nextpnr/fpga_interchange/pseudo_pip_model.cc
Keith Rothman 0d41fff3a7 [interchange] Add crude pseudo pip model.
Signed-off-by: Keith Rothman <537074+litghost@users.noreply.github.com>
2021-04-06 10:42:05 -07:00

471 lines
17 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "pseudo_pip_model.h"
#include "context.h"
//#define DEBUG_PSEUDO_PIP
NEXTPNR_NAMESPACE_BEGIN
void PseudoPipData::init_tile_type(const Context *ctx, int32_t tile_type) {
if(max_pseudo_pip_for_tile_type.count(tile_type)) {
return;
}
const TileTypeInfoPOD & type_data = ctx->chip_info->tile_types[tile_type];
int32_t max_pseudo_pip_index = -1;
for(int32_t pip_idx = 0; pip_idx < type_data.pip_data.ssize(); ++pip_idx) {
const PipInfoPOD & pip_data = type_data.pip_data[pip_idx];
if(pip_data.pseudo_cell_wires.size() == 0) {
continue;
}
if(pip_idx > max_pseudo_pip_index) {
max_pseudo_pip_index = pip_idx;
}
HashTables::HashSet<size_t> sites;
std::vector<PseudoPipBel> pseudo_pip_bels;
for(int32_t wire_index : pip_data.pseudo_cell_wires) {
const TileWireInfoPOD &wire_data = type_data.wire_data[wire_index];
if(wire_data.site == -1) {
continue;
}
// Only use primary site types for psuedo pips
//
// Note: This assumption may be too restrictive. If so, then
// need to update database generators to provide
// pseudo_cell_wires for each site type, not just the primary.
if(wire_data.site_variant != -1) {
continue;
}
sites.emplace(wire_data.site);
int32_t driver_bel = -1;
int32_t output_pin = -1;
for(const BelPortPOD & bel_pin : wire_data.bel_pins) {
const BelInfoPOD & bel_data = type_data.bel_data[bel_pin.bel_index];
if(bel_data.synthetic != NOT_SYNTH) {
// Ignore synthetic BELs
continue;
}
if(bel_data.category != BEL_CATEGORY_LOGIC) {
// Ignore site ports and site routing
continue;
}
int32_t bel_pin_idx = -1;
for(int32_t i = 0; i < bel_data.num_bel_wires; ++i) {
if(bel_data.ports[i] == bel_pin.port) {
bel_pin_idx = i;
break;
}
}
NPNR_ASSERT(bel_pin_idx != -1);
if(bel_data.types[bel_pin_idx] != PORT_OUT) {
// Only care about output ports. Input ports may not be
// part of the pseudo pip.
continue;
}
// Each site wire should have 1 driver!
NPNR_ASSERT(driver_bel == -1);
driver_bel = bel_pin.bel_index;
output_pin = bel_pin_idx;
}
if(driver_bel != -1) {
NPNR_ASSERT(output_pin != -1);
PseudoPipBel bel;
bel.bel_index = driver_bel;
bel.output_bel_pin = output_pin;
pseudo_pip_bels.push_back(bel);
}
}
std::pair<int32_t, int32_t> key{tile_type, pip_idx};
std::vector<size_t> &sites_for_pseudo_pip = possibles_sites_for_pip[key];
sites_for_pseudo_pip.clear();
sites_for_pseudo_pip.insert(sites_for_pseudo_pip.begin(), sites.begin(), sites.end());
std::sort(sites_for_pseudo_pip.begin(), sites_for_pseudo_pip.end());
// Initialize "logic_bels_for_pip" for every site that this pseudo pip
// appears. This means that if there are no pseudo_pip_bels, those
// vectors will be empty.
for(int32_t site : sites_for_pseudo_pip) {
logic_bels_for_pip[LogicBelKey{tile_type, pip_idx, site}].clear();
}
if(!pseudo_pip_bels.empty()) {
HashTables::HashSet<int32_t> pseudo_cell_wires;
pseudo_cell_wires.insert(pip_data.pseudo_cell_wires.begin(), pip_data.pseudo_cell_wires.end());
// For each BEL, find the input bel pin used, and attach it to
// the vector for that site.
//
// Note: Intentially copying the bel for mutation, and then
// pushing onto vector.
for(PseudoPipBel bel : pseudo_pip_bels) {
const BelInfoPOD & bel_data = type_data.bel_data[bel.bel_index];
int32_t site = bel_data.site;
int32_t input_bel_pin = -1;
int32_t output_bel_pin = -1;
for(int32_t i = 0; i < bel_data.num_bel_wires; ++i) {
if(!pseudo_cell_wires.count(bel_data.wires[i])) {
continue;
}
if(bel_data.types[i] == PORT_OUT) {
NPNR_ASSERT(output_bel_pin == -1);
output_bel_pin = i;
}
if(bel_data.types[i] == PORT_IN && input_bel_pin == -1) {
// Take first input BEL pin
//
// FIXME: This heuristic feels fragile.
// This data oaught come from the database.
input_bel_pin = i;
}
}
NPNR_ASSERT(output_bel_pin == bel.output_bel_pin);
NPNR_ASSERT(input_bel_pin != -1);
bel.input_bel_pin = input_bel_pin;
logic_bels_for_pip[LogicBelKey{tile_type, pip_idx, site}].push_back(bel);
}
}
}
max_pseudo_pip_for_tile_type[tile_type] = max_pseudo_pip_index;
}
const std::vector<size_t> &PseudoPipData::get_possible_sites_for_pip(const Context *ctx, PipId pip) const {
int32_t tile_type = ctx->chip_info->tiles[pip.tile].type;
return possibles_sites_for_pip.at(std::make_pair(tile_type, pip.index));
}
size_t PseudoPipData::get_max_pseudo_pip(int32_t tile_type) const {
return max_pseudo_pip_for_tile_type.at(tile_type);
}
const std::vector<PseudoPipBel> &PseudoPipData::get_logic_bels_for_pip(const Context *ctx, int32_t site, PipId pip) const {
int32_t tile_type = ctx->chip_info->tiles[pip.tile].type;
return logic_bels_for_pip.at(LogicBelKey{tile_type, pip.index, site});
}
void PseudoPipModel::init(Context *ctx, int32_t tile_idx) {
int32_t tile_type = ctx->chip_info->tiles[tile_idx].type;
this->tile = tile_idx;
allowed_pseudo_pips.resize(ctx->pseudo_pip_data.get_max_pseudo_pip(tile_type)+1);
allowed_pseudo_pips.fill(true);
}
void PseudoPipModel::prepare_for_routing(const Context *ctx, const std::vector<SiteRouter> & sites) {
// First determine which sites have placed cells, these sites are consider
// active.
HashTables::HashSet<size_t> active_sites;
for(size_t site = 0; site < sites.size(); ++site) {
if(!sites[site].cells_in_site.empty()) {
active_sites.emplace(site);
}
}
// Assign each pseudo pip in this tile a site, which is either the active
// site (if the site / alt site is in use) or the first site that pseudo
// pip appears in.
int32_t tile_type = ctx->chip_info->tiles[tile].type;
const TileTypeInfoPOD & type_data = ctx->chip_info->tile_types[tile_type];
pseudo_pip_sites.clear();
site_to_pseudo_pips.clear();
for(size_t pip_idx = 0; pip_idx < type_data.pip_data.size(); ++pip_idx) {
const PipInfoPOD & pip_data = type_data.pip_data[pip_idx];
if(pip_data.pseudo_cell_wires.size() == 0) {
continue;
}
PipId pip;
pip.tile = tile;
pip.index = pip_idx;
const std::vector<size_t> &sites = ctx->pseudo_pip_data.get_possible_sites_for_pip(ctx, pip);
int32_t site_for_pip = -1;
for(size_t possible_site : sites) {
if(active_sites.count(possible_site)) {
site_for_pip = possible_site;
break;
}
}
if(site_for_pip < 0) {
site_for_pip = sites.at(0);
}
pseudo_pip_sites[pip_idx] = site_for_pip;
site_to_pseudo_pips[site_for_pip].push_back(pip_idx);
}
for(auto & site_pair : site_to_pseudo_pips) {
update_site(ctx, site_pair.first);
}
}
bool PseudoPipModel::checkPipAvail(const Context *ctx, PipId pip) const {
bool allowed = allowed_pseudo_pips.get(pip.index);
if(!allowed) {
#ifdef DEBUG_PSEUDO_PIP
if(ctx->verbose) {
log_info("Pseudo pip %s not allowed\n", ctx->nameOfPip(pip));
}
#endif
}
return allowed;
}
void PseudoPipModel::bindPip(const Context *ctx, PipId pip) {
// If pseudo_pip_sites is empty, then prepare_for_routing was never
// invoked. This is likely because PseudoPipModel was constructed during
// routing.
if(pseudo_pip_sites.empty()) {
prepare_for_routing(ctx, ctx->tileStatus.at(tile).sites);
}
// Do not allow pseudo pips to be bound if they are not allowed!
NPNR_ASSERT(allowed_pseudo_pips.get(pip.index));
// Mark that this pseudo pip is active.
auto result = active_pseudo_pips.emplace(pip.index);
NPNR_ASSERT(result.second);
// Update the site this pseudo pip is within.
size_t site = pseudo_pip_sites.at(pip.index);
update_site(ctx, site);
}
void PseudoPipModel::unbindPip(const Context *ctx, PipId pip) {
// It should not be possible for unbindPip to be invoked with
// pseudo_pip_sites being empty.
NPNR_ASSERT(!pseudo_pip_sites.empty());
NPNR_ASSERT(active_pseudo_pips.erase(pip.index));
// Remove the site this pseudo pip is within.
size_t site = pseudo_pip_sites.at(pip.index);
update_site(ctx, site);
}
void PseudoPipModel::update_site(const Context *ctx, size_t site) {
// update_site consists of several steps:
//
// - Find all BELs within the site used by pseudo pips.
// - Trivially marking other pseudo pips as unavailable if it requires
// logic BELs used by active pseudo pips (or bound by cells).
// - Determine if remaining pseudo pips can be legally placed. This
// generally consists of:
// - Checking LUT element
// - FIXME: Checking constraints (when metadata is available)
const std::vector<int32_t> pseudo_pips_for_site = site_to_pseudo_pips.at(site);
std::vector<int32_t> &unused_pseudo_pips = scratch;
unused_pseudo_pips.clear();
unused_pseudo_pips.reserve(pseudo_pips_for_site.size());
HashTables::HashMap<int32_t, PseudoPipBel> used_bels;
for(int32_t pseudo_pip : pseudo_pips_for_site) {
if(!active_pseudo_pips.count(pseudo_pip)) {
unused_pseudo_pips.push_back(pseudo_pip);
continue;
}
PipId pip;
pip.tile = tile;
pip.index = pseudo_pip;
for(const PseudoPipBel & bel: ctx->pseudo_pip_data.get_logic_bels_for_pip(ctx, site, pip)) {
used_bels.emplace(bel.bel_index, bel);
}
}
if(unused_pseudo_pips.empty()) {
return;
}
int32_t tile_type = ctx->chip_info->tiles[tile].type;
const TileTypeInfoPOD & type_data = ctx->chip_info->tile_types[tile_type];
// This section builds up LUT mapping logic to determine which LUT wires
// are availble and which are not.
const std::vector<LutElement> &lut_elements = ctx->lut_elements.at(tile_type);
std::vector<LutMapper> lut_mappers;
lut_mappers.reserve(lut_elements.size());
for (size_t i = 0; i < lut_elements.size(); ++i) {
lut_mappers.push_back(LutMapper(lut_elements[i]));
}
const TileStatus & tile_status = ctx->tileStatus.at(tile);
for (CellInfo *cell : tile_status.sites[site].cells_in_site) {
if (cell->lut_cell.pins.empty()) {
continue;
}
BelId bel = cell->bel;
const auto &bel_data = bel_info(ctx->chip_info, bel);
if (bel_data.lut_element != -1) {
lut_mappers[bel_data.lut_element].cells.push_back(cell);
}
}
std::vector<CellInfo> lut_cells;
lut_cells.reserve(used_bels.size());
for(const auto & bel_pair : used_bels) {
const PseudoPipBel &bel = bel_pair.second;
const BelInfoPOD & bel_data = type_data.bel_data[bel.bel_index];
// This used BEL isn't a LUT, skip it!
if(bel_data.lut_element == -1) {
continue;
}
lut_cells.emplace_back();
CellInfo &cell = lut_cells.back();
cell.bel.tile = tile;
cell.bel.index = bel_pair.first;
cell.type = IdString(ctx->wire_lut->cell);
NPNR_ASSERT(ctx->wire_lut->input_pins.size() == 1);
cell.lut_cell.pins.push_back(IdString(ctx->wire_lut->input_pins[0]));
cell.lut_cell.equation.resize(2);
cell.lut_cell.equation.set(0, false);
cell.lut_cell.equation.set(1, true);
// Map LUT input to input wire used by pseudo pip.
IdString input_bel_pin(bel_data.ports[bel.input_bel_pin]);
cell.cell_bel_pins[IdString(ctx->wire_lut->input_pins[0])].push_back(input_bel_pin);
lut_mappers[bel_data.lut_element].cells.push_back(&cell);
}
std::vector<uint32_t> lut_wires_unavailable;
lut_wires_unavailable.reserve(lut_elements.size());
for(LutMapper &lut_mapper : lut_mappers) {
lut_wires_unavailable.push_back(lut_mapper.check_wires(ctx));
}
// For unused pseudo pips, see if the BEL used is idle.
for(int32_t pseudo_pip : unused_pseudo_pips) {
PipId pip;
pip.tile = tile;
pip.index = pseudo_pip;
bool blocked_by_bel = false;
const std::vector<PseudoPipBel> & bels = ctx->pseudo_pip_data.get_logic_bels_for_pip(ctx, site, pip);
for(const PseudoPipBel & bel: bels) {
if(tile_status.boundcells[bel.bel_index] != nullptr) {
blocked_by_bel = true;
#ifdef DEBUG_PSEUDO_PIP
if(ctx->verbose) {
BelId abel;
abel.tile = tile;
abel.index = bel.bel_index;
log_info("Pseudo pip %s is block by a bound BEL %s\n",
ctx->nameOfPip(pip), ctx->nameOfBel(abel));
}
#endif
break;
}
if(used_bels.count(bel.bel_index)) {
#ifdef DEBUG_PSEUDO_PIP
if(ctx->verbose) {
log_info("Pseudo pip %s is block by another pseudo pip\n",
ctx->nameOfPip(pip));
}
#endif
blocked_by_bel = true;
break;
}
}
if(blocked_by_bel) {
allowed_pseudo_pips.set(pseudo_pip, false);
continue;
}
bool blocked_by_lut_eq = false;
// See if any BELs are part of a LUT element. If so, see if using
// that pseudo pip violates the LUT element equation.
for(const PseudoPipBel & bel: bels) {
const BelInfoPOD & bel_data = type_data.bel_data[bel.bel_index];
if(bel_data.lut_element == -1) {
continue;
}
// FIXME: Check if the pseudo cell satifies the constraint system.
// Will become important for LUT-RAM/SRL testing.
// FIXME: This lookup is static, consider moving to PseudoPipBel?
IdString bel_name(bel_data.name);
IdString input_bel_pin(bel_data.ports[bel.input_bel_pin]);
size_t pin_idx = lut_elements.at(bel_data.lut_element).lut_bels.at(bel_name).pin_to_index.at(input_bel_pin);
uint32_t blocked_inputs = lut_wires_unavailable.at(bel_data.lut_element);
if((blocked_inputs & (1 << pin_idx)) != 0) {
blocked_by_lut_eq = true;
break;
}
}
if(blocked_by_lut_eq) {
#ifdef DEBUG_PSEUDO_PIP
if(ctx->verbose) {
log_info("Pseudo pip %s is blocked by lut eq\n",
ctx->nameOfPip(pip));
}
#endif
allowed_pseudo_pips.set(pseudo_pip, false);
continue;
}
// Pseudo pip should be allowed, mark as such.
//
// FIXME: Handle non-LUT constraint cases, as needed.
allowed_pseudo_pips.set(pseudo_pip, true);
}
}
NEXTPNR_NAMESPACE_END