nextpnr/ecp5/arch.cc
2020-06-27 13:20:16 +02:00

1310 lines
47 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <boost/iostreams/device/mapped_file.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <cmath>
#include <cstring>
#include "embed.h"
#include "gfx.h"
#include "globals.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
static std::tuple<int, int, std::string> split_identifier_name(const std::string &name)
{
size_t first_slash = name.find('/');
NPNR_ASSERT(first_slash != std::string::npos);
size_t second_slash = name.find('/', first_slash + 1);
NPNR_ASSERT(second_slash != std::string::npos);
return std::make_tuple(std::stoi(name.substr(1, first_slash)),
std::stoi(name.substr(first_slash + 2, second_slash - first_slash)),
name.substr(second_slash + 1));
};
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx)
{
#define X(t) initialize_add(ctx, #t, ID_##t);
#include "constids.inc"
#undef X
}
// -----------------------------------------------------------------------
static const ChipInfoPOD *get_chip_info(ArchArgs::ArchArgsTypes chip)
{
std::string chipdb;
if (chip == ArchArgs::LFE5U_12F || chip == ArchArgs::LFE5U_25F || chip == ArchArgs::LFE5UM_25F ||
chip == ArchArgs::LFE5UM5G_25F) {
chipdb = "ecp5/chipdb-25k.bin";
} else if (chip == ArchArgs::LFE5U_45F || chip == ArchArgs::LFE5UM_45F || chip == ArchArgs::LFE5UM5G_45F) {
chipdb = "ecp5/chipdb-45k.bin";
} else if (chip == ArchArgs::LFE5U_85F || chip == ArchArgs::LFE5UM_85F || chip == ArchArgs::LFE5UM5G_85F) {
chipdb = "ecp5/chipdb-85k.bin";
} else {
log_error("Unknown chip\n");
}
auto ptr = reinterpret_cast<const RelPtr<ChipInfoPOD> *>(get_chipdb(chipdb));
if (ptr == nullptr)
return nullptr;
return ptr->get();
}
bool Arch::isAvailable(ArchArgs::ArchArgsTypes chip) { return get_chip_info(chip) != nullptr; }
std::vector<std::string> Arch::getSupportedPackages(ArchArgs::ArchArgsTypes chip)
{
const ChipInfoPOD *chip_info = get_chip_info(chip);
std::vector<std::string> packages;
for (int i = 0; i < chip_info->num_packages; i++)
packages.push_back(chip_info->package_info[i].name.get());
return packages;
}
// -----------------------------------------------------------------------
Arch::Arch(ArchArgs args) : args(args)
{
chip_info = get_chip_info(args.type);
if (chip_info == nullptr)
log_error("Unsupported ECP5 chip type.\n");
if (chip_info->const_id_count != DB_CONST_ID_COUNT)
log_error("Chip database 'bba' and nextpnr code are out of sync; please rebuild (or contact distribution "
"maintainer)!\n");
package_info = nullptr;
for (int i = 0; i < chip_info->num_packages; i++) {
if (args.package == chip_info->package_info[i].name.get()) {
package_info = &(chip_info->package_info[i]);
break;
}
}
speed_grade = &(chip_info->speed_grades[args.speed]);
if (!package_info)
log_error("Unsupported package '%s' for '%s'.\n", args.package.c_str(), getChipName().c_str());
bel_to_cell.resize(chip_info->height * chip_info->width * max_loc_bels, nullptr);
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const
{
if (args.type == ArchArgs::LFE5U_12F) {
return "LFE5U-12F";
} else if (args.type == ArchArgs::LFE5U_25F) {
return "LFE5U-25F";
} else if (args.type == ArchArgs::LFE5U_45F) {
return "LFE5U-45F";
} else if (args.type == ArchArgs::LFE5U_85F) {
return "LFE5U-85F";
} else if (args.type == ArchArgs::LFE5UM_25F) {
return "LFE5UM-25F";
} else if (args.type == ArchArgs::LFE5UM_45F) {
return "LFE5UM-45F";
} else if (args.type == ArchArgs::LFE5UM_85F) {
return "LFE5UM-85F";
} else if (args.type == ArchArgs::LFE5UM5G_25F) {
return "LFE5UM5G-25F";
} else if (args.type == ArchArgs::LFE5UM5G_45F) {
return "LFE5UM5G-45F";
} else if (args.type == ArchArgs::LFE5UM5G_85F) {
return "LFE5UM5G-85F";
} else {
log_error("Unknown chip\n");
}
}
std::string Arch::getFullChipName() const
{
std::string name = getChipName();
name += "-";
switch (args.speed) {
case ArchArgs::SPEED_6:
name += "6";
break;
case ArchArgs::SPEED_7:
name += "7";
break;
case ArchArgs::SPEED_8:
case ArchArgs::SPEED_8_5G:
name += "8";
break;
}
name += args.package;
return name;
}
// -----------------------------------------------------------------------
IdString Arch::archArgsToId(ArchArgs args) const
{
if (args.type == ArchArgs::LFE5U_12F)
return id("lfe5u_12f");
if (args.type == ArchArgs::LFE5U_25F)
return id("lfe5u_25f");
if (args.type == ArchArgs::LFE5U_45F)
return id("lfe5u_45f");
if (args.type == ArchArgs::LFE5U_85F)
return id("lfe5u_85f");
if (args.type == ArchArgs::LFE5UM_25F)
return id("lfe5um_25f");
if (args.type == ArchArgs::LFE5UM_45F)
return id("lfe5um_45f");
if (args.type == ArchArgs::LFE5UM_85F)
return id("lfe5um_85f");
if (args.type == ArchArgs::LFE5UM5G_25F)
return id("lfe5um5g_25f");
if (args.type == ArchArgs::LFE5UM5G_45F)
return id("lfe5um5g_45f");
if (args.type == ArchArgs::LFE5UM5G_85F)
return id("lfe5um5g_85f");
return IdString();
}
// -----------------------------------------------------------------------
BelId Arch::getBelByName(IdString name) const
{
BelId ret;
auto it = bel_by_name.find(name);
if (it != bel_by_name.end())
return it->second;
Location loc;
std::string basename;
std::tie(loc.x, loc.y, basename) = split_identifier_name(name.str(this));
ret.location = loc;
const LocationTypePOD *loci = locInfo(ret);
for (int i = 0; i < loci->num_bels; i++) {
if (std::strcmp(loci->bel_data[i].name.get(), basename.c_str()) == 0) {
ret.index = i;
break;
}
}
if (ret.index >= 0)
bel_by_name[name] = ret;
return ret;
}
BelRange Arch::getBelsByTile(int x, int y) const
{
BelRange br;
br.b.cursor_tile = y * chip_info->width + x;
br.e.cursor_tile = y * chip_info->width + x;
br.b.cursor_index = 0;
br.e.cursor_index = chip_info->locations[chip_info->location_type[br.b.cursor_tile]].num_bels - 1;
br.b.chip = chip_info;
br.e.chip = chip_info;
if (br.e.cursor_index == -1)
++br.e.cursor_index;
else
++br.e;
return br;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
WireId ret;
NPNR_ASSERT(bel != BelId());
int num_bel_wires = locInfo(bel)->bel_data[bel.index].num_bel_wires;
const BelWirePOD *bel_wires = locInfo(bel)->bel_data[bel.index].bel_wires.get();
for (int i = 0; i < num_bel_wires; i++)
if (bel_wires[i].port == pin.index) {
ret.location = bel.location + bel_wires[i].rel_wire_loc;
ret.index = bel_wires[i].wire_index;
break;
}
return ret;
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = locInfo(bel)->bel_data[bel.index].num_bel_wires;
const BelWirePOD *bel_wires = locInfo(bel)->bel_data[bel.index].bel_wires.get();
for (int i = 0; i < num_bel_wires; i++)
if (bel_wires[i].port == pin.index)
return PortType(bel_wires[i].type);
return PORT_INOUT;
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdString name) const
{
WireId ret;
auto it = wire_by_name.find(name);
if (it != wire_by_name.end())
return it->second;
Location loc;
std::string basename;
std::tie(loc.x, loc.y, basename) = split_identifier_name(name.str(this));
ret.location = loc;
const LocationTypePOD *loci = locInfo(ret);
for (int i = 0; i < loci->num_wires; i++) {
if (std::strcmp(loci->wire_data[i].name.get(), basename.c_str()) == 0) {
ret.index = i;
ret.location = loc;
break;
}
}
if (ret.index >= 0)
wire_by_name[name] = ret;
else
ret.location = Location();
return ret;
}
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdString name) const
{
auto it = pip_by_name.find(name);
if (it != pip_by_name.end())
return it->second;
PipId ret;
Location loc;
std::string basename;
std::tie(loc.x, loc.y, basename) = split_identifier_name(name.str(this));
ret.location = loc;
const LocationTypePOD *loci = locInfo(ret);
for (int i = 0; i < loci->num_pips; i++) {
PipId curr;
curr.location = loc;
curr.index = i;
pip_by_name[getPipName(curr)] = curr;
}
if (pip_by_name.find(name) == pip_by_name.end())
NPNR_ASSERT_FALSE_STR("no pip named " + name.str(this));
return pip_by_name[name];
}
IdString Arch::getPipName(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
int x = pip.location.x;
int y = pip.location.y;
std::string src_name = getWireName(getPipSrcWire(pip)).str(this);
std::replace(src_name.begin(), src_name.end(), '/', '.');
std::string dst_name = getWireName(getPipDstWire(pip)).str(this);
std::replace(dst_name.begin(), dst_name.end(), '/', '.');
return id("X" + std::to_string(x) + "/Y" + std::to_string(y) + "/" + src_name + ".->." + dst_name);
}
// -----------------------------------------------------------------------
BelId Arch::getPackagePinBel(const std::string &pin) const
{
for (int i = 0; i < package_info->num_pins; i++) {
if (package_info->pin_data[i].name.get() == pin) {
BelId bel;
bel.location = package_info->pin_data[i].abs_loc;
bel.index = package_info->pin_data[i].bel_index;
return bel;
}
}
return BelId();
}
std::string Arch::getBelPackagePin(BelId bel) const
{
for (int i = 0; i < package_info->num_pins; i++) {
if (Location(package_info->pin_data[i].abs_loc) == bel.location &&
package_info->pin_data[i].bel_index == bel.index) {
return package_info->pin_data[i].name.get();
}
}
return "";
}
int Arch::getPioBelBank(BelId bel) const
{
for (int i = 0; i < chip_info->num_pios; i++) {
if (Location(chip_info->pio_info[i].abs_loc) == bel.location && chip_info->pio_info[i].bel_index == bel.index) {
return chip_info->pio_info[i].bank;
}
}
NPNR_ASSERT_FALSE("failed to find PIO");
}
std::string Arch::getPioFunctionName(BelId bel) const
{
for (int i = 0; i < chip_info->num_pios; i++) {
if (Location(chip_info->pio_info[i].abs_loc) == bel.location && chip_info->pio_info[i].bel_index == bel.index) {
const char *func = chip_info->pio_info[i].function_name.get();
if (func == nullptr)
return "";
else
return func;
}
}
NPNR_ASSERT_FALSE("failed to find PIO");
}
BelId Arch::getPioByFunctionName(const std::string &name) const
{
for (int i = 0; i < chip_info->num_pios; i++) {
const char *func = chip_info->pio_info[i].function_name.get();
if (func != nullptr && func == name) {
BelId bel;
bel.location = chip_info->pio_info[i].abs_loc;
bel.index = chip_info->pio_info[i].bel_index;
return bel;
}
}
return BelId();
}
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> ret;
NPNR_ASSERT(bel != BelId());
int num_bel_wires = locInfo(bel)->bel_data[bel.index].num_bel_wires;
const BelWirePOD *bel_wires = locInfo(bel)->bel_data[bel.index].bel_wires.get();
for (int i = 0; i < num_bel_wires; i++) {
IdString id;
id.index = bel_wires[i].port;
ret.push_back(id);
}
return ret;
}
BelId Arch::getBelByLocation(Loc loc) const
{
if (loc.x >= chip_info->width || loc.y >= chip_info->height)
return BelId();
const LocationTypePOD &locI = chip_info->locations[chip_info->location_type[loc.y * chip_info->width + loc.x]];
for (int i = 0; i < locI.num_bels; i++) {
if (locI.bel_data[i].z == loc.z) {
BelId bi;
bi.location.x = loc.x;
bi.location.y = loc.y;
bi.index = i;
return bi;
}
}
return BelId();
}
// -----------------------------------------------------------------------
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
int num_uh = locInfo(dst)->wire_data[dst.index].num_uphill;
if (num_uh < 6) {
for (auto uh : getPipsUphill(dst)) {
if (getPipSrcWire(uh) == src)
return getPipDelay(uh).maxDelay();
}
}
auto est_location = [&](WireId w) -> std::pair<int, int> {
const auto &wire = locInfo(w)->wire_data[w.index];
if (w == gsrclk_wire) {
auto phys_wire = getPipSrcWire(*(getPipsUphill(w).begin()));
return std::make_pair(int(phys_wire.location.x), int(phys_wire.location.y));
} else if (wire.num_bel_pins > 0) {
return std::make_pair(w.location.x + wire.bel_pins[0].rel_bel_loc.x,
w.location.y + wire.bel_pins[0].rel_bel_loc.y);
} else if (wire.num_downhill > 0) {
return std::make_pair(w.location.x + wire.pips_downhill[0].rel_loc.x,
w.location.y + wire.pips_downhill[0].rel_loc.y);
} else if (wire.num_uphill > 0) {
return std::make_pair(w.location.x + wire.pips_uphill[0].rel_loc.x,
w.location.y + wire.pips_uphill[0].rel_loc.y);
} else {
return std::make_pair(int(w.location.x), int(w.location.y));
}
};
auto src_loc = est_location(src);
std::pair<int, int> dst_loc;
if (wire_loc_overrides.count(dst)) {
dst_loc = wire_loc_overrides.at(dst);
} else {
dst_loc = est_location(dst);
}
int dx = abs(src_loc.first - dst_loc.first), dy = abs(src_loc.second - dst_loc.second);
return (120 - 22 * args.speed) *
(6 + std::max(dx - 5, 0) + std::max(dy - 5, 0) + 2 * (std::min(dx, 5) + std::min(dy, 5)));
}
ArcBounds Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
ArcBounds bb;
bb.x0 = src.location.x;
bb.y0 = src.location.y;
bb.x1 = src.location.x;
bb.y1 = src.location.y;
auto extend = [&](int x, int y) {
bb.x0 = std::min(bb.x0, x);
bb.x1 = std::max(bb.x1, x);
bb.y0 = std::min(bb.y0, y);
bb.y1 = std::max(bb.y1, y);
};
auto est_location = [&](WireId w) -> std::pair<int, int> {
const auto &wire = locInfo(w)->wire_data[w.index];
if (w == gsrclk_wire) {
auto phys_wire = getPipSrcWire(*(getPipsUphill(w).begin()));
return std::make_pair(int(phys_wire.location.x), int(phys_wire.location.y));
} else if (wire.num_bel_pins > 0) {
return std::make_pair(w.location.x + wire.bel_pins[0].rel_bel_loc.x,
w.location.y + wire.bel_pins[0].rel_bel_loc.y);
} else if (wire.num_downhill > 0) {
return std::make_pair(w.location.x + wire.pips_downhill[0].rel_loc.x,
w.location.y + wire.pips_downhill[0].rel_loc.y);
} else if (wire.num_uphill > 0) {
return std::make_pair(w.location.x + wire.pips_uphill[0].rel_loc.x,
w.location.y + wire.pips_uphill[0].rel_loc.y);
} else {
return std::make_pair(int(w.location.x), int(w.location.y));
}
};
auto src_loc = est_location(src);
extend(src_loc.first, src_loc.second);
if (wire_loc_overrides.count(src)) {
extend(wire_loc_overrides.at(src).first, wire_loc_overrides.at(src).second);
}
std::pair<int, int> dst_loc;
extend(dst.location.x, dst.location.y);
if (wire_loc_overrides.count(dst)) {
dst_loc = wire_loc_overrides.at(dst);
} else {
dst_loc = est_location(dst);
}
extend(dst_loc.first, dst_loc.second);
return bb;
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
const auto &driver = net_info->driver;
if ((driver.port == id_FCO && sink.port == id_FCI) || sink.port == id_FXA || sink.port == id_FXB)
return 0;
auto driver_loc = getBelLocation(driver.cell->bel);
auto sink_loc = getBelLocation(sink.cell->bel);
// Encourage use of direct interconnect
if (driver_loc.x == sink_loc.x && driver_loc.y == sink_loc.y) {
if ((sink.port == id_A0 || sink.port == id_A1) && (driver.port == id_F1) &&
(driver_loc.z == 2 || driver_loc.z == 3))
return 0;
if ((sink.port == id_B0 || sink.port == id_B1) && (driver.port == id_F1) &&
(driver_loc.z == 0 || driver_loc.z == 1))
return 0;
if ((sink.port == id_C0 || sink.port == id_C1) && (driver.port == id_F0) &&
(driver_loc.z == 2 || driver_loc.z == 3))
return 0;
if ((sink.port == id_D0 || sink.port == id_D1) && (driver.port == id_F0) &&
(driver_loc.z == 0 || driver_loc.z == 1))
return 0;
}
int dx = abs(driver_loc.x - sink_loc.x), dy = abs(driver_loc.y - sink_loc.y);
return (120 - 22 * args.speed) *
(6 + std::max(dx - 5, 0) + std::max(dy - 5, 0) + 2 * (std::min(dx, 5) + std::min(dy, 5)));
}
bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const
{
if (net_info->driver.port == id_FCO && sink.port == id_FCI) {
budget = 0;
return true;
} else if (sink.port == id_FXA || sink.port == id_FXB) {
budget = 0;
return true;
} else {
return false;
}
}
delay_t Arch::getRipupDelayPenalty() const { return 400; }
// -----------------------------------------------------------------------
bool Arch::place()
{
std::string placer = str_or_default(settings, id("placer"), defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
cfg.criticalityExponent = 4;
cfg.ioBufTypes.insert(id_TRELLIS_IO);
if (!placer_heap(getCtx(), cfg))
return false;
} else if (placer == "sa") {
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
} else {
log_error("ECP5 architecture does not support placer '%s'\n", placer.c_str());
}
permute_luts();
// In out-of-context mode, create a locked macro
if (bool_or_default(settings, id("arch.ooc")))
for (auto &cell : cells)
cell.second->belStrength = STRENGTH_LOCKED;
getCtx()->settings[getCtx()->id("place")] = 1;
archInfoToAttributes();
return true;
}
bool Arch::route()
{
std::string router = str_or_default(settings, id("router"), defaultRouter);
setupWireLocations();
route_ecp5_globals(getCtx());
assignArchInfo();
assign_budget(getCtx(), true);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("ECP5 architecture does not support router '%s'\n", router.c_str());
}
#if 0
std::vector<std::pair<WireId, int>> fanout_vector;
std::copy(wire_fanout.begin(), wire_fanout.end(), std::back_inserter(fanout_vector));
std::sort(fanout_vector.begin(), fanout_vector.end(), [](const std::pair<WireId, int> &a, const std::pair<WireId, int> &b) {
return a.second > b.second;
});
for (size_t i = 0; i < std::min(size_t(20), fanout_vector.size()); i++)
log_info(" fanout %s = %d\n", getWireName(fanout_vector[i].first).c_str(this), fanout_vector[i].second);
log_break();
PipId slowest_pip;
delay_t slowest_pipdelay = 0;
for (auto pip : pip_to_net) {
if (pip.second) {
delay_t dly = getPipDelay(pip.first).maxDelay();
if (dly > slowest_pipdelay) {
slowest_pip = pip.first;
slowest_pipdelay = dly;
}
}
}
log_info(" slowest pip %s = %.02f ns\n", getPipName(slowest_pip).c_str(this), getDelayNS(slowest_pipdelay));
log_info(" fanout %d\n", wire_fanout[getPipSrcWire(slowest_pip)]);
log_info(" base %d adder %d\n", speed_grade->pip_classes[locInfo(slowest_pip)->pip_data[slowest_pip.index].timing_class].max_base_delay,
speed_grade->pip_classes[locInfo(slowest_pip)->pip_data[slowest_pip.index].timing_class].max_fanout_adder);
#endif
getCtx()->settings[getCtx()->id("route")] = 1;
archInfoToAttributes();
return result;
}
// -----------------------------------------------------------------------
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const
{
std::vector<GraphicElement> ret;
if (decal.type == DecalId::TYPE_GROUP) {
int type = decal.z;
int x = decal.location.x;
int y = decal.location.y;
if (type == GroupId::TYPE_SWITCHBOX) {
GraphicElement el;
el.type = GraphicElement::TYPE_BOX;
el.style = GraphicElement::STYLE_FRAME;
el.x1 = x + switchbox_x1;
el.x2 = x + switchbox_x2;
el.y1 = y + switchbox_y1;
el.y2 = y + switchbox_y2;
ret.push_back(el);
}
} else if (decal.type == DecalId::TYPE_WIRE) {
WireId wire;
wire.index = decal.z;
wire.location = decal.location;
auto wire_type = getWireType(wire);
int x = decal.location.x;
int y = decal.location.y;
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
GfxTileWireId tilewire = GfxTileWireId(locInfo(wire)->wire_data[wire.index].tile_wire);
gfxTileWire(ret, x, y, chip_info->width, chip_info->height, wire_type, tilewire, style);
} else if (decal.type == DecalId::TYPE_PIP) {
PipId pip;
pip.index = decal.z;
pip.location = decal.location;
WireId src_wire = getPipSrcWire(pip);
WireId dst_wire = getPipDstWire(pip);
int x = decal.location.x;
int y = decal.location.y;
GfxTileWireId src_id = GfxTileWireId(locInfo(src_wire)->wire_data[src_wire.index].tile_wire);
GfxTileWireId dst_id = GfxTileWireId(locInfo(dst_wire)->wire_data[dst_wire.index].tile_wire);
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_HIDDEN;
gfxTilePip(ret, x, y, chip_info->width, chip_info->height, src_wire, getWireType(src_wire), src_id, dst_wire,
getWireType(dst_wire), dst_id, style);
} else if (decal.type == DecalId::TYPE_BEL) {
BelId bel;
bel.index = decal.z;
bel.location = decal.location;
auto bel_type = getBelType(bel);
int x = decal.location.x;
int y = decal.location.y;
int z = locInfo(bel)->bel_data[bel.index].z;
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
gfxTileBel(ret, x, y, z, chip_info->width, chip_info->height, bel_type, style);
}
return ret;
}
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_BEL;
decalxy.decal.location = bel.location;
decalxy.decal.z = bel.index;
decalxy.decal.active = (bel_to_cell.at(getBelFlatIndex(bel)) != nullptr);
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_WIRE;
decalxy.decal.location = wire.location;
decalxy.decal.z = wire.index;
decalxy.decal.active = getBoundWireNet(wire) != nullptr;
return decalxy;
}
DecalXY Arch::getPipDecal(PipId pip) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_PIP;
decalxy.decal.location = pip.location;
decalxy.decal.z = pip.index;
decalxy.decal.active = getBoundPipNet(pip) != nullptr;
return decalxy;
};
DecalXY Arch::getGroupDecal(GroupId group) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_GROUP;
decalxy.decal.location = group.location;
decalxy.decal.z = group.type;
decalxy.decal.active = true;
return decalxy;
}
// -----------------------------------------------------------------------
bool Arch::getDelayFromTimingDatabase(IdString tctype, IdString from, IdString to, DelayInfo &delay) const
{
auto fnd_dk = celldelay_cache.find({tctype, from, to});
if (fnd_dk != celldelay_cache.end()) {
delay = fnd_dk->second.second;
return fnd_dk->second.first;
}
for (int i = 0; i < speed_grade->num_cell_timings; i++) {
const auto &tc = speed_grade->cell_timings[i];
if (tc.cell_type == tctype.index) {
for (int j = 0; j < tc.num_prop_delays; j++) {
const auto &dly = tc.prop_delays[j];
if (dly.from_port == from.index && dly.to_port == to.index) {
delay.max_delay = dly.max_delay;
delay.min_delay = dly.min_delay;
celldelay_cache[{tctype, from, to}] = std::make_pair(true, delay);
return true;
}
}
celldelay_cache[{tctype, from, to}] = std::make_pair(false, DelayInfo());
return false;
}
}
NPNR_ASSERT_FALSE("failed to find timing cell in db");
}
void Arch::getSetupHoldFromTimingDatabase(IdString tctype, IdString clock, IdString port, DelayInfo &setup,
DelayInfo &hold) const
{
for (int i = 0; i < speed_grade->num_cell_timings; i++) {
const auto &tc = speed_grade->cell_timings[i];
if (tc.cell_type == tctype.index) {
for (int j = 0; j < tc.num_setup_holds; j++) {
const auto &sh = tc.setup_holds[j];
if (sh.clock_port == clock.index && sh.sig_port == port.index) {
setup.max_delay = sh.max_setup;
setup.min_delay = sh.min_setup;
hold.max_delay = sh.max_hold;
hold.min_delay = sh.min_hold;
return;
}
}
}
}
NPNR_ASSERT_FALSE("failed to find timing cell in db");
}
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const
{
// Data for -8 grade
if (cell->type == id_TRELLIS_SLICE) {
bool has_carry = cell->sliceInfo.is_carry;
if (fromPort == id_A0 || fromPort == id_B0 || fromPort == id_C0 || fromPort == id_D0 || fromPort == id_A1 ||
fromPort == id_B1 || fromPort == id_C1 || fromPort == id_D1 || fromPort == id_M0 || fromPort == id_M1 ||
fromPort == id_FXA || fromPort == id_FXB || fromPort == id_FCI) {
return getDelayFromTimingDatabase(has_carry ? id_SCCU2C : id_SLOGICB, fromPort, toPort, delay);
}
if ((fromPort == id_A0 && toPort == id_WADO3) || (fromPort == id_A1 && toPort == id_WDO1) ||
(fromPort == id_B0 && toPort == id_WADO1) || (fromPort == id_B1 && toPort == id_WDO3) ||
(fromPort == id_C0 && toPort == id_WADO2) || (fromPort == id_C1 && toPort == id_WDO0) ||
(fromPort == id_D0 && toPort == id_WADO0) || (fromPort == id_D1 && toPort == id_WDO2)) {
delay.min_delay = 0;
delay.max_delay = 0;
return true;
}
return false;
} else if (cell->type == id_DCCA) {
if (fromPort == id_CLKI && toPort == id_CLKO) {
delay.min_delay = 0;
delay.max_delay = 0;
return true;
}
return false;
} else if (cell->type == id_DP16KD) {
return false;
} else if (cell->type == id_MULT18X18D) {
if (cell->multInfo.is_clocked)
return false;
std::string fn = fromPort.str(this), tn = toPort.str(this);
if (fn.size() > 1 && (fn.front() == 'A' || fn.front() == 'B') && std::isdigit(fn.at(1))) {
if (tn.size() > 1 && tn.front() == 'P' && std::isdigit(tn.at(1)))
return getDelayFromTimingDatabase(cell->multInfo.timing_id, id(std::string("") + fn.front()), id_P,
delay);
}
return false;
} else if (cell->type == id_IOLOGIC || cell->type == id_SIOLOGIC) {
return false;
} else {
return false;
}
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
auto disconnected = [cell](IdString p) { return !cell->ports.count(p) || cell->ports.at(p).net == nullptr; };
clockInfoCount = 0;
if (cell->type == id_TRELLIS_SLICE) {
int sd0 = cell->sliceInfo.sd0, sd1 = cell->sliceInfo.sd1;
if (port == id_CLK || port == id_WCK)
return TMG_CLOCK_INPUT;
if (port == id_A0 || port == id_A1 || port == id_B0 || port == id_B1 || port == id_C0 || port == id_C1 ||
port == id_D0 || port == id_D1 || port == id_FCI || port == id_FXA || port == id_FXB)
return TMG_COMB_INPUT;
if (port == id_F0 && disconnected(id_A0) && disconnected(id_B0) && disconnected(id_C0) && disconnected(id_D0) &&
disconnected(id_FCI))
return TMG_IGNORE; // LUT with no inputs is a constant
if (port == id_F1 && disconnected(id_A1) && disconnected(id_B1) && disconnected(id_C1) && disconnected(id_D1) &&
disconnected(id_FCI))
return TMG_IGNORE; // LUT with no inputs is a constant
if (port == id_F0 || port == id_F1 || port == id_FCO || port == id_OFX0 || port == id_OFX1)
return TMG_COMB_OUTPUT;
if (port == id_DI0 || port == id_DI1 || port == id_CE || port == id_LSR || (sd0 == 1 && port == id_M0) ||
(sd1 == 1 && port == id_M1)) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
if (port == id_M0 || port == id_M1)
return TMG_COMB_INPUT;
if (port == id_Q0 || port == id_Q1) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
}
if (port == id_WDO0 || port == id_WDO1 || port == id_WDO2 || port == id_WDO3 || port == id_WADO0 ||
port == id_WADO1 || port == id_WADO2 || port == id_WADO3)
return TMG_COMB_OUTPUT;
if (port == id_WD0 || port == id_WD1 || port == id_WAD0 || port == id_WAD1 || port == id_WAD2 ||
port == id_WAD3 || port == id_WRE) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
NPNR_ASSERT_FALSE_STR("no timing type for slice port '" + port.str(this) + "'");
} else if (cell->type == id_TRELLIS_IO) {
if (port == id_T || port == id_I)
return TMG_ENDPOINT;
if (port == id_O)
return TMG_STARTPOINT;
return TMG_IGNORE;
} else if (cell->type == id_DCCA) {
if (port == id_CLKI)
return TMG_COMB_INPUT;
if (port == id_CLKO)
return TMG_COMB_OUTPUT;
return TMG_IGNORE;
} else if (cell->type == id_DP16KD) {
if (port == id_CLKA || port == id_CLKB)
return TMG_CLOCK_INPUT;
std::string port_name = port.str(this);
for (auto c : boost::adaptors::reverse(port_name)) {
if (std::isdigit(c))
continue;
if (c == 'A' || c == 'B')
clockInfoCount = 1;
else
NPNR_ASSERT_FALSE_STR("bad ram port");
return (cell->ports.at(port).type == PORT_OUT) ? TMG_REGISTER_OUTPUT : TMG_REGISTER_INPUT;
}
NPNR_ASSERT_FALSE_STR("no timing type for RAM port '" + port.str(this) + "'");
} else if (cell->type == id_MULT18X18D) {
if (port == id_CLK0 || port == id_CLK1 || port == id_CLK2 || port == id_CLK3)
return TMG_CLOCK_INPUT;
if (port == id_CE0 || port == id_CE1 || port == id_CE2 || port == id_CE3 || port == id_RST0 ||
port == id_RST1 || port == id_RST2 || port == id_RST3 || port == id_SIGNEDA || port == id_SIGNEDB) {
if (cell->multInfo.is_clocked) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else {
return TMG_COMB_INPUT;
}
}
std::string pname = port.str(this);
if (pname.size() > 1) {
if ((pname.front() == 'A' || pname.front() == 'B') && std::isdigit(pname.at(1))) {
if (cell->multInfo.is_clocked) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else {
return TMG_COMB_INPUT;
}
}
if ((pname.front() == 'P') && std::isdigit(pname.at(1))) {
if (cell->multInfo.is_clocked) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else {
return TMG_COMB_OUTPUT;
}
}
}
return TMG_IGNORE;
} else if (cell->type == id_ALU54B) {
return TMG_IGNORE; // FIXME
} else if (cell->type == id_EHXPLLL) {
return TMG_IGNORE;
} else if (cell->type == id_DCUA || cell->type == id_EXTREFB || cell->type == id_PCSCLKDIV) {
if (port == id_CH0_FF_TXI_CLK || port == id_CH0_FF_RXI_CLK || port == id_CH1_FF_TXI_CLK ||
port == id_CH1_FF_RXI_CLK)
return TMG_CLOCK_INPUT;
std::string prefix = port.str(this).substr(0, 9);
if (prefix == "CH0_FF_TX" || prefix == "CH0_FF_RX" || prefix == "CH1_FF_TX" || prefix == "CH1_FF_RX") {
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_REGISTER_OUTPUT : TMG_REGISTER_INPUT;
}
return TMG_IGNORE;
} else if (cell->type == id_IOLOGIC || cell->type == id_SIOLOGIC) {
if (port == id_CLK || port == id_ECLK) {
return TMG_CLOCK_INPUT;
} else if (port == id_IOLDO || port == id_IOLDOI || port == id_IOLDOD || port == id_IOLTO || port == id_PADDI ||
port == id_DQSR90 || port == id_DQSW || port == id_DQSW270) {
return TMG_IGNORE;
} else {
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_REGISTER_OUTPUT : TMG_REGISTER_INPUT;
}
} else if (cell->type == id_DTR || cell->type == id_USRMCLK || cell->type == id_SEDGA || cell->type == id_GSR ||
cell->type == id_JTAGG) {
return (cell->ports.at(port).type == PORT_OUT) ? TMG_STARTPOINT : TMG_ENDPOINT;
} else if (cell->type == id_OSCG) {
if (port == id_OSC)
return TMG_GEN_CLOCK;
else
return TMG_IGNORE;
} else if (cell->type == id_CLKDIVF) {
if (port == id_CLKI)
return TMG_CLOCK_INPUT;
else if (port == id_RST || port == id_ALIGNWD)
return TMG_ENDPOINT;
else if (port == id_CDIVX)
return TMG_GEN_CLOCK;
else
NPNR_ASSERT_FALSE("bad clkdiv port");
} else if (cell->type == id_DQSBUFM) {
if (port == id_READ0 || port == id_READ1) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else if (port == id_DATAVALID) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else if (port == id_SCLK || port == id_ECLK || port == id_DQSI) {
return TMG_CLOCK_INPUT;
} else if (port == id_DQSR90 || port == id_DQSW || port == id_DQSW270) {
return TMG_GEN_CLOCK;
}
return (cell->ports.at(port).type == PORT_OUT) ? TMG_STARTPOINT : TMG_ENDPOINT;
} else if (cell->type == id_DDRDLL) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_STARTPOINT : TMG_ENDPOINT;
} else if (cell->type == id_TRELLIS_ECLKBUF) {
return (cell->ports.at(port).type == PORT_OUT) ? TMG_COMB_OUTPUT : TMG_COMB_INPUT;
} else if (cell->type == id_ECLKSYNCB) {
if (cell->ports.at(port).name == id_STOP)
return TMG_ENDPOINT;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_COMB_OUTPUT : TMG_COMB_INPUT;
} else if (cell->type == id_ECLKBRIDGECS) {
if (cell->ports.at(port).name == id_SEL)
return TMG_ENDPOINT;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_COMB_OUTPUT : TMG_COMB_INPUT;
} else {
log_error("cell type '%s' is unsupported (instantiated as '%s')\n", cell->type.c_str(this),
cell->name.c_str(this));
}
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
TimingClockingInfo info;
info.setup = getDelayFromNS(0);
info.hold = getDelayFromNS(0);
info.clockToQ = getDelayFromNS(0);
if (cell->type == id_TRELLIS_SLICE) {
int sd0 = cell->sliceInfo.sd0, sd1 = cell->sliceInfo.sd1;
if (port == id_WD0 || port == id_WD1 || port == id_WAD0 || port == id_WAD1 || port == id_WAD2 ||
port == id_WAD3 || port == id_WRE) {
info.edge = RISING_EDGE;
info.clock_port = id_WCK;
getSetupHoldFromTimingDatabase(id_SDPRAME, id_WCK, port, info.setup, info.hold);
} else if (port == id_DI0 || port == id_DI1 || port == id_CE || port == id_LSR || (sd0 == 1 && port == id_M0) ||
(sd1 == 1 && port == id_M1)) {
info.edge = cell->sliceInfo.clkmux == id("INV") ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
getSetupHoldFromTimingDatabase(id_SLOGICB, id_CLK, port, info.setup, info.hold);
} else {
info.edge = cell->sliceInfo.clkmux == id("INV") ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
bool is_path = getDelayFromTimingDatabase(id_SLOGICB, id_CLK, port, info.clockToQ);
NPNR_ASSERT(is_path);
}
} else if (cell->type == id_DP16KD) {
std::string port_name = port.str(this);
IdString half_clock;
for (auto c : boost::adaptors::reverse(port_name)) {
if (std::isdigit(c))
continue;
if (c == 'A') {
half_clock = id_CLKA;
break;
} else if (c == 'B') {
half_clock = id_CLKB;
break;
} else
NPNR_ASSERT_FALSE_STR("bad ram port " + port.str(this));
}
if (cell->ramInfo.is_pdp) {
bool is_output = cell->ports.at(port).type == PORT_OUT;
// In PDP mode, all read signals are in CLKB domain and write signals in CLKA domain
if (is_output || port == id_OCEB || port == id_CEB || port == id_ADB5 || port == id_ADB6 ||
port == id_ADB7 || port == id_ADB8 || port == id_ADB9 || port == id_ADB10 || port == id_ADB11 ||
port == id_ADB12 || port == id_ADB13)
info.clock_port = id_CLKB;
else
info.clock_port = id_CLKA;
} else {
info.clock_port = half_clock;
}
info.edge = (str_or_default(cell->params, info.clock_port == id_CLKB ? id("CLKBMUX") : id("CLKAMUX"), "CLK") ==
"INV")
? FALLING_EDGE
: RISING_EDGE;
if (cell->ports.at(port).type == PORT_OUT) {
bool is_path = getDelayFromTimingDatabase(cell->ramInfo.regmode_timing_id, half_clock, port, info.clockToQ);
NPNR_ASSERT(is_path);
} else {
getSetupHoldFromTimingDatabase(cell->ramInfo.regmode_timing_id, half_clock, port, info.setup, info.hold);
}
} else if (cell->type == id_DCUA) {
std::string prefix = port.str(this).substr(0, 9);
info.edge = RISING_EDGE;
if (prefix == "CH0_FF_TX")
info.clock_port = id_CH0_FF_TXI_CLK;
else if (prefix == "CH0_FF_RX")
info.clock_port = id_CH0_FF_RXI_CLK;
else if (prefix == "CH1_FF_TX")
info.clock_port = id_CH1_FF_TXI_CLK;
else if (prefix == "CH1_FF_RX")
info.clock_port = id_CH1_FF_RXI_CLK;
if (cell->ports.at(port).type == PORT_OUT) {
info.clockToQ = getDelayFromNS(0.7);
} else {
info.setup = getDelayFromNS(1);
info.hold = getDelayFromNS(0);
}
} else if (cell->type == id_IOLOGIC || cell->type == id_SIOLOGIC) {
info.clock_port = id_CLK;
if (cell->ports.at(port).type == PORT_OUT) {
info.clockToQ = getDelayFromNS(0.5);
} else {
info.setup = getDelayFromNS(0.1);
info.hold = getDelayFromNS(0);
}
} else if (cell->type == id_DQSBUFM) {
info.clock_port = id_SCLK;
if (port == id_DATAVALID) {
info.clockToQ = getDelayFromNS(0.2);
} else if (port == id_READ0 || port == id_READ1) {
info.setup = getDelayFromNS(0.5);
info.hold = getDelayFromNS(-0.4);
} else {
NPNR_ASSERT_FALSE("unknown DQSBUFM register port");
}
} else if (cell->type == id_MULT18X18D) {
std::string port_name = port.str(this);
// To keep the timing DB small, like signals (e.g. P[35:0] have been
// grouped. To look up the timing, we therefore need to map this port
// to the enclosing port group.
auto has_prefix = [](std::string base, std::string prefix) {
return base.compare(0, prefix.size(), prefix) == 0;
};
IdString port_group;
if (has_prefix(port_name, "A")) {
port_group = id_A;
} else if (has_prefix(port_name, "B")) {
port_group = id_B;
} else if (has_prefix(port_name, "P")) {
port_group = id_P;
} else if (has_prefix(port_name, "CE")) {
port_group = id_CE0;
} else if (has_prefix(port_name, "RST")) {
port_group = id_RST0;
} else if (has_prefix(port_name, "SIGNED")) {
// Both SIGNEDA and SIGNEDB exist in the DB, so can directly use these here
port_group = port;
} else {
NPNR_ASSERT_FALSE("Unknown MULT18X18D register port");
}
// If this port is clocked at all, it must be clocked from CLK0
IdString clock_id = id_CLK0;
info.clock_port = clock_id;
info.edge = RISING_EDGE;
if (cell->ports.at(port).type == PORT_OUT) {
bool is_path = getDelayFromTimingDatabase(cell->multInfo.timing_id, clock_id, port_group, info.clockToQ);
NPNR_ASSERT(is_path);
} else {
getSetupHoldFromTimingDatabase(cell->multInfo.timing_id, clock_id, port_group, info.setup, info.hold);
}
}
return info;
}
std::vector<std::pair<std::string, std::string>> Arch::getTilesAtLocation(int row, int col)
{
std::vector<std::pair<std::string, std::string>> ret;
auto &tileloc = chip_info->tile_info[row * chip_info->width + col];
for (int i = 0; i < tileloc.num_tiles; i++) {
ret.push_back(std::make_pair(tileloc.tile_names[i].name.get(),
chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get()));
}
return ret;
}
GlobalInfoPOD Arch::globalInfoAtLoc(Location loc)
{
int locidx = loc.y * chip_info->width + loc.x;
return chip_info->location_glbinfo[locidx];
}
bool Arch::getPIODQSGroup(BelId pio, bool &dqsright, int &dqsrow)
{
for (int i = 0; i < chip_info->num_pios; i++) {
if (Location(chip_info->pio_info[i].abs_loc) == pio.location && chip_info->pio_info[i].bel_index == pio.index) {
int dqs = chip_info->pio_info[i].dqsgroup;
if (dqs == -1)
return false;
else {
dqsright = (dqs & 2048) != 0;
dqsrow = dqs & 0x1FF;
return true;
}
}
}
NPNR_ASSERT_FALSE("failed to find PIO");
}
BelId Arch::getDQSBUF(bool dqsright, int dqsrow)
{
BelId bel;
bel.location.y = dqsrow;
bel.location.x = (dqsright ? (chip_info->width - 1) : 0);
for (int i = 0; i < locInfo(bel)->num_bels; i++) {
auto &bd = locInfo(bel)->bel_data[i];
if (bd.type == id_DQSBUFM.index) {
bel.index = i;
return bel;
}
}
NPNR_ASSERT_FALSE("failed to find DQSBUF");
}
WireId Arch::getBankECLK(int bank, int eclk)
{
return getWireByLocAndBasename(Location(0, 0), "G_BANK" + std::to_string(bank) + "ECLK" + std::to_string(eclk));
}
#ifdef WITH_HEAP
const std::string Arch::defaultPlacer = "heap";
#else
const std::string Arch::defaultPlacer = "sa";
#endif
const std::vector<std::string> Arch::availablePlacers = {"sa",
#ifdef WITH_HEAP
"heap"
#endif
};
const std::string Arch::defaultRouter = "router1";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
// -----------------------------------------------------------------------
GroupId Arch::getGroupByName(IdString name) const
{
for (auto g : getGroups())
if (getGroupName(g) == name)
return g;
return GroupId();
}
IdString Arch::getGroupName(GroupId group) const
{
std::string suffix;
switch (group.type) {
case GroupId::TYPE_SWITCHBOX:
suffix = "switchbox";
break;
default:
return IdString();
}
return id("X" + std::to_string(group.location.x) + "/Y" + std::to_string(group.location.y) + "/" + suffix);
}
std::vector<GroupId> Arch::getGroups() const
{
std::vector<GroupId> ret;
for (int y = 1; y < chip_info->height - 1; y++) {
for (int x = 1; x < chip_info->width - 1; x++) {
GroupId group;
group.type = GroupId::TYPE_SWITCHBOX;
group.location.x = x;
group.location.y = y;
ret.push_back(group);
}
}
return ret;
}
std::vector<BelId> Arch::getGroupBels(GroupId group) const
{
std::vector<BelId> ret;
return ret;
}
std::vector<WireId> Arch::getGroupWires(GroupId group) const
{
std::vector<WireId> ret;
return ret;
}
std::vector<PipId> Arch::getGroupPips(GroupId group) const
{
std::vector<PipId> ret;
return ret;
}
std::vector<GroupId> Arch::getGroupGroups(GroupId group) const
{
std::vector<GroupId> ret;
return ret;
}
// -----------------------------------------------------------------------
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const
{
std::vector<std::pair<IdString, std::string>> ret;
auto &wi = locInfo(wire)->wire_data[wire.index];
ret.push_back(std::make_pair(id("TILE_WIRE_ID"), stringf("%d", wi.tile_wire)));
return ret;
}
NEXTPNR_NAMESPACE_END