
std::vector<BelId> &candidates)
{
int iter = 0;
std::queue<WireId> visit;
pool<WireId> seen_wires;
pool<BelId> seen_bels;
BelId bel = get_bel_attr(cell);
if (bel == BelId())
return;
WireId start_wire = ctx->getBelPinWire(bel, port);
NPNR_ASSERT(start_wire != WireId());
PortType dir = ctx->getBelPinType(bel, port);
visit.push(start_wire);
while (!visit.empty() && (iter++ < iter_limit)) {
WireId cursor = visit.front();
visit.pop();
// Check to see if we have reached a valid bel pin
for (auto bp : ctx->getWireBelPins(cursor)) {
if (ctx->getBelType(bp.bel) != dest_type)
continue;
if (dest_pin != IdString() && bp.pin != dest_pin)
continue;
if (seen_bels.count(bp.bel))
continue;
seen_bels.insert(bp.bel);
candidates.push_back(bp.bel);
}
// Search in the appropriate direction up/downstream of the cursor
if (dir == PORT_OUT) {
for (PipId p : ctx->getPipsDownhill(cursor))
if (ctx->checkPipAvail(p)) {
WireId dst = ctx->getPipDstWire(p);
if (seen_wires.count(dst))
continue;
seen_wires.insert(dst);
visit.push(dst);
}
} else {
for (PipId p : ctx->getPipsUphill(cursor))
if (ctx->checkPipAvail(p)) {
WireId src = ctx->getPipSrcWire(p);
if (seen_wires.count(src))
continue;
seen_wires.insert(src);
visit.push(src);
}
}
}
}
// Find the nearest bel of a given type; matching a closure predicate
template <typename Tpred> BelId find_nearest_bel(const CellInfo *cell, IdString dest_type, Tpred predicate)
{
BelId origin = get_bel_attr(cell);
if (origin == BelId())
return BelId();
Loc origin_loc = ctx->getBelLocation(origin);
int best_distance = std::numeric_limits<int>::max();
BelId best_bel = BelId();
for (BelId bel : ctx->getBels()) {
if (ctx->getBelType(bel) != dest_type)
continue;
if (!predicate(bel))
continue;
Loc bel_loc = ctx->getBelLocation(bel);
int dist = std::abs(origin_loc.x - bel_loc.x) + std::abs(origin_loc.y - bel_loc.y);
if (dist < best_distance) {
best_distance = dist;
best_bel = bel;
}
}
return best_bel;
}
pool<BelId> used_bels;
// Pre-place a primitive based on routeability first and distance second
bool preplace_prim(CellInfo *cell, IdString pin, bool strict_routing)
{
std::vector<BelId> routeability_candidates;
if (cell->attrs.count(id_BEL))
return false;
NetInfo *pin_net = cell->getPort(pin);
if (pin_net == nullptr)
return false;
CellInfo *pin_drv = pin_net->driver.cell;
if (pin_drv == nullptr)
return false;
// Check based on routeability
find_connected_bels(pin_drv, pin_net->driver.port, cell->type, pin, 25000, routeability_candidates);
for (BelId cand : routeability_candidates) {
if (used_bels.count(cand))
continue;
log_info(" constraining %s '%s' to bel '%s' based on dedicated routing\n", ctx->nameOf(cell),
ctx->nameOf(cell->type), ctx->nameOfBel(cand));
cell->attrs[id_BEL] = ctx->getBelName(cand).str(ctx);
used_bels.insert(cand);
return true;
}
// Unless in strict mode; check based on simple distance too
BelId nearest = find_nearest_bel(pin_drv, cell->type, [&](BelId bel) { return !used_bels.count(bel); });
if (nearest != BelId()) {
log_info(" constraining %s '%s' to bel '%s'\n", ctx->nameOf(cell), ctx->nameOf(cell->type),
ctx->nameOfBel(nearest));
cell->attrs[id_BEL] = ctx->getBelName(nearest).str(ctx);
used_bels.insert(nearest);
return true;
}
return false;
}
// Pre-place a singleton primitive; so decisions can be made on routeability downstream of it
bool preplace_singleton(CellInfo *cell)
{
if (cell->attrs.count(id_BEL))
return false;
bool did_something = false;
for (BelId bel : ctx->getBels()) {
if (ctx->getBelType(bel) != cell->type)
continue;
// Check that the bel really is a singleton...
NPNR_ASSERT(!cell->attrs.count(id_BEL));
cell->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
log_info(" constraining %s '%s' to bel '%s'\n", ctx->nameOf(cell), ctx->nameOf(cell->type),
ctx->nameOfBel(bel));
did_something = true;
}
return did_something;
}
// Insert a buffer primitive in a signal; moving all users that match a predicate behind it
template <typename Tpred>
CellInfo *insert_buffer(NetInfo *net, IdString buffer_type, std::string name_postfix, IdString i, IdString o,
Tpred pred)
{
// Create the buffered net
NetInfo *buffered_net = ctx->createNet(ctx->idf("%s$%s", ctx->nameOf(net), name_postfix.c_str()));
// Create the buffer cell
CellInfo *buffer = ctx->createCell(ctx->idf("%s$drv_%s", ctx->nameOf(buffered_net), ctx->nameOf(buffer_type)),
buffer_type);
buffer->addInput(i);
buffer->addOutput(o);
// Drive the buffered net with the buffer
buffer->connectPort(o, buffered_net);
// Filter users
std::vector<PortRef> remaining_users;
for (auto &usr : net->users) {
if (pred(usr)) {
usr.cell->ports[usr.port].net = buffered_net;
usr.cell->ports[usr.port].user_idx = buffered_net->users.add(usr);
} else {
remaining_users.push_back(usr);
}
}
net->users.clear();
for (auto &usr : remaining_users)
usr.cell->ports.at(usr.port).user_idx = net->users.add(usr);
// Connect buffer input to original net
buffer->connectPort(i, net);
return buffer;
}
// Insert global buffers
void promote_globals()
{
std::vector<std::pair<int, IdString>> clk_fanout;
int available_globals = 16;
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
// Skip undriven nets; and nets that are already global
if (ni->driver.cell == nullptr)
continue;
if (ni->driver.cell->type == id_DCS) {
continue;
}
if (ni->driver.cell->type == id_DCC) {
--available_globals;
continue;
}
// Count the number of clock ports
int clk_count = 0;
for (const auto &usr : ni->users) {
auto port_style = ctx->get_cell_pin_style(usr.cell, usr.port);
if (port_style & PINGLB_CLK)
++clk_count;
}
if (clk_count > 0)
clk_fanout.emplace_back(clk_count, ni->name);
}
if (available_globals <= 0)
return;
// Sort clocks by max fanout
std::sort(clk_fanout.begin(), clk_fanout.end(), std::greater<std::pair<int, IdString>>());
log_info("Promoting globals...\n");
// Promote the N highest fanout clocks
for (size_t i = 0; i < std::min<size_t>(clk_fanout.size(), available_globals); i++) {
NetInfo *net = ctx->nets.at(clk_fanout.at(i).second).get();
log_info(" promoting clock net '%s'\n", ctx->nameOf(net));
insert_buffer(net, id_DCC, "glb_clk", id_CLKI, id_CLKO,
[&](const PortRef &port) { return port.cell->type != id_DCC; });
}
}
// Place certain global cells
void place_globals()
{
// Keep running until we reach a fixed point
log_info("Placing globals...\n");
TopoSort<IdString> sorter;
auto is_glb_cell = [&](const CellInfo *cell) {
return cell->type.in(id_OSC_CORE, id_DCC, id_PLL_CORE, id_DCS);
};
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_glb_cell(ci)) {
sorter.node(ci->name);
auto do_pin = [&](IdString pin) {
NetInfo *net = ci->getPort(pin);
if (!net || !net->driver.cell || !is_glb_cell(net->driver.cell))
return;
sorter.edge(net->driver.cell->name, ci->name);
};
if (ci->type == id_PLL_CORE) {
do_pin(id_REFCK);
} else if (ci->type == id_DCC) {
do_pin(id_CLKI);
} else if (ci->type == id_DCS) {
do_pin(id_CLK0);
do_pin(id_CLK1);
}
}
}
sorter.sort();
for (IdString cell_name : sorter.sorted) {
CellInfo *ci = ctx->cells.at(cell_name).get();
if (ci->type == id_OSC_CORE)
preplace_singleton(ci);
else if (ci->type == id_DCC)
preplace_prim(ci, id_CLKI, false);
else if (ci->type == id_PLL_CORE)
preplace_prim(ci, id_REFCK, false);
else if (ci->type == id_DCS)
preplace_prim(ci, id_CLK0, false);
}
}
// Get a bus port name
IdString bus(const std::string &base, int i) { return ctx->idf("%s[%d]", base.c_str(), i); }
IdString bus_flat(const std::string &base, int i) { return ctx->idf("%s%d", base.c_str(), i); }
// Pack a LUTRAM into COMB and RAMW cells
void pack_lutram()
{
// Do this so we don't have an iterate-and-modfiy situation
std::vector<CellInfo *> lutrams;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_DPR16X4)
continue;
lutrams.push_back(ci);
}
// Port permutation vectors
IdString ramw_wdo[4] = {id_D1, id_C1, id_A1, id_B1};
IdString ramw_wado[4] = {id_D0, id_B0, id_C0, id_A0};
IdString comb0_rad[4] = {id_D, id_B, id_C, id_A};
IdString comb1_rad[4] = {id_C, id_B, id_D, id_A};
for (CellInfo *ci : lutrams) {
// Create constituent cells
CellInfo *ramw = ctx->createCell(ctx->idf("%s$lutram_ramw$", ctx->nameOf(ci)), id_RAMW);
std::vector<CellInfo *> combs;
for (int i = 0; i < 4; i++)
combs.push_back(ctx->createCell(ctx->idf("%s$lutram_comb[%d]$", ctx->nameOf(ci), i), id_OXIDE_COMB));
// Rewiring - external WCK and WRE
ci->movePortTo(id_WCK, ramw, id_CLK);
ci->movePortTo(id_WRE, ramw, id_LSR);
// Internal WCK and WRE signals
ramw->addOutput(id_WCKO);
ramw->addOutput(id_WREO);
NetInfo *int_wck = ctx->createNet(ctx->idf("%s$lutram_wck$", ctx->nameOf(ci)));
NetInfo *int_wre = ctx->createNet(ctx->idf("%s$lutram_wre$", ctx->nameOf(ci)));
ramw->connectPort(id_WCKO, int_wck);
ramw->connectPort(id_WREO, int_wre);
uint64_t initval = ctx->parse_lattice_param_from_cell(ci, id_INITVAL, 64, 0).as_int64();
// Rewiring - buses
for (int i = 0; i < 4; i++) {
// Write address - external
ci->movePortTo(bus("WAD", i), ramw, ramw_wado[i]);
// Write data - external
ci->movePortTo(bus("DI", i), ramw, ramw_wdo[i]);
// Read data
ci->movePortTo(bus("DO", i), combs[i], id_F);
// Read address
NetInfo *rad = ci->getPort(bus("RAD", i));
if (rad != nullptr) {
for (int j = 0; j < 4; j++) {
IdString port = (j % 2) ? comb1_rad[i] : comb0_rad[i];
combs[j]->addInput(port);
combs[j]->connectPort(port, rad);
}
ci->disconnectPort(bus("RAD", i));
}
// Write address - internal
NetInfo *int_wad = ctx->createNet(ctx->idf("%s$lutram_wad[%d]$", ctx->nameOf(ci), i));
ramw->addOutput(bus_flat("WADO", i));
ramw->connectPort(bus_flat("WADO", i), int_wad);
for (int j = 0; j < 4; j++) {
combs[j]->addInput(bus_flat("WAD", i));
combs[j]->connectPort(bus_flat("WAD", i), int_wad);
}
// Write data - internal
NetInfo *int_wd = ctx->createNet(ctx->idf("%s$lutram_wd[%d]$", ctx->nameOf(ci), i));
ramw->addOutput(bus_flat("WDO", i));
ramw->connectPort(bus_flat("WDO", i), int_wd);
combs[i]->addInput(id_WDI);
combs[i]->connectPort(id_WDI, int_wd);
// Write clock and enable - internal
combs[i]->addInput(id_WCK);
combs[i]->addInput(id_WRE);
combs[i]->connectPort(id_WCK, int_wck);
combs[i]->connectPort(id_WRE, int_wre);
// Remap init val
uint64_t split_init = 0;
for (int j = 0; j < 16; j++)
if (initval & (1ULL << (4 * j + i)))
split_init |= (1 << j);
combs[i]->params[id_INIT] = Property(split_init, 16);
combs[i]->params[id_MODE] = std::string("DPRAM");
}
// Setup relative constraints
combs[0]->constr_z = 0;
combs[0]->constr_abs_z = true;
combs[0]->cluster = combs[0]->name;
for (int i = 1; i < 4; i++) {
combs[i]->constr_x = 0;
combs[i]->constr_y = 0;
combs[i]->constr_z = ((i / 2) << 3) | (i % 2);
combs[i]->constr_abs_z = true;
combs[i]->cluster = combs[0]->name;
combs[0]->constr_children.push_back(combs[i]);
}
ramw->constr_x = 0;
ramw->constr_y = 0;
ramw->constr_z = (2 << 3) | Arch::BEL_RAMW;
ramw->constr_abs_z = true;
ramw->cluster = combs[0]->name;
combs[0]->constr_children.push_back(ramw);
// Remove now-packed cell
ctx->cells.erase(ci->name);
}
}
void convert_prims()
{
// Convert primitives from their non-CORE variant to their CORE variant
static const dict<IdString, IdString> prim_map = {
{id_OSCA, id_OSC_CORE}, {id_DP16K, id_DP16K_MODE}, {id_PDP16K, id_PDP16K_MODE},
{id_PDPSC16K, id_PDPSC16K_MODE}, {id_SP16K, id_SP16K_MODE}, {id_FIFO16K, id_FIFO16K_MODE},
{id_SP512K, id_SP512K_MODE}, {id_DPSC512K, id_DPSC512K_MODE}, {id_PDPSC512K, id_PDPSC512K_MODE},
{id_PLL, id_PLL_CORE}, {id_DPHY, id_DPHY_CORE},
};
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (!prim_map.count(ci->type))
continue;
prim_to_core(ci, prim_map.at(ci->type));
}
}
void add_bus_xform(XFormRule &rule, const std::string &o, const std::string &n, int width, int old_offset = 0,
int new_offset = 0)
{
for (int i = 0; i < width; i++)
rule.port_xform[bus_flat(o, i + old_offset)] = bus_flat(n, i + new_offset);
}
void pack_bram()
{
dict<IdString, XFormRule> bram_rules;
bram_rules[id_DP16K_MODE].new_type = id_OXIDE_EBR;
bram_rules[id_DP16K_MODE].set_params.emplace_back(id_MODE, std::string("DP16K"));
bram_rules[id_DP16K_MODE].parse_params.emplace_back(id_CSDECODE_A, id_CSDECODE_A, 3, 7);
bram_rules[id_DP16K_MODE].parse_params.emplace_back(id_CSDECODE_B, id_CSDECODE_B, 3, 7);
// Pseudo dual port
bram_rules[id_PDP16K_MODE].new_type = id_OXIDE_EBR;
bram_rules[id_PDP16K_MODE].set_params.emplace_back(id_MODE, std::string("PDP16K"));
bram_rules[id_PDP16K_MODE].set_params.emplace_back(id_WEAMUX, std::string("1"));
bram_rules[id_PDP16K_MODE].parse_params.emplace_back(id_CSDECODE_R, id_CSDECODE_R, 3, 7);
bram_rules[id_PDP16K_MODE].parse_params.emplace_back(id_CSDECODE_W, id_CSDECODE_W, 3, 7);
bram_rules[id_PDP16K_MODE].port_xform[id_CLKW] = id_CLKA;
bram_rules[id_PDP16K_MODE].port_xform[id_CLKR] = id_CLKB;
bram_rules[id_PDP16K_MODE].port_xform[id_CEW] = id_CEA;
bram_rules[id_PDP16K_MODE].port_xform[id_CER] = id_CEB;
bram_rules[id_PDP16K_MODE].port_multixform[id_RST] = {id_RSTA, id_RSTB};
add_bus_xform(bram_rules[id_PDP16K_MODE], "ADW", "ADA", 14);
add_bus_xform(bram_rules[id_PDP16K_MODE], "ADR", "ADB", 14);
add_bus_xform(bram_rules[id_PDP16K_MODE], "CSW", "CSA", 3);
add_bus_xform(bram_rules[id_PDP16K_MODE], "CSR", "CSB", 3);
add_bus_xform(bram_rules[id_PDP16K_MODE], "DI", "DIA", 18, 0, 0);
add_bus_xform(bram_rules[id_PDP16K_MODE], "DI", "DIB", 18, 18, 0);
add_bus_xform(bram_rules[id_PDP16K_MODE], "DO", "DOB", 18, 0, 0);
add_bus_xform(bram_rules[id_PDP16K_MODE], "DO", "DOA", 18, 18, 0);
// Pseudo dual port; single clock
bram_rules[id_PDPSC16K_MODE] = XFormRule(bram_rules[id_PDP16K_MODE]);
bram_rules[id_PDPSC16K_MODE].set_params.clear();
bram_rules[id_PDPSC16K_MODE].set_params.emplace_back(id_MODE, std::string("PDPSC16K"));
bram_rules[id_PDPSC16K_MODE].set_params.emplace_back(id_WEAMUX, std::string("1"));
bram_rules[id_PDPSC16K_MODE].port_multixform[id_CLK] = {id_CLKA, id_CLKB};
log_info("Packing BRAM...\n");
generic_xform(bram_rules, true);
int wid = 2;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_OXIDE_EBR)
continue;
if (ci->params.count(id_WID))
continue;
ci->params[id_WID] = wid++;
}
}
void pack_lram()
{
dict<IdString, XFormRule> lram_rules;
lram_rules[id_SP512K_MODE].new_type = id_LRAM_CORE;
lram_rules[id_SP512K_MODE].set_params.emplace_back(id_EBR_SP_EN, std::string("ENABLE"));
lram_rules[id_SP512K_MODE].port_xform[id_CE] = id_CEA;
lram_rules[id_SP512K_MODE].port_xform[id_CS] = id_CSA;
lram_rules[id_SP512K_MODE].port_xform[id_WE] = id_WEA;
lram_rules[id_SP512K_MODE].port_xform[id_RSTOUT] = id_RSTA;
lram_rules[id_SP512K_MODE].port_xform[id_CEOUT] = id_OCEA;
lram_rules[id_SP512K_MODE].param_xform[id_OUTREG] = id_OUT_REGMODE_A;
add_bus_xform(lram_rules[id_SP512K_MODE], "DI", "DIA", 32);
add_bus_xform(lram_rules[id_SP512K_MODE], "DO", "DOA", 32);
add_bus_xform(lram_rules[id_SP512K_MODE], "AD", "ADA", 14);
add_bus_xform(lram_rules[id_SP512K_MODE], "BYTEEN_N", "BENA_N", 4);
lram_rules[id_PDPSC512K_MODE].new_type = id_LRAM_CORE;
lram_rules[id_PDPSC512K_MODE].port_xform[id_CEW] = id_CEA;
lram_rules[id_PDPSC512K_MODE].port_xform[id_CSW] = id_CSA;
lram_rules[id_PDPSC512K_MODE].port_xform[id_CER] = id_CEB;
lram_rules[id_PDPSC512K_MODE].port_xform[id_CSR] = id_CSB;
lram_rules[id_PDPSC512K_MODE].port_xform[id_WE] = id_WEA;
lram_rules[id_PDPSC512K_MODE].port_xform[id_RSTR] = id_RSTB;
lram_rules[id_PDPSC512K_MODE].param_xform[id_OUTREG] = id_OUT_REGMODE_B;
add_bus_xform(lram_rules[id_PDPSC512K_MODE], "DI", "DIA", 32);
add_bus_xform(lram_rules[id_PDPSC512K_MODE], "DO", "DOB", 32);
add_bus_xform(lram_rules[id_PDPSC512K_MODE], "ADW", "ADA", 14);
add_bus_xform(lram_rules[id_PDPSC512K_MODE], "ADR", "ADB", 14);
add_bus_xform(lram_rules[id_PDPSC512K_MODE], "BYTEEN_N", "BENA_N", 4);
lram_rules[id_DPSC512K_MODE].new_type = id_LRAM_CORE;
lram_rules[id_DPSC512K_MODE].port_xform[id_CEOUTA] = id_OCEA;
lram_rules[id_DPSC512K_MODE].port_xform[id_CEOUTB] = id_OCEB;
lram_rules[id_DPSC512K_MODE].param_xform[id_OUTREG_A] = id_OUT_REGMODE_A;
lram_rules[id_DPSC512K_MODE].param_xform[id_OUTREG_B] = id_OUT_REGMODE_B;
log_info("Packing LRAM...\n");
generic_xform(lram_rules, true);
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_LRAM_CORE)
continue;
if (str_or_default(ci->params, id_ECC_BYTE_SEL, "BYTE_EN") == "BYTE_EN")
continue;
for (int i = 0; i < 0x80; i++) {
// FIXME: document ECC and remove this DRC
std::string name = stringf("INITVAL_%02X", i);
if (!ci->params.count(ctx->id(name)))
continue;
if (ci->params.at(ctx->id(name)).str.find_last_not_of("0x") == std::string::npos)
continue;
log_error("LRAM initialisation is currently unsupported in ECC mode (to disable ECC, set ECC_BYTE_SEL "
"to BYTE_EN).\n");
}
}
}
void transform_iologic()
{
dict<IdString, XFormRule> iol_rules;
iol_rules[id_IDDRX1].new_type = id_IOLOGIC;
iol_rules[id_IDDRX1].set_params.emplace_back(id_MODE, std::string("IDDRX1_ODDRX1"));
iol_rules[id_IDDRX1].port_xform[id_SCLK] = id_SCLKIN;
iol_rules[id_IDDRX1].port_xform[id_RST] = id_LSRIN;
iol_rules[id_IDDRX1].port_xform[id_D] = id_DI;
iol_rules[id_IDDRX1].port_xform[id_Q0] = id_RXDATA0;
iol_rules[id_IDDRX1].port_xform[id_Q1] = id_RXDATA1;
iol_rules[id_ODDRX1].new_type = id_IOLOGIC;
iol_rules[id_ODDRX1].set_params.emplace_back(id_MODE, std::string("IDDRX1_ODDRX1"));
iol_rules[id_ODDRX1].set_params.emplace_back(ctx->id("IDDRX1_ODDRX1.OUTPUT"), std::string("ENABLED"));
iol_rules[id_ODDRX1].port_xform[id_SCLK] = id_SCLKOUT;
iol_rules[id_ODDRX1].port_xform[id_RST] = id_LSROUT;
iol_rules[id_ODDRX1].port_xform[id_Q] = id_DOUT;
iol_rules[id_ODDRX1].port_xform[id_D0] = id_TXDATA0;
iol_rules[id_ODDRX1].port_xform[id_D1] = id_TXDATA1;
generic_xform(iol_rules, true);
}
void merge_iol_cell(CellInfo *base, CellInfo *mergee)
{
for (auto &param : mergee->params) {
if (param.first == id_MODE && base->params.count(id_MODE) && param.second.as_string() == "IREG_OREG")
continue; // mixed tristate register and I/ODDR
base->params[param.first] = param.second;
}
for (auto &port : mergee->ports) {
mergee->movePortTo(port.first, base, port.first);
}
ctx->cells.erase(mergee->name);
}
void constrain_merge_iol()
{
dict<IdString, std::vector<CellInfo *>> io_to_iol;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_IOLOGIC)
continue;
CellInfo *iob = nullptr;
NetInfo *di = ci->getPort(id_DI);
if (di != nullptr && di->driver.cell != nullptr)
iob = di->driver.cell;
NetInfo *dout = ci->getPort(id_DOUT);
if (dout != nullptr && dout->users.entries() == 1)
iob = (*dout->users.begin()).cell;
NetInfo *tout = ci->getPort(id_TOUT);
if (tout != nullptr && tout->users.entries() == 1)
iob = (*tout->users.begin()).cell;
if (iob == nullptr ||
(iob->type != id_SEIO18_CORE && iob->type != id_SEIO33_CORE && iob->type != id_DIFFIO18_CORE))
log_error("Failed to find associated IOB for IOLOGIC %s\n", ctx->nameOf(ci));
io_to_iol[iob->name].push_back(ci);
}
for (auto &io_iol : io_to_iol) {
// Merge all IOLOGIC on an IO into a base IOLOGIC
CellInfo *iol = io_iol.second.at(0);
for (size_t i = 1; i < io_iol.second.size(); i++)
merge_iol_cell(iol, io_iol.second.at(i));
// Constrain, and update type if appropriate
CellInfo *iob = ctx->cells.at(io_iol.first).get();
if (iob->type == id_SEIO33_CORE)
iol->type = id_SIOLOGIC;
Loc iol_loc = ctx->getBelLocation(get_bel_attr(iob));
if (iob->type == id_DIFFIO18_CORE)
iol_loc.z = 3;
else
iol_loc.z += 3;
BelId iol_bel = ctx->getBelByLocation(iol_loc);
NPNR_ASSERT(iol_bel != BelId());
NPNR_ASSERT(ctx->getBelType(iol_bel) == iol->type);
log_info("Constraining IOLOGIC %s to bel %s\n", ctx->nameOf(iol), ctx->nameOfBel(iol_bel));
iol->attrs[id_BEL] = ctx->getBelName(iol_bel).str(ctx);
}
}
void pack_iologic()
{
log_info("Packing IOLOGIC...\n");
transform_iologic();
constrain_merge_iol();
}
void pack_widefn()
{
std::vector<CellInfo *> widefns;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_WIDEFN9)
continue;
widefns.push_back(ci);
}
for (CellInfo *ci : widefns) {
std::vector<CellInfo *> combs;
for (int i = 0; i < 2; i++)
combs.push_back(ctx->createCell(ctx->idf("%s$widefn_comb[%d]$", ctx->nameOf(ci), i), id_OXIDE_COMB));
for (int i = 0; i < 2; i++) {
ci->movePortTo(bus_flat("A", i), combs[i], id_A);
ci->movePortTo(bus_flat("B", i), combs[i], id_B);
ci->movePortTo(bus_flat("C", i), combs[i], id_C);
ci->movePortTo(bus_flat("D", i), combs[i], id_D);
}
ci->movePortTo(id_SEL, combs[0], id_SEL);
ci->movePortTo(id_Z, combs[0], id_OFX);
NetInfo *f1 = ctx->createNet(ctx->idf("%s$widefn_f1$", ctx->nameOf(ci)));
combs[0]->addInput(id_F1);
combs[1]->addOutput(id_F);
combs[1]->connectPort(id_F, f1);
combs[0]->connectPort(id_F1, f1);
combs[0]->params[id_INIT] = ctx->parse_lattice_param_from_cell(ci, id_INIT0, 16, 0);
combs[1]->params[id_INIT] = ctx->parse_lattice_param_from_cell(ci, id_INIT1, 16, 0);
combs[1]->cluster = combs[0]->name;
combs[1]->constr_x = 0;
combs[1]->constr_y = 0;
combs[1]->constr_z = 1;
combs[1]->constr_abs_z = false;
combs[0]->cluster = combs[0]->name;
combs[0]->constr_children.push_back(combs[1]);
ctx->cells.erase(ci->name);
}
}
void pack_carries()
{
// Find root carry cells
log_info("Packing carries...\n");
std::vector<CellInfo *> roots;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_CCU2)
continue;
NetInfo *cin = ci->getPort(id_CIN);
if (cin) {
if (cin->driver.cell && cin->driver.cell->type != id_CCU2) {
log_error("CCU2 '%s' CIN net '%s' driven by non-CCU2 cell '%s'.\n", ctx->nameOf(ci),
ctx->nameOf(cin), ctx->nameOf(cin->driver.cell));
}
continue;
}
roots.push_back(ci);
}
for (CellInfo *root : roots) {
CellInfo *ci = root;
CellInfo *constr_base = nullptr;
int idx = 0;
do {
if (ci->type != id_CCU2)
log_error("Found non-carry cell '%s' in carry chain!\n", ctx->nameOf(ci));
// Split the carry into two COMB cells
std::vector<CellInfo *> combs;
for (int i = 0; i < 2; i++)
combs.push_back(ctx->createCell(ctx->idf("%s$ccu2_comb[%d]$", ctx->nameOf(ci), i), id_OXIDE_COMB));
// Rewire LUT ports
for (int i = 0; i < 2; i++) {
combs[i]->params[id_MODE] = std::string("CCU2");
ci->movePortTo(bus_flat("A", i), combs[i], id_A);
ci->movePortTo(bus_flat("B", i), combs[i], id_B);
ci->movePortTo(bus_flat("C", i), combs[i], id_C);
ci->movePortTo(bus_flat("D", i), combs[i], id_D);
ci->movePortTo(bus_flat("S", i), combs[i], id_F);
}
// External carry chain
ci->movePortTo(id_CIN, combs[0], id_FCI);
ci->movePortTo(id_COUT, combs[1], id_FCO);
// Copy parameters
if (ci->params.count(id_INJECT))
combs[0]->params[id_INJECT] = ci->params[id_INJECT];
combs[0]->params[id_INIT] = ctx->parse_lattice_param_from_cell(ci, id_INIT0, 16, 0);
combs[1]->params[id_INIT] = ctx->parse_lattice_param_from_cell(ci, id_INIT1, 16, 0);
// Internal carry net between the two split COMB cells
NetInfo *int_cy = ctx->createNet(ctx->idf("%s$widefn_int_cy$", ctx->nameOf(ci)));
combs[0]->addOutput(id_FCO);
combs[1]->addInput(id_FCI);
combs[0]->connectPort(id_FCO, int_cy);
combs[1]->connectPort(id_FCI, int_cy);
// Relative constraints
for (int i = 0; i < 2; i++) {
int z = (idx % 8);
combs[i]->constr_z = ((z / 2) << 3) | (z % 2);
combs[i]->constr_abs_z = true;
if (constr_base == nullptr) {
// This is the very first cell in the chain
constr_base = combs[i];
constr_base->cluster = constr_base->name;
} else {
combs[i]->constr_x = (idx / 8);
combs[i]->constr_y = 0;
combs[i]->cluster = constr_base->name;
constr_base->constr_children.push_back(combs[i]);
}
++idx;
}
ctx->cells.erase(ci->name);
// Find next cell in chain, if it exists
NetInfo *fco = combs[1]->getPort(id_FCO);
ci = nullptr;
if (fco != nullptr) {
if (fco->users.entries() > 1)
log_error("Carry cell '%s' has multiple fanout on FCO\n", ctx->nameOf(combs[1]));
else if (fco->users.entries() == 1) {
auto &u0 = *fco->users.begin();
NPNR_ASSERT(u0.port == id_CIN);
ci = u0.cell;
}
}
} while (ci != nullptr);
}
}
// Function to check if a wire is general routing; and therefore skipped for cascade purposes
bool is_general_routing(WireId wire)
{
std::string name = ctx->nameOf(IdString(ctx->wire_data(wire).name));
if (name.size() == 3 && (name.substr(0, 2) == "JF" || name.substr(0, 2) == "JQ"))
return true;
if (name.size() == 12 && (name.substr(0, 10) == "JCIBMUXOUT"))
return true;
return false;
}
// Automatically generate cascade connections downstream of a cell
// using the temporary placement that we use solely to access the routing graph
void auto_cascade_cell(CellInfo *cell, BelId bel, const dict<BelId, CellInfo *> &bel2cell)
{
// Create outputs based on the actual bel
for (auto bp : ctx->getBelPins(bel)) {
if (ctx->getBelPinType(bel, bp) != PORT_OUT)
continue;
if (cell->ports.count(bp))
continue;
cell->addOutput(bp);
}
for (auto &port : cell->ports) {
// Skip if not an output, or being used already for something else
if (port.second.type != PORT_OUT || port.second.net != nullptr)
continue;
// Get the corresponding start wire
WireId start_wire = ctx->getBelPinWire(bel, port.first);
// Skip if the start wire doesn't actually exist
if (start_wire == WireId())
continue;
if (ctx->debug)
log_info(" searching cascade routing for wire %s:\n", ctx->nameOfWire(start_wire));
// Standard BFS-type exploration
std::queue<WireId> visit;
pool<WireId> in_queue;
visit.push(start_wire);
in_queue.insert(start_wire);
int iter = 0;
const int iter_limit = 1000;
while (!visit.empty() && (iter++ < iter_limit)) {
WireId cursor = visit.front();
visit.pop();
if (ctx->debug)
log_info(" visit '%s'\n", ctx->nameOfWire(cursor));
// Check for downstream bel pins
bool found_active_pins = false;
for (auto bp : ctx->getWireBelPins(cursor)) {
auto fnd_cell = bel2cell.find(bp.bel);
// Always skip unused bels, and don't set found_active_pins
// so we can route through these if needed
if (fnd_cell == bel2cell.end())
continue;
// Skip outputs
if (ctx->getBelPinType(bp.bel, bp.pin) != PORT_IN)
continue;
if (ctx->debug)
log_info(" bel %s pin %s\n", ctx->nameOfBel(bp.bel), ctx->nameOf(bp.pin));
found_active_pins = true;
CellInfo *other_cell = fnd_cell->second;
if (other_cell == cell)
continue;
// Skip pins that are already in use
if (other_cell->getPort(bp.pin) != nullptr)
continue;
// Create the input if it doesn't exist
if (!other_cell->ports.count(bp.pin))
other_cell->addInput(bp.pin);
// Make the connection
cell->connectPorts(port.first, other_cell, bp.pin);
if (ctx->debug)
log_info(" found %s.%s\n", ctx->nameOf(other_cell), ctx->nameOf(bp.pin));
}
// By doing this we never attempt to route-through bels
// that are actually in use
if (found_active_pins)
continue;
// Search downstream pips for wires to add to the queue
for (auto pip : ctx->getPipsDownhill(cursor)) {
WireId dst = ctx->getPipDstWire(pip);
// Ignore general routing, as that isn't a useful cascade path
if (is_general_routing(dst))
continue;
if (in_queue.count(dst))
continue;
in_queue.insert(dst);
visit.push(dst);
}
}
}
}
// Insert all the cascade connections for a group of cells given the root
void auto_cascade_group(CellInfo *root)
{
auto get_child_loc = [&](Loc base, const CellInfo *sub) {
Loc l = base;
l.x += sub->constr_x;
l.y += sub->constr_y;
l.z = sub->constr_abs_z ? sub->constr_z : (sub->constr_z + base.z);
return l;
};
// We first create a temporary placement so we can access the routing graph
bool found = false;
dict<BelId, CellInfo *> bel2cell;
dict<IdString, BelId> cell2bel;
for (BelId root_bel : ctx->getBels()) {
if (ctx->getBelType(root_bel) != root->type)
continue;
Loc root_loc = ctx->getBelLocation(root_bel);
found = true;
bel2cell.clear();
cell2bel.clear();
bel2cell[root_bel] = root;
cell2bel[root->name] = root_bel;
for (auto child : root->constr_children) {
// Check that a valid placement exists for all children in the macro at this location
Loc c_loc = get_child_loc(root_loc, child);
BelId c_bel = ctx->getBelByLocation(c_loc);
if (c_bel == BelId()) {
found = false;
break;
}
if (ctx->getBelType(c_bel) != child->type) {
found = false;
break;
}
bel2cell[c_bel] = child;
cell2bel[child->name] = c_bel;
}
if (found)
break;
}
if (!found)
log_error("Failed to create temporary placement for cell '%s' of type '%s'\n", ctx->nameOf(root),
ctx->nameOf(root->type));
// Create the necessary new ports
autocreate_ports(root);
for (auto child : root->constr_children)
autocreate_ports(child);
// Insert cascade connections from all cells in the macro
auto_cascade_cell(root, cell2bel.at(root->name), bel2cell);
for (auto child : root->constr_children)
auto_cascade_cell(child, cell2bel.at(child->name), bel2cell);
}
// Create a DSP cell
CellInfo *create_dsp_cell(IdString base_name, IdString type, CellInfo *constr_base, int dx, int dz)
{
IdString name = ctx->idf("%s/%s_x%d_z%d", ctx->nameOf(base_name), ctx->nameOf(type), dx, dz);
CellInfo *cell = ctx->createCell(name, type);
if (constr_base != nullptr) {
// We might be constraining against an already-constrained cell
if (constr_base->cluster != ClusterId() && constr_base->cluster != constr_base->name) {
cell->constr_x = dx + constr_base->constr_x;
cell->constr_y = constr_base->constr_y;
cell->constr_z = dz + constr_base->constr_z;
cell->constr_abs_z = false;
cell->cluster = constr_base->cluster;
ctx->cells.at(constr_base->cluster)->constr_children.push_back(cell);
} else {
cell->constr_x = dx;
cell->constr_y = 0;
cell->constr_z = dz;
cell->constr_abs_z = false;
cell->cluster = constr_base->name;
constr_base->cluster = constr_base->name;
constr_base->constr_children.push_back(cell);
}
}
// Setup some default parameters
if (type == id_PREADD9_CORE) {
cell->params[id_SIGNEDSTATIC_EN] = std::string("DISABLED");
cell->params[id_BYPASS_PREADD9] = std::string("BYPASS");
cell->params[id_CSIGNED] = std::string("DISABLED");
cell->params[id_GSR] = std::string("DISABLED");
cell->params[id_OPC] = std::string("INPUT_B_AS_PREADDER_OPERAND");
cell->params[id_PREADDCAS_EN] = std::string("DISABLED");
cell->params[id_REGBYPSBL] = std::string("REGISTER");
cell->params[id_REGBYPSBR0] = std::string("BYPASS");
cell->params[id_REGBYPSBR1] = std::string("BYPASS");
cell->params[id_RESET] = std::string("SYNC");
cell->params[id_SHIFTBL] = std::string("BYPASS");
cell->params[id_SHIFTBR] = std::string("REGISTER");
cell->params[id_SIGNEDSTATIC_EN] = std::string("DISABLED");
cell->params[id_SR_18BITSHIFT_EN] = std::string("DISABLED");
cell->params[id_SUBSTRACT_EN] = std::string("SUBTRACTION");
} else if (type == id_MULT9_CORE) {
cell->params[id_ASIGNED_OPERAND_EN] = std::string("DISABLED");
cell->params[id_BYPASS_MULT9] = std::string("USED");
cell->params[id_GSR] = std::string("DISABLED");
cell->params[id_REGBYPSA1] = std::string("BYPASS");
cell->params[id_REGBYPSA2] = std::string("BYPASS");
cell->params[id_REGBYPSB] = std::string("BYPASS");
cell->params[id_RESET] = std::string("SYNC");
cell->params[id_GSR] = std::string("DISABLED");
cell->params[id_SHIFTA] = std::string("DISABLED");
cell->params[id_SIGNEDSTATIC_EN] = std::string("DISABLED");
cell->params[id_SR_18BITSHIFT_EN] = std::string("DISABLED");
} else if (type == id_MULT18_CORE) {
cell->params[id_MULT18X18] = std::string("ENABLED");
cell->params[id_ROUNDBIT] = std::string("ROUND_TO_BIT0");
cell->params[id_ROUNDHALFUP] = std::string("DISABLED");
cell->params[id_ROUNDRTZI] = std::string("ROUND_TO_ZERO");
cell->params[id_SFTEN] = std::string("DISABLED");
} else if (type == id_MULT18X36_CORE) {
cell->params[id_SFTEN] = std::string("DISABLED");
cell->params[id_MULT18X36] = std::string("ENABLED");
cell->params[id_MULT36] = std::string("DISABLED");
cell->params[id_MULT36X36H] = std::string("USED_AS_LOWER_BIT_GENERATION");
cell->params[id_ROUNDHALFUP] = std::string("DISABLED");
cell->params[id_ROUNDRTZI] = std::string("ROUND_TO_ZERO");
cell->params[id_ROUNDBIT] = std::string("ROUND_TO_BIT0");
} else if (type == id_MULT36_CORE) {
cell->params[id_MULT36X36] = std::string("ENABLED");
} else if (type == id_REG18_CORE) {
cell->params[id_GSR] = std::string("DISABLED");
cell->params[id_REGBYPS] = std::string("BYPASS");
cell->params[id_RESET] = std::string("SYNC");
} else if (type == id_ACC54_CORE) {
cell->params[id_ACC108CASCADE] = std::string("BYPASSCASCADE");
cell->params[id_ACCUBYPS] = std::string("USED");
cell->params[id_ACCUMODE] = std::string("MODE7");
cell->params[id_ADDSUBSIGNREGBYPS1] = std::string("BYPASS");
cell->params[id_ADDSUBSIGNREGBYPS2] = std::string("BYPASS");
cell->params[id_ADDSUBSIGNREGBYPS3] = std::string("BYPASS");
cell->params[id_ADDSUB_CTRL] = std::string("ADD_ADD_CTRL_54_BIT_ADDER");
cell->params[id_CASCOUTREGBYPS] = std::string("BYPASS");
cell->params[id_CINREGBYPS1] = std::string("BYPASS");
cell->params[id_CINREGBYPS2] = std::string("BYPASS");
cell->params[id_CINREGBYPS3] = std::string("BYPASS");
cell->params[id_CONSTSEL] = std::string("BYPASS");
cell->params[id_CREGBYPS1] = std::string("BYPASS");
cell->params[id_CREGBYPS2] = std::string("BYPASS");
cell->params[id_CREGBYPS3] = std::string("BYPASS");
cell->params[id_DSPCASCADE] = std::string("DISABLED");
cell->params[id_GSR] = std::string("DISABLED");
cell->params[id_LOADREGBYPS1] = std::string("BYPASS");
cell->params[id_LOADREGBYPS2] = std::string("BYPASS");
cell->params[id_LOADREGBYPS3] = std::string("BYPASS");
cell->params[id_M9ADDSUBREGBYPS1] = std::string("BYPASS");
cell->params[id_M9ADDSUBREGBYPS2] = std::string("BYPASS");
cell->params[id_M9ADDSUBREGBYPS3] = std::string("BYPASS");
cell->params[id_M9ADDSUB_CTRL] = std::string("ADDITION");
cell->params[id_OUTREGBYPS] = std::string("BYPASS");
cell->params[id_RESET] = std::string("SYNC");
cell->params[id_ROUNDHALFUP] = std::string("DISABLED");
cell->params[id_ROUNDRTZI] = std::string("ROUND_TO_ZERO");
cell->params[id_ROUNDBIT] = std::string("ROUND_TO_BIT0");
cell->params[id_SFTEN] = std::string("DISABLED");
cell->params[id_SIGN] = std::string("DISABLED");
cell->params[id_STATICOPCODE_EN] = std::string("DISABLED");
}
return cell;
}
void copy_global_dsp_params(CellInfo *orig, CellInfo *root)
{
if (root->params.count(id_GSR) && orig->params.count(id_GSR))
root->params[id_GSR] = orig->params.at(id_GSR);
if (root->params.count(id_RESET) && orig->params.count(id_RESETMODE))
root->params[id_RESET] = orig->params.at(id_RESETMODE);
for (auto child : root->constr_children)
copy_global_dsp_params(orig, child);
}
void copy_param(CellInfo *orig, IdString orig_name, CellInfo *dst, IdString dst_name)
{
if (!orig->params.count(orig_name))
return;
dst->params[dst_name] = orig->params[orig_name];
}
struct DSPMacroType
{
int a_width; // width of 'A' input
int b_width; // width of 'B' input
int c_width; // width of 'C' input
int z_width; // width of 'Z' output
int N9x9; // number of 9x9 mult+preadds
int N18x18; // number of 18x18 mult
int N18x36; // number of 18x36 mult
bool has_preadd; // preadder is used
bool has_addsub; // post-multiply ALU addsub is used
int wide; // DSP is a "wide" (dot-product) variant
};
const dict<IdString, DSPMacroType> dsp_types = {
{id_MULT9X9, {9, 9, 0, 18, 1, 0, 0, false, false, -1}},
{id_MULT18X18, {18, 18, 0, 36, 2, 1, 0, false, false, -1}},
{id_MULT18X36, {18, 36, 0, 54, 4, 2, 1, false, false, -1}},
{id_MULT36X36, {36, 36, 0, 72, 8, 4, 2, false, false, -1}},
{id_MULTPREADD9X9, {9, 9, 9, 18, 1, 0, 0, true, false, -1}},
{id_MULTPREADD18X18, {18, 18, 18, 36, 2, 1, 0, true, false, -1}},
{id_MULTADDSUB18X18, {18, 18, 54, 54, 2, 1, 0, false, true, -1}},
{id_MULTADDSUB36X36, {36, 36, 108, 108, 8, 4, 2, false, true, -1}},
{id_MULTADDSUB9X9WIDE, {36, 36, 54, 54, 4, 0, 0, false, true, 9}},
};
void pack_dsps()
{
log_info("Packing DSPs...\n");
std::vector<CellInfo *> to_remove;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (!dsp_types.count(ci->type))
continue;
auto &mt = dsp_types.at(ci->type);
int Nreg18 = (mt.wide > 0) ? 4 : (mt.z_width / 18);
// Create consituent cells
std::vector<CellInfo *> preadd9(mt.N9x9), mult9(mt.N9x9), mult18(mt.N18x18), mult18x36(mt.N18x36),
reg18(Nreg18);
for (int i = 0; i < mt.N9x9; i++) {
preadd9[i] = create_dsp_cell(ci->name, id_PREADD9_CORE, preadd9[0], (i / 4) * 4 + (i / 2) % 2, (i % 2));
mult9[i] = create_dsp_cell(ci->name, id_MULT9_CORE, preadd9[0], (i / 4) * 4 + (i / 2) % 2, (i % 2) + 2);
}
for (int i = 0; i < mt.N18x18; i++)
mult18[i] = create_dsp_cell(ci->name, id_MULT18_CORE, preadd9[0], (i / 2) * 4 + i % 2, 4);
if (mt.N18x18 <= 2)
preadd9[0]->is_9x9_18x18 = true;
for (int i = 0; i < mt.N18x36; i++)
mult18x36[i] = create_dsp_cell(ci->name, id_MULT18X36_CORE, preadd9[0], (i * 4) + 2, 4);
for (int i = 0; i < Nreg18; i++) {
int idx = i;
if (mt.has_addsub && (i >= 4))
idx += 2;
reg18[i] = create_dsp_cell(ci->name, id_REG18_CORE, preadd9[0], (idx / 4) * 4 + 2, idx % 4);
}
// Configure the 9x9 preadd+multiply blocks
for (int i = 0; i < mt.N9x9; i++) {
int b_start = (9 * i) % mt.b_width;
int a_start = 9 * (i % 2) + 18 * (i / 4);
if (mt.wide > 0) {
// Dot-product mode special case
ci->copyPortBusTo(ctx->idf("B%d", (i * 9) / mt.wide), (i * 9) % mt.wide, true, preadd9[i], id_B, 0,
false, 9);
ci->copyPortBusTo(ctx->idf("A%d", (i * 9) / mt.wide), (i * 9) % mt.wide, true, mult9[i], id_A, 0,
false, 9);
ci->copyPortTo(id_CLK, mult9[i], id_CLK);
ci->copyPortTo((i > 1) ? id_CEA2A3 : id_CEA0A1, mult9[i], id_CEA);
ci->copyPortTo((i > 1) ? id_RSTA2A3 : id_RSTA0A1, mult9[i], id_RSTA);
ci->copyPortTo(id_CLK, preadd9[i], id_CLK);
ci->copyPortTo((i > 1) ? id_CEB2B3 : id_CEB0B1, preadd9[i], id_CEB);
ci->copyPortTo((i > 1) ? id_RSTB2B3 : id_RSTB0B1, preadd9[i], id_RSTB);
// Copy register configuration
copy_param(ci, ctx->idf("REGINPUTAB%d", i), mult9[i], id_REGBYPSA1);
copy_param(ci, ctx->idf("REGINPUTAB%d", i), preadd9[i], id_REGBYPSBR0);
} else {
// B input split across pre-adders
ci->copyPortBusTo(id_B, b_start, true, preadd9[i], id_B, 0, false, 9);
// A input split across MULT9s
ci->copyPortBusTo(id_A, a_start, true, mult9[i], id_A, 0, false, 9);
// Connect control set signals
ci->copyPortTo(id_CLK, mult9[i], id_CLK);
ci->copyPortTo(id_CEA, mult9[i], id_CEA);
ci->copyPortTo(id_RSTA, mult9[i], id_RSTA);
ci->copyPortTo(id_CLK, preadd9[i], id_CLK);
ci->copyPortTo(id_CEB, preadd9[i], id_CEB);
ci->copyPortTo(id_RSTB, preadd9[i], id_RSTB);
// Copy register configuration
copy_param(ci, id_REGINPUTA, mult9[i], id_REGBYPSA1);
copy_param(ci, id_REGINPUTB, preadd9[i], id_REGBYPSBR0);
}
// Connect and configure pre-adder if it isn't bypassed
if (mt.has_preadd) {
ci->copyPortBusTo(id_C, 9 * i, true, preadd9[i], id_C, 0, false, 9);
if (i == (mt.N9x9 - 1))
ci->copyPortTo(id_SIGNEDC, preadd9[i], id_C9);
copy_param(ci, id_REGINPUTC, preadd9[i], id_REGBYPSBL);
ci->copyPortTo(id_CEC, preadd9[i], id_CECL);
ci->copyPortTo(id_RSTC, preadd9[i], id_RSTCL);
// Enable preadder
preadd9[i]->params[id_BYPASS_PREADD9] = std::string("USED");
preadd9[i]->params[id_OPC] = std::string("INPUT_C_AS_PREADDER_OPERAND");
if (i > 0)
preadd9[i]->params[id_PREADDCAS_EN] = std::string("ENABLED");
} else if (mt.has_addsub) {
// Connect only for routeability reasons
ci->copyPortBusTo(id_C, 10 * i + ((i >= 4) ? 14 : 0), true, preadd9[i], id_C, 0, false, 10);
}
// Connect up signedness for the most significant nonet
if (((b_start + 9) == mt.b_width) || (mt.wide > 0))
ci->copyPortTo(mt.has_addsub ? id_SIGNED : id_SIGNEDB, preadd9[i], id_BSIGNED);
if (((a_start + 9) == mt.a_width) || (mt.wide > 0))
ci->copyPortTo(mt.has_addsub ? id_SIGNED : id_SIGNEDA, mult9[i], id_ASIGNED);
}
bool mult36_used = (mt.a_width >= 36) && (mt.b_width >= 36) && !(mt.wide > 0);
// Configure mult18x36s
for (int i = 0; i < mt.N18x36; i++) {
mult18x36[i]->params[id_MULT36] = mult36_used ? std::string("ENABLED") : std::string("DISABLED");
mult18x36[i]->params[id_MULT36X36H] = (i == 1) ? std::string("USED_AS_HIGHER_BIT_GENERATION")
: std::string("USED_AS_LOWER_BIT_GENERATION");
}
// Create final mult36 if needed
if (mult36_used) {
create_dsp_cell(ci->name, id_MULT36_CORE, preadd9[0], 6, 6);
}
// Configure output registers
for (int i = 0; i < Nreg18; i++) {
// Output split across reg18s
if (!mt.has_addsub)
ci->movePortBusTo(id_Z, i * 18, true, reg18[i], id_PP, 0, false, 18);
// Connect control set signals
ci->copyPortTo(id_CLK, reg18[i], id_CLK);
ci->copyPortTo(mt.has_addsub ? id_CEPIPE : id_CEOUT, reg18[i], id_CEP);
ci->copyPortTo(mt.has_addsub ? id_RSTPIPE : id_RSTOUT, reg18[i], id_RSTP);
// Copy register configuration
copy_param(ci, mt.has_addsub ? id_REGPIPELINE : id_REGOUTPUT, reg18[i], id_REGBYPS);
}
if (mt.has_addsub) {
// Create and configure ACC54s
int Nacc54 = mt.c_width / 54;
std::vector<CellInfo *> acc54(Nacc54);
for (int i = 0; i < Nacc54; i++)
acc54[i] = create_dsp_cell(ci->name, id_ACC54_CORE, preadd9[0], (i * 4) + 2, 5);
for (int i = 0; i < Nacc54; i++) {
// C addsub input
ci->copyPortBusTo(id_C, 54 * i, true, acc54[i], id_CINPUT, 0, false, 54);
// Output
ci->movePortBusTo(id_Z, i * 54, true, acc54[i], id_SUM0, 0, false, 36);
ci->movePortBusTo(id_Z, i * 54 + 36, true, acc54[i], id_SUM1, 0, false, 18);
// Control set
ci->copyPortTo(id_CLK, acc54[i], id_CLK);
ci->copyPortTo(id_RSTCTRL, acc54[i], id_RSTCTRL);
ci->copyPortTo(id_CECTRL, acc54[i], id_CECTRL);
ci->copyPortTo(id_RSTCIN, acc54[i], id_RSTCIN);
ci->copyPortTo(id_CECIN, acc54[i], id_CECIN);
ci->copyPortTo(id_RSTOUT, acc54[i], id_RSTO);
ci->copyPortTo(id_CEOUT, acc54[i], id_CEO);
ci->copyPortTo(id_RSTC, acc54[i], id_RSTC);
ci->copyPortTo(id_CEC, acc54[i], id_CEC);
// Add/acc control
if (i == 0)
ci->copyPortTo(id_CIN, acc54[i], id_CIN);
else
ctx->set_cell_pinmux(acc54[i], id_CIN, PINMUX_1);
if (i == (Nacc54 - 1))
ci->copyPortTo(id_SIGNED, acc54[i], id_SIGNEDI);
if (mt.wide > 0) {
ci->movePortBusTo(id_ADDSUB, 0, true, acc54[i], id_ADDSUB, 0, false, 2);
ci->movePortBusTo(id_ADDSUB, 2, true, acc54[i], id_M9ADDSUB, 0, false, 2);
} else {
ci->copyPortTo(id_ADDSUB, acc54[i], id_ADDSUB0);
ci->copyPortTo(id_ADDSUB, acc54[i], id_ADDSUB1);
}
ci->copyPortTo(id_LOADC, acc54[i], id_LOAD);
// Configuration
copy_param(ci, id_REGINPUTC, acc54[i], id_CREGBYPS1);
copy_param(ci, id_REGADDSUB, acc54[i], id_ADDSUBSIGNREGBYPS1);
copy_param(ci, id_REGADDSUB, acc54[i], id_M9ADDSUBREGBYPS1);
copy_param(ci, id_REGLOADC, acc54[i], id_LOADREGBYPS1);
copy_param(ci, id_REGLOADC2, acc54[i], id_LOADREGBYPS2);
copy_param(ci, id_REGCIN, acc54[i], id_CINREGBYPS1);
copy_param(ci, id_REGPIPELINE, acc54[i], id_CREGBYPS2);
copy_param(ci, id_REGPIPELINE, acc54[i], id_ADDSUBSIGNREGBYPS2);
copy_param(ci, id_REGPIPELINE, acc54[i], id_CINREGBYPS2);
copy_param(ci, id_REGPIPELINE, acc54[i], id_M9ADDSUBREGBYPS2);
copy_param(ci, id_REGOUTPUT, acc54[i], id_OUTREGBYPS);
if (mt.wide > 0) {
acc54[i]->params[id_ACCUMODE] = std::string("MODE4");
} else if (i == 1) {
// Top ACC54 in a 108-bit config
acc54[i]->params[id_ACCUMODE] = std::string("MODE6");
acc54[i]->params[id_ACC108CASCADE] = std::string("CASCADE2ACCU54TOFORMACCU108");
} else if ((i == 0) && (Nacc54 == 2)) {
// Bottom ACC54 in a 108-bit config
acc54[i]->params[id_ACCUMODE] = std::string("MODE2");
}
}
}
// Misc finalisation
copy_global_dsp_params(ci, preadd9[0]);
auto_cascade_group(preadd9[0]);
to_remove.push_back(ci);
}
for (auto cell : to_remove) {
for (auto &port : cell->ports)
cell->disconnectPort(port.first);
ctx->cells.erase(cell->name);
}
}
void generate_constraints()
{
log_info("Generating derived timing constraints...\n");
auto MHz = [&](delay_t a) { return 1000.0 / ctx->getDelayNS(a); };
auto equals_epsilon = [](delay_t a, delay_t b) { return (std::abs(a - b) / std::max(double(b), 1.0)) < 1e-3; };
pool<IdString> user_constrained, changed_nets;
for (auto &net : ctx->nets) {
if (net.second->clkconstr != nullptr)
user_constrained.insert(net.first);
changed_nets.insert(net.first);
}
auto get_period = [&](CellInfo *ci, IdString port, delay_t &period) {
if (!ci->ports.count(port))
return false;
NetInfo *from = ci->ports.at(port).net;
if (from == nullptr || from->clkconstr == nullptr)
return false;
period = from->clkconstr->period.min_delay;
return true;
};
auto set_period = [&](CellInfo *ci, IdString port, delay_t period) {
if (!ci->ports.count(port))
return;
NetInfo *to = ci->ports.at(port).net;
if (to == nullptr)
return;
if (to->clkconstr != nullptr) {
if (!equals_epsilon(to->clkconstr->period.min_delay, period) && user_constrained.count(to->name))
log_warning(
" Overriding derived constraint of %.1f MHz on net %s with user-specified constraint of "
"%.1f MHz.\n",
MHz(to->clkconstr->period.min_delay), to->name.c_str(ctx), MHz(period));
return;
}
to->clkconstr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
to->clkconstr->low.min_delay = period / 2;
to->clkconstr->low.max_delay = period / 2;
to->clkconstr->high.min_delay = period / 2;
to->clkconstr->high.max_delay = period / 2;
to->clkconstr->period.min_delay = period;
to->clkconstr->period.max_delay = period;
log_info(" Derived frequency constraint of %.1f MHz for net %s\n", MHz(to->clkconstr->period.min_delay),
to->name.c_str(ctx));
changed_nets.insert(to->name);
};
auto copy_constraint = [&](CellInfo *ci, IdString fromPort, IdString toPort, double ratio = 1.0) {
if (!ci->ports.count(fromPort) || !ci->ports.count(toPort))
return;
NetInfo *from = ci->ports.at(fromPort).net, *to = ci->ports.at(toPort).net;
if (from == nullptr || from->clkconstr == nullptr || to == nullptr)
return;
if (to->clkconstr != nullptr) {
if (!equals_epsilon(to->clkconstr->period.min_delay,
delay_t(from->clkconstr->period.min_delay / ratio)) &&
user_constrained.count(to->name))
log_warning(
" Overriding derived constraint of %.1f MHz on net %s with user-specified constraint of "
"%.1f MHz.\n",
MHz(to->clkconstr->period.min_delay), to->name.c_str(ctx),
MHz(delay_t(from->clkconstr->period.min_delay / ratio)));
return;
}
to->clkconstr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
to->clkconstr->low =
DelayPair(ctx->getDelayFromNS(ctx->getDelayNS(from->clkconstr->low.min_delay) / ratio));
to->clkconstr->high =
DelayPair(ctx->getDelayFromNS(ctx->getDelayNS(from->clkconstr->high.min_delay) / ratio));
to->clkconstr->period =
DelayPair(ctx->getDelayFromNS(ctx->getDelayNS(from->clkconstr->period.min_delay) / ratio));
log_info(" Derived frequency constraint of %.1f MHz for net %s\n", MHz(to->clkconstr->period.min_delay),
to->name.c_str(ctx));
changed_nets.insert(to->name);
};
// Run in a loop while constraints are changing to deal with dependencies
// Iteration limit avoids hanging in crazy loopback situation (self-fed PLLs or dividers, etc)
int iter = 0;
const int itermax = 5000;
while (!changed_nets.empty() && iter < itermax) {
++iter;
pool<IdString> changed_cells;
for (auto net : changed_nets) {
for (auto &user : ctx->nets.at(net)->users)
if (user.port.in(id_CLKI, id_REFCK))
changed_cells.insert(user.cell->name);
auto &drv = ctx->nets.at(net)->driver;
if (iter == 1 && drv.cell != nullptr) {
if (drv.cell->type == id_OSC_CORE && (drv.port.in(id_HFCLKOUT, id_LFCLKOUT)))
changed_cells.insert(drv.cell->name);
if (drv.cell->type == id_DCC && drv.port == id_CLKO)
changed_cells.insert(drv.cell->name);
if (drv.cell->type == id_DCS && drv.port == id_DCSOUT)
changed_cells.insert(drv.cell->name);
}
}
changed_nets.clear();
for (auto cell : changed_cells) {
CellInfo *ci = ctx->cells.at(cell).get();
if (ci->type == id_DCC) {
copy_constraint(ci, id_CLKI, id_CLKO, 1);
} else if (ci->type == id_DCS) {
// For DCC copy the worst case ("fastest") constraint
delay_t period_clk0 = 0, period_clk1 = 0;
bool have_clk0 = get_period(ci, id_CLK0, period_clk0);
bool have_clk1 = get_period(ci, id_CLK1, period_clk1);
if (have_clk0 && !have_clk1) {
copy_constraint(ci, id_CLK0, id_DCSOUT);
} else if (!have_clk0 && have_clk1) {
copy_constraint(ci, id_CLK1, id_DCSOUT);
} else if (have_clk0 && have_clk1) {
set_period(ci, id_DCSOUT, std::min(period_clk0, period_clk1));
}
} else if (ci->type == id_OSC_CORE) {
int div = int_or_default(ci->params, id_HF_CLK_DIV, 128);
const float tol = 1.07f; // OSCA has +/-7% frequency tolerance, assume the worst case.
set_period(ci, id_HFCLKOUT, delay_t((1.0e6 / 450) * (div + 1) / tol));
set_period(ci, id_LFCLKOUT, delay_t((1.0e9 / 32) / tol));
} else if (ci->type == id_PLL_CORE) {
static const std::array<IdString, 6> div{id_DIVA, id_DIVB, id_DIVC, id_DIVD, id_DIVE, id_DIVF};
static const std::array<IdString, 6> output{id_CLKOP, id_CLKOS, id_CLKOS2,
id_CLKOS3, id_CLKOS4, id_CLKOS5};
delay_t period_in;
if (!get_period(ci, id_REFCK, period_in))
continue;
log_info(" Input frequency of PLL '%s' is constrained to %.1f MHz\n", ci->name.c_str(ctx),
MHz(period_in));
int input_div = ctx->parse_lattice_param_from_cell(ci, id_REF_MMD_DIG, 8, 1).as_int64();
period_in *= input_div;
int feedback_div = ctx->parse_lattice_param_from_cell(ci, id_REF_MMD_DIG, 8, 1).as_int64();
bool found_fbk = false;
std::string clkmux_fb = str_or_default(ci->params, id_CLKMUX_FB, "CMUX_CLKOP");
for (int i = 0; i < 6; i++) {
// Find which output is being used for feedback
if (clkmux_fb != stringf("CMUX_%s", output[i].c_str(ctx)))
continue;
// Multiply feedback output divider with
feedback_div *= (ctx->parse_lattice_param_from_cell(ci, div[i], 7, 0).as_int64() + 1);
found_fbk = true;
}
if (!found_fbk) {
log_warning("Unable to determine feedback path, skipping PLL timing constraint derivation for "
"'%s'\n",
ctx->nameOf(ci));
continue;
}
delay_t vco_period = period_in / feedback_div;
log_info(" Derived VCO frequency of PLL '%s' is %.1f MHz\n", ci->name.c_str(ctx),
MHz(vco_period));
for (int i = 0; i < 6; i++) {
set_period(ci, output[i],
(ctx->parse_lattice_param_from_cell(ci, div[i], 7, 0).as_int64() + 1) * vco_period);
}
}
}
}
}
void pack_plls()
{
const dict<IdString, std::string> pll_defaults = {
{id_FLOCK_CTRL, "2X"}, {id_FLOCK_EN, "ENABLED"}, {id_FLOCK_SRC_SEL, "REFCLK"},
{id_DIV_DEL, "0b0000001"}, {id_FBK_PI_RC, "0b1100"}, {id_FBK_PR_IC, "0b1000"},
};
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_PLL_CORE) {
// Extra log to phys rules
ci->renamePort(id_PLLPOWERDOWN_N, id_PLLPDN);
ci->renamePort(id_LMMIWRRD_N, id_LMMIWRRDN);
ci->renamePort(id_LMMIRESET_N, id_LMMIRESETN);
for (auto &defparam : pll_defaults)
if (!ci->params.count(defparam.first))
ci->params[defparam.first] = defparam.second;
}
}
}
// Map LOC attribute on DPHY_CORE to a bel
// TDPHY_CORE2 is Radiant 2.0 style, DPHY0 is Radiant 2.2
// TODO: LIFCL-17 (perhaps remove the hardcoded map)
const dict<std::string, std::string> dphy_loc_map = {
{"TDPHY_CORE2", "X4/Y0/TDPHY_CORE2"},
{"DPHY0", "X4/Y0/TDPHY_CORE2"},
{"TDPHY_CORE26", "X28/Y0/TDPHY_CORE26"},
{"DPHY1", "X28/Y0/TDPHY_CORE26"},
};
void pack_ip()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_DPHY_CORE) {
auto loc_attr = ci->attrs.find(id_LOC);
if (loc_attr == ci->attrs.end())
log_error("LOC attribute is required for DPHY_CORE '%s'\n", ctx->nameOf(ci));
const std::string &loc = loc_attr->second.as_string();
auto dphy_bel = dphy_loc_map.find(loc);
if (dphy_bel == dphy_loc_map.end())
log_error("Invalid location '%s' for DPHY_CORE '%s'\n", loc.c_str(), ctx->nameOf(ci));
ci->attrs[id_BEL] = dphy_bel->second;
}
}
}
// Finds and returns a flip-flop that drives the given port of an IOB cell
// If an associated IOLOGIC cell is provided then checks whether the
// flip-flop matches its clock and reset.
CellInfo *get_ff_for_iob(CellInfo *iob, IdString port, CellInfo *iol)
{
// Get the net
NetInfo *net = iob->getPort(port);
if (net == nullptr) {
return nullptr;
}
// Get the flip-flop that drives it
CellInfo *ff = net->driver.cell;
if (ff->type != id_OXIDE_FF) {
return nullptr;
}
// Get clock nets of IOLOGIC and the flip-flop
if (iol != nullptr) {
NetInfo *iol_c = iol->getPort(id_SCLKOUT);
NetInfo *ff_c = ff->getPort(id_CLK);
// If one of them is floating or it is not the same net then abort
if (iol_c == nullptr || ff_c == nullptr) {
return nullptr;
}
if (iol_c->name != ff_c->name) {
return nullptr;
}
}
// Get reset nets of IOLOGIC and the flip-flop
if (iol != nullptr) {
NetInfo *iol_r = iol->getPort(id_LSROUT);
NetInfo *ff_r = ff->getPort(id_LSR);
// If one of them is floating or it is not the same net then abort.
// But both can be floating.
if (!(iol_r == nullptr && ff_r == nullptr)) {
if (iol_r == nullptr || ff_r == nullptr) {
return nullptr;
}
if (iol_r->name != ff_r->name) {
return nullptr;
}
}
}
// FIXME: Check if the flip-flop has:
// - non-inverted clock
// - same reset "type" as ODDR
// - others ?
return ff;
}
// IOLOGIC requires some special handling around itself and IOB. This
// function does that.
void handle_iologic()
{
log_info("Packing IOLOGIC...\n");
// Map of flip-flop cells that drive IOLOGIC+IOB pairs
dict<IdString, std::vector<std::pair<IdString, IdString>>> tff_map;
for (auto &cell : ctx->cells) {
CellInfo *iol = cell.second.get();
if (iol->type != id_SIOLOGIC && iol->type != id_IOLOGIC) {
continue;
}
bool isIDDR = false;
bool isODDR = false;
CellInfo *iob = nullptr;
NetInfo *di = iol->getPort(id_DI);
if (di != nullptr && di->driver.cell != nullptr) {
iob = di->driver.cell;
isIDDR = true;
}
NetInfo *dout = iol->getPort(id_DOUT);
if (dout != nullptr && dout->users.entries() == 1) {
iob = (*dout->users.begin()).cell;
isODDR = true;
}
NetInfo *tout = iol->getPort(id_TOUT);
if (tout != nullptr && tout->users.entries() == 1) {
iob = (*tout->users.begin()).cell;
isODDR = true; // FIXME: Not sure
}
NPNR_ASSERT(iob != nullptr);
// SIOLOGIC handling
if (iol->type == id_SIOLOGIC) {
// We have IDDR+ODDR
if (isODDR && isIDDR) {
if (!iob->attrs.count(id_GLITCHFILTER)) {
iob->attrs[id_GLITCHFILTER] = std::string("ON");
}
if (!iob->attrs.count(id_CLAMP)) {
iob->attrs[id_CLAMP] = std::string("ON");
}
if (!iob->attrs.count(id_PULLMODE)) {
iob->attrs[id_PULLMODE] = std::string("DOWN");
}
}
// We have ODDR only
else if (isODDR && !isIDDR) {
if (!iob->attrs.count(id_GLITCHFILTER)) {
iob->attrs[id_GLITCHFILTER] = std::string("OFF");
}
if (!iob->attrs.count(id_CLAMP)) {
iob->attrs[id_CLAMP] = std::string("OFF");
}
if (!iob->attrs.count(id_PULLMODE)) {
iob->attrs[id_PULLMODE] = std::string("NONE");
}
}
// Detect case when SEIO33_CORE.T is not driven by
// SIOLOGIC.TOUT. In this case connect SIOLOGIC.TSDATA0 to the
// same ned as SEIO33_CORE.I.
//
//
NetInfo *iob_t = iob->getPort(id_T);
if (iob_t != nullptr && isODDR) {
NetInfo *iol_t = iol->getPort(id_TOUT);
// SIOLOGIC.TOUT is not driving SEIO33_CORE.T
if ((iol_t == nullptr) || (iol_t != nullptr && iol_t->users.empty()) ||
(iol_t != nullptr && !iol_t->users.empty() && iol_t->name != iob_t->name)) {
// In this case if SIOLOGIC.TSDATA0 is not connected
// to the same net as SEIO33_CORE.T and is not
// floating then that configuration is illegal.
NetInfo *iol_ti = iol->getPort(id_TSDATA0);
if (iol_ti != nullptr && (iol_ti->name != iob_t->name) && (iol_ti->name != gnd_net->name)) {
log_error("Cannot have %s.TSDATA0 and %s.T driven by different nets (%s vs. %s)\n",
ctx->nameOf(iol), ctx->nameOf(iob), ctx->nameOf(iol_ti), ctx->nameOf(iob_t));
}
// Re-connect TSDATA (even if it has already been
// connected to gnd_net, see the condition above).
if (!iol->ports.count(id_TSDATA0)) {
iol->addInput(id_TSDATA0);
}
iol->disconnectPort(id_TSDATA0);
iol->connectPort(id_TSDATA0, iob_t);
if (ctx->debug) {
log_info(" Reconnecting %s.TSDATA0 to %s\n", ctx->nameOf(iol), ctx->nameOf(iob_t));
}
// Check if the net wants to use the T flip-flop in
// IOLOGIC
bool syn_useioff = false;
if (iob_t->attrs.count(id_syn_useioff)) {
syn_useioff = iob_t->attrs.at(id_syn_useioff).as_bool();
}
// Check if the T input is driven by a flip-flop. Store
// in the map for later integration with IOLOGIC.
CellInfo *ff = get_ff_for_iob(iob, id_T, iol);
if (ff != nullptr && syn_useioff) {
tff_map[ff->name].push_back(std::make_pair(iol->name, iob->name));
}
}
}
}
}
// Integrate flip-flops that drive T with IOLOGIC
for (auto &it : tff_map) {
CellInfo *ff = ctx->cells.at(it.first).get();
NetInfo *ff_d = ff->getPort(id_M); // FIXME: id_D or id_M ?!
NPNR_ASSERT(ff_d != nullptr);
NetInfo *ff_q = ff->getPort(id_Q);
NPNR_ASSERT(ff_q != nullptr);
for (auto &ios : it.second) {
CellInfo *iol = ctx->cells.at(ios.first).get();
CellInfo *iob = ctx->cells.at(ios.second).get();
log_info(" Integrating %s into %s\n", ctx->nameOf(ff), ctx->nameOf(iol));
// Disconnect "old" T net
iol->disconnectPort(id_TSDATA0);
iob->disconnectPort(id_T);
// Connect the "new" one
iol->connectPort(id_TSDATA0, ff_d);
iob->connectPort(id_T, ff_d);
// Propagate parameters
iol->params[id_SRMODE] = ff->params.at(id_SRMODE);
iol->params[id_REGSET] = ff->params.at(id_REGSET);
// Enable the TSREG
iol->params[id_CEOUTMUX] = std::string("1");
iol->params[ctx->id("TSREG.REGSET")] = std::string("SET");
iol->params[ctx->id("IDDRX1_ODDRX1.TRISTATE")] = std::string("ENABLED");
}
// Disconnect the flip-flop
for (auto &port : ff->ports) {
ff->disconnectPort(port.first);
}
// Check if the flip-flop can be removed
bool can_remove = ff_q->users.empty();
// Remove the flip-flop and its output net
if (can_remove) {
if (ctx->debug) {
log_info(" Removing %s\n", ctx->nameOf(ff));
}
ctx->cells.erase(ff->name);
ctx->nets.erase(ff_q->name);
}
}
}
FFControlSet gather_ff_settings(CellInfo *cell)
{
NPNR_ASSERT(cell->type == id_OXIDE_FF);
FFControlSet ctrlset;
ctrlset.async = str_or_default(cell->params, id_SRMODE, "LSR_OVER_CE") == "ASYNC";
ctrlset.regddr_en = is_enabled(cell, id_REGDDR);
ctrlset.gsr_en = is_enabled(cell, id_GSR);
ctrlset.clkmux = ctx->id(str_or_default(cell->params, id_CLKMUX, "CLK")).index;
ctrlset.cemux = ctx->id(str_or_default(cell->params, id_CEMUX, "CE")).index;
ctrlset.lsrmux = ctx->id(str_or_default(cell->params, id_LSRMUX, "LSR")).index;
ctrlset.clk = cell->getPort(id_CLK);
ctrlset.ce = cell->getPort(id_CE);
ctrlset.lsr = cell->getPort(id_LSR);
return ctrlset;
}
void pack_lutffs()
{
log_info("Inferring LUT+FF pairs...\n");
float carry_ratio = 1.0f;
if (ctx->settings.find(id_carry_lutff_ratio) != ctx->settings.end()) {
carry_ratio = ctx->setting<float>("carry_lutff_ratio");
}
// FF control settings/signals are slice-wide. The dict below is used
// to track settings of FFs glued to clusters which may span more than
// one slice (eg. carry-chains). For now it is assumed that all FFs
// in one cluster share the same settings and control signals.
dict<IdString, FFControlSet> cluster_ffinfo;
size_t num_comb = 0;
size_t num_ff = 0;
size_t num_pair = 0;
size_t num_glue = 0;
for (auto &cell : ctx->cells) {
CellInfo *ff = cell.second.get();
if (ff->type != id_OXIDE_FF) {
continue;
}
num_ff++;
// Get input net
// At the packing stage all inputs go to M
NetInfo *di = ff->getPort(id_M);
if (di == nullptr || di->driver.cell == nullptr) {
continue;
}
// Skip if there are multiple sinks on that net
if (di->users.entries() != 1) {
continue;
}
// Check if the driver is a LUT and the direct connection is from F
CellInfo *lut = di->driver.cell;
if (lut->type != id_OXIDE_COMB) {
continue;
}
if (di->driver.port != id_F && di->driver.port != id_OFX) {
continue;
}
// The FF must not use M and DI at the same time
if (ff->getPort(id_DI)) {
continue;
}
// The LUT must be in LOGIC/CARRY mode
if (str_or_default(lut->params, id_MODE, "LOGIC") != "LOGIC" &&
str_or_default(lut->params, id_MODE, "LOGIC") != "CCU2") {
continue;
}
// The FF cannot be in another cluster
if (ff->cluster != ClusterId()) {
continue;
}
// Get FF settings
auto ffinfo = gather_ff_settings(ff);
// A free LUT, create a new cluster
if (lut->cluster == ClusterId()) {
lut->cluster = lut->name;
lut->constr_children.push_back(ff);
ff->cluster = lut->name;
ff->constr_x = 0;
ff->constr_y = 0;
ff->constr_z = 2;
ff->constr_abs_z = false;
num_pair++;
}
// Attach the FF to the existing cluster of the LUT
else {
// Check if the FF settings match those of others in this
// cluster. If not then reject this FF.
//
// This is a greedy approach - the first attached FF will
// enforce its settings on all following candidates. A better
// approach would be to first form groups of matching FFs for
// a cluster and then attach only the largest group to it.
if (cluster_ffinfo.count(lut->cluster)) {
if (ffinfo != cluster_ffinfo.at(lut->cluster)) {
continue;
}
}
// No order not to make too large carry clusters pack only the
// given fraction of FFs there.
if (str_or_default(lut->params, id_MODE, "LOGIC") == "CCU2") {
float r = (float)(ctx->rng() % 1000) * 1e-3f;
if (r > carry_ratio) {
continue;
}
}
// Get the cluster root
CellInfo *root = ctx->cells.at(lut->cluster).get();
// Constrain the FF relative to the LUT
ff->cluster = root->cluster;
ff->constr_x = lut->constr_x;
ff->constr_y = lut->constr_y;
ff->constr_z = lut->constr_z + 2;
ff->constr_abs_z = lut->constr_abs_z;
root->constr_children.push_back(ff);
num_glue++;
}
// Reconnect M to DI
ff->renamePort(id_M, id_DI);
ff->params[id_SEL] = std::string("DL");
// Store FF settings of the cluster
if (!cluster_ffinfo.count(lut->cluster)) {
cluster_ffinfo.emplace(lut->cluster, ffinfo);
}
}
// Count OXIDE_COMB, OXIDE_FF are already counted
for (auto &cell : ctx->cells) {
CellInfo *ff = cell.second.get();
if (ff->type == id_OXIDE_COMB) {
num_comb++;
}
}
// Print statistics
log_info(" Created %zu LUT+FF pairs and extended %zu clusters using total %zu FFs and %zu LUTs\n", num_pair,
num_glue, num_ff, num_comb);
}
explicit NexusPacker(Context *ctx) : ctx(ctx) {}
void operator()()
{
pack_io();
pack_iologic();
pack_dsps();
convert_prims();
pack_bram();
pack_lram();
pack_lutram();
pack_carries();
pack_widefn();
pack_ffs();
pack_plls();
pack_constants();
pack_luts();
pack_ip();
handle_iologic();
if (!bool_or_default(ctx->settings, id_no_pack_lutff)) {
pack_lutffs();
}
promote_globals();
place_globals();
generate_constraints();
}
};
bool Arch::pack()
{
(NexusPacker(getCtx()))();
attrs[id_step] = std::string("pack");
archInfoToAttributes();
assignArchInfo();
return true;
}
// -----------------------------------------------------------------------
void Arch::assignArchInfo()
{
for (auto &cell : cells) {
assignCellInfo(cell.second.get());
}
}
const std::vector<std::string> dsp_bus_prefices = {
"M9ADDSUB", "ADDSUB", "SFTCTRL", "DSPIN", "CINPUT", "DSPOUT", "CASCOUT", "CASCIN", "PML72", "PMH72", "SUM1",
"SUM0", "BRS1", "BRS2", "BLS1", "BLS2", "BLSO", "BRSO", "PL18", "PH18", "PL36", "PH36",
"PL72", "PH72", "P72", "P36", "P18", "AS1", "AS2", "ARL", "ARH", "BRL", "BRH",
"AO", "BO", "AB", "AR", "BR", "PM", "PP", "A", "B", "C"};
void Arch::assignCellInfo(CellInfo *cell)
{
cell->tmg_index = -1;
if (cell->type == id_OXIDE_COMB) {
cell->lutInfo.is_memory = str_or_default(cell->params, id_MODE, "LOGIC") == "DPRAM";
cell->lutInfo.is_carry = str_or_default(cell->params, id_MODE, "LOGIC") == "CCU2";
cell->lutInfo.mux2_used = port_used(cell, id_OFX);
cell->lutInfo.f = cell->getPort(id_F);
cell->lutInfo.ofx = cell->getPort(id_OFX);
if (cell->lutInfo.is_carry) {
cell->tmg_portmap[id_A] = id_A0;
cell->tmg_portmap[id_B] = id_B0;
cell->tmg_portmap[id_C] = id_C0;
cell->tmg_portmap[id_D] = id_D0;
cell->tmg_portmap[id_F] = id_F0;
cell->tmg_index = get_cell_timing_idx(id_OXIDE_COMB, id_CCU2);
} else if (cell->lutInfo.ofx != nullptr) {
cell->tmg_index = get_cell_timing_idx(id_OXIDE_COMB, id_WIDEFN9);
} else if (cell->lutInfo.is_memory) {
cell->tmg_index = get_cell_timing_idx(id_OXIDE_COMB, id_DPRAM);
} else {
cell->tmg_index = get_cell_timing_idx(id_OXIDE_COMB, id_LUT4);
}
} else if (cell->type == id_OXIDE_FF) {
cell->ffInfo.ctrlset.async = str_or_default(cell->params, id_SRMODE, "LSR_OVER_CE") == "ASYNC";
cell->ffInfo.ctrlset.regddr_en = is_enabled(cell, id_REGDDR);
cell->ffInfo.ctrlset.gsr_en = is_enabled(cell, id_GSR);
cell->ffInfo.ctrlset.clkmux = id(str_or_default(cell->params, id_CLKMUX, "CLK")).index;
cell->ffInfo.ctrlset.cemux = id(str_or_default(cell->params, id_CEMUX, "CE")).index;
cell->ffInfo.ctrlset.lsrmux = id(str_or_default(cell->params, id_LSRMUX, "LSR")).index;
cell->ffInfo.ctrlset.clk = cell->getPort(id_CLK);
cell->ffInfo.ctrlset.ce = cell->getPort(id_CE);
cell->ffInfo.ctrlset.lsr = cell->getPort(id_LSR);
cell->ffInfo.di = cell->getPort(id_DI);
cell->ffInfo.m = cell->getPort(id_M);
cell->tmg_index = get_cell_timing_idx(id_OXIDE_FF, id("PPP:SYNC"));
} else if (cell->type == id_RAMW) {
cell->ffInfo.ctrlset.async = true;
cell->ffInfo.ctrlset.regddr_en = false;
cell->ffInfo.ctrlset.gsr_en = false;
cell->ffInfo.ctrlset.clkmux = id(str_or_default(cell->params, id_CLKMUX, "CLK")).index;
cell->ffInfo.ctrlset.cemux = ID_CE;
cell->ffInfo.ctrlset.lsrmux = ID_INV;
cell->ffInfo.ctrlset.clk = cell->getPort(id_CLK);
cell->ffInfo.ctrlset.ce = nullptr;
cell->ffInfo.ctrlset.lsr = cell->getPort(id_LSR);
cell->ffInfo.di = nullptr;
cell->ffInfo.m = nullptr;
cell->tmg_index = get_cell_timing_idx(id_RAMW);
} else if (cell->type == id_OXIDE_EBR) {
// Strip off bus indices to get the timing ports
// as timing is generally word-wide
for (const auto &port : cell->ports) {
const std::string &name = port.first.str(this);
size_t idx_end = name.find_last_not_of("0123456789");
std::string base = name.substr(0, idx_end + 1);
if (base == "ADA" || base == "ADB") {
// [4:0] and [13:5] have different timing
int idx = std::stoi(name.substr(idx_end + 1));
cell->tmg_portmap[port.first] = id(base + ((idx >= 5) ? "_13_5" : "_4_0"));
} else {
// Just strip off bus index
cell->tmg_portmap[port.first] = id(base);
}
}
cell->tmg_index = get_cell_timing_idx(id(str_or_default(cell->params, id_MODE, "DP16K") + "_MODE"));
NPNR_ASSERT(cell->tmg_index != -1);
} else if (cell->type == id_LRAM_CORE) {
// Strip off bus indices to get the timing ports
// as timing is generally word-wide
for (const auto &port : cell->ports) {
const std::string &name = port.first.str(this);
size_t idx_end = name.find_last_not_of("0123456789");
std::string base = name.substr(0, idx_end + 1);
// Strip off bus index
cell->tmg_portmap[port.first] = id(base);
}
cell->tmg_index = get_cell_timing_idx(id_LRAM_CORE);
NPNR_ASSERT(cell->tmg_index != -1);
} else if (is_dsp_cell(cell)) {
// Strip off bus indices to get the timing ports
// as timing is generally word-wide
for (const auto &port : cell->ports) {
const std::string &name = port.first.str(this);
size_t idx_end = name.find_last_not_of("0123456789");
if (idx_end == std::string::npos)
continue;
for (const auto &p : dsp_bus_prefices) {
if (name.size() > p.size() && name.substr(0, p.size()) == p && idx_end <= p.size()) {
cell->tmg_portmap[port.first] = id(p);
break;
}
}
}
// Build up the configuration string
std::set<std::string> config;
for (const auto &param : cell->params) {
const std::string &name = param.first.str(this);
size_t byp_pos = name.find("REGBYPS");
if (byp_pos != std::string::npos && param.second.str == "REGISTER") {
// Register enabled
config.insert(name.substr(0, byp_pos + 3) + name.substr(byp_pos + 7));
} else if (param.first == id_BYPASS_PREADD9 && param.second.str == "BYPASS") {
// PREADD9 bypass
config.insert("BYPASS");
}
}
std::string config_str;
for (const auto &cfg : config) {
if (!config_str.empty())
config_str += ',';
config_str += cfg;
}
cell->tmg_index = get_cell_timing_idx(cell->type, id(config_str));
if (cell->tmg_index == -1) {
log_warning("Unsupported timing config '%s' on %s cell '%s', falling back to default.\n",
config_str.c_str(), nameOf(cell->type), nameOf(cell));
cell->tmg_index = get_cell_timing_idx(cell->type);
}
}
}
NEXTPNR_NAMESPACE_END