nextpnr/common/nextpnr.cc
gatecat b64f45a8ba Remove unused advanced timing constraint API
This API was simply an attractive nuisance as no code was ever developed
to actually process timing constraints (other than clock constraints
which use a different API).

While I do want to consider basic false path support, among other
things, in the near future; I plan for this to use a new API that
doesn't add complexity to the BaseCtx/Context monstrosity and that is
easier to use on the timing analysis side.

Signed-off-by: gatecat <gatecat@ds0.me>
2021-02-26 10:07:00 +00:00

898 lines
31 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "nextpnr.h"
#include <boost/algorithm/string.hpp>
#include "design_utils.h"
#include "log.h"
#include "util.h"
#if defined(__wasm)
extern "C" {
// FIXME: WASI does not currently support exceptions.
void *__cxa_allocate_exception(size_t thrown_size) throw() { return malloc(thrown_size); }
bool __cxa_uncaught_exception() throw();
void __cxa_throw(void *thrown_exception, struct std::type_info *tinfo, void (*dest)(void *)) { std::terminate(); }
}
namespace boost {
void throw_exception(std::exception const &e) { NEXTPNR_NAMESPACE::log_error("boost::exception(): %s\n", e.what()); }
} // namespace boost
#endif
NEXTPNR_NAMESPACE_BEGIN
assertion_failure::assertion_failure(std::string msg, std::string expr_str, std::string filename, int line)
: runtime_error("Assertion failure: " + msg + " (" + filename + ":" + std::to_string(line) + ")"), msg(msg),
expr_str(expr_str), filename(filename), line(line)
{
log_flush();
}
void IdString::set(const BaseCtx *ctx, const std::string &s)
{
auto it = ctx->idstring_str_to_idx->find(s);
if (it == ctx->idstring_str_to_idx->end()) {
index = ctx->idstring_idx_to_str->size();
auto insert_rc = ctx->idstring_str_to_idx->insert({s, index});
ctx->idstring_idx_to_str->push_back(&insert_rc.first->first);
} else {
index = it->second;
}
}
const std::string &IdString::str(const BaseCtx *ctx) const { return *ctx->idstring_idx_to_str->at(index); }
const char *IdString::c_str(const BaseCtx *ctx) const { return str(ctx).c_str(); }
void IdString::initialize_add(const BaseCtx *ctx, const char *s, int idx)
{
NPNR_ASSERT(ctx->idstring_str_to_idx->count(s) == 0);
NPNR_ASSERT(int(ctx->idstring_idx_to_str->size()) == idx);
auto insert_rc = ctx->idstring_str_to_idx->insert({s, idx});
ctx->idstring_idx_to_str->push_back(&insert_rc.first->first);
}
IdStringList IdStringList::parse(Context *ctx, const std::string &str)
{
char delim = ctx->getNameDelimiter();
size_t id_count = std::count(str.begin(), str.end(), delim) + 1;
IdStringList list(id_count);
size_t start = 0;
for (size_t i = 0; i < id_count; i++) {
size_t end = str.find(delim, start);
NPNR_ASSERT((i == (id_count - 1)) || (end != std::string::npos));
list.ids[i] = ctx->id(str.substr(start, end - start));
start = end + 1;
}
return list;
}
void IdStringList::build_str(const Context *ctx, std::string &str) const
{
char delim = ctx->getNameDelimiter();
bool first = true;
str.clear();
for (auto entry : ids) {
if (!first)
str += delim;
str += entry.str(ctx);
first = false;
}
}
std::string IdStringList::str(const Context *ctx) const
{
std::string s;
build_str(ctx, s);
return s;
}
std::string &StrRingBuffer::next()
{
std::string &s = buffer.at(index++);
if (index >= N)
index = 0;
return s;
}
Property::Property() : is_string(false), str(""), intval(0) {}
Property::Property(int64_t intval, int width) : is_string(false), intval(intval)
{
str.reserve(width);
for (int i = 0; i < width; i++)
str.push_back((intval & (1ULL << i)) ? S1 : S0);
}
Property::Property(const std::string &strval) : is_string(true), str(strval), intval(0xDEADBEEF) {}
Property::Property(State bit) : is_string(false), str(std::string("") + char(bit)), intval(bit == S1) {}
void CellInfo::addInput(IdString name)
{
ports[name].name = name;
ports[name].type = PORT_IN;
}
void CellInfo::addOutput(IdString name)
{
ports[name].name = name;
ports[name].type = PORT_OUT;
}
void CellInfo::addInout(IdString name)
{
ports[name].name = name;
ports[name].type = PORT_INOUT;
}
void CellInfo::setParam(IdString name, Property value) { params[name] = value; }
void CellInfo::unsetParam(IdString name) { params.erase(name); }
void CellInfo::setAttr(IdString name, Property value) { attrs[name] = value; }
void CellInfo::unsetAttr(IdString name) { attrs.erase(name); }
bool CellInfo::isConstrained(bool include_abs_z_constr) const
{
return constr_parent != nullptr || !constr_children.empty() || (include_abs_z_constr && constr_abs_z);
}
bool CellInfo::testRegion(BelId bel) const
{
return region == nullptr || !region->constr_bels || region->bels.count(bel);
}
Loc CellInfo::getConstrainedLoc(Loc parent_loc) const
{
NPNR_ASSERT(constr_parent != nullptr);
Loc cloc = parent_loc;
if (constr_x != UNCONSTR)
cloc.x += constr_x;
if (constr_y != UNCONSTR)
cloc.y += constr_y;
if (constr_z != UNCONSTR)
cloc.z = constr_abs_z ? constr_z : (parent_loc.z + constr_z);
return cloc;
}
std::string Property::to_string() const
{
if (is_string) {
std::string result = str;
int state = 0;
for (char c : str) {
if (state == 0) {
if (c == '0' || c == '1' || c == 'x' || c == 'z')
state = 0;
else if (c == ' ')
state = 1;
else
state = 2;
} else if (state == 1 && c != ' ')
state = 2;
}
if (state < 2)
result += " ";
return result;
} else {
return std::string(str.rbegin(), str.rend());
}
}
Property Property::from_string(const std::string &s)
{
Property p;
size_t cursor = s.find_first_not_of("01xz");
if (cursor == std::string::npos) {
p.str = std::string(s.rbegin(), s.rend());
p.is_string = false;
p.update_intval();
} else if (s.find_first_not_of(' ', cursor) == std::string::npos) {
p = Property(s.substr(0, s.size() - 1));
} else {
p = Property(s);
}
return p;
}
const char *BaseCtx::nameOfBel(BelId bel) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getBelName(bel).build_str(ctx, s);
return s.c_str();
}
const char *BaseCtx::nameOfWire(WireId wire) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getWireName(wire).build_str(ctx, s);
return s.c_str();
}
const char *BaseCtx::nameOfPip(PipId pip) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getPipName(pip).build_str(ctx, s);
return s.c_str();
}
const char *BaseCtx::nameOfGroup(GroupId group) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getGroupName(group).build_str(ctx, s);
return s.c_str();
}
BelId BaseCtx::getBelByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getBelByName(IdStringList::parse(ctx, str));
}
WireId BaseCtx::getWireByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getWireByName(IdStringList::parse(ctx, str));
}
PipId BaseCtx::getPipByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getPipByName(IdStringList::parse(ctx, str));
}
GroupId BaseCtx::getGroupByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getGroupByName(IdStringList::parse(ctx, str));
}
WireId Context::getNetinfoSourceWire(const NetInfo *net_info) const
{
if (net_info->driver.cell == nullptr)
return WireId();
auto src_bel = net_info->driver.cell->bel;
if (src_bel == BelId())
return WireId();
auto bel_pins = getBelPinsForCellPin(net_info->driver.cell, net_info->driver.port);
auto iter = bel_pins.begin();
if (iter == bel_pins.end())
return WireId();
WireId driver = getBelPinWire(src_bel, *iter);
++iter;
NPNR_ASSERT(iter == bel_pins.end()); // assert there is only one driver bel pin;
return driver;
}
SSOArray<WireId, 2> Context::getNetinfoSinkWires(const NetInfo *net_info, const PortRef &user_info) const
{
auto dst_bel = user_info.cell->bel;
if (dst_bel == BelId())
return SSOArray<WireId, 2>(0, WireId());
size_t bel_pin_count = 0;
// We use an SSOArray here because it avoids any heap allocation for the 99.9% case of 1 or 2 sink wires
// but as SSOArray doesn't (currently) support resizing to keep things simple it does mean we have to do
// two loops
for (auto s : getBelPinsForCellPin(user_info.cell, user_info.port)) {
(void)s; // unused
++bel_pin_count;
}
SSOArray<WireId, 2> result(bel_pin_count, WireId());
bel_pin_count = 0;
for (auto pin : getBelPinsForCellPin(user_info.cell, user_info.port)) {
result[bel_pin_count++] = getBelPinWire(dst_bel, pin);
}
return result;
}
size_t Context::getNetinfoSinkWireCount(const NetInfo *net_info, const PortRef &sink) const
{
size_t count = 0;
for (auto s : getNetinfoSinkWires(net_info, sink)) {
(void)s; // unused
++count;
}
return count;
}
WireId Context::getNetinfoSinkWire(const NetInfo *net_info, const PortRef &sink, size_t phys_idx) const
{
size_t count = 0;
for (auto s : getNetinfoSinkWires(net_info, sink)) {
if (count == phys_idx)
return s;
++count;
}
/* TODO: This should be an assertion failure, but for the zero-wire case of unplaced sinks; legacy code currently
assumes WireId Remove once the refactoring process is complete.
*/
return WireId();
}
delay_t Context::getNetinfoRouteDelay(const NetInfo *net_info, const PortRef &user_info) const
{
#ifdef ARCH_ECP5
if (net_info->is_global)
return 0;
#endif
if (net_info->wires.empty())
return predictDelay(net_info, user_info);
WireId src_wire = getNetinfoSourceWire(net_info);
if (src_wire == WireId())
return 0;
delay_t max_delay = 0;
for (auto dst_wire : getNetinfoSinkWires(net_info, user_info)) {
WireId cursor = dst_wire;
delay_t delay = 0;
while (cursor != WireId() && cursor != src_wire) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end())
break;
PipId pip = it->second.pip;
if (pip == PipId())
break;
delay += getPipDelay(pip).maxDelay();
delay += getWireDelay(cursor).maxDelay();
cursor = getPipSrcWire(pip);
}
if (cursor == src_wire)
max_delay = std::max(max_delay, delay + getWireDelay(src_wire).maxDelay()); // routed
else
max_delay = std::max(max_delay, predictDelay(net_info, user_info)); // unrouted
}
return max_delay;
}
static uint32_t xorshift32(uint32_t x)
{
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return x;
}
uint32_t Context::checksum() const
{
uint32_t cksum = xorshift32(123456789);
uint32_t cksum_nets_sum = 0;
for (auto &it : nets) {
auto &ni = *it.second;
uint32_t x = 123456789;
x = xorshift32(x + xorshift32(it.first.index));
x = xorshift32(x + xorshift32(ni.name.index));
if (ni.driver.cell)
x = xorshift32(x + xorshift32(ni.driver.cell->name.index));
x = xorshift32(x + xorshift32(ni.driver.port.index));
x = xorshift32(x + xorshift32(getDelayChecksum(ni.driver.budget)));
for (auto &u : ni.users) {
if (u.cell)
x = xorshift32(x + xorshift32(u.cell->name.index));
x = xorshift32(x + xorshift32(u.port.index));
x = xorshift32(x + xorshift32(getDelayChecksum(u.budget)));
}
uint32_t attr_x_sum = 0;
for (auto &a : ni.attrs) {
uint32_t attr_x = 123456789;
attr_x = xorshift32(attr_x + xorshift32(a.first.index));
for (char ch : a.second.str)
attr_x = xorshift32(attr_x + xorshift32((int)ch));
attr_x_sum += attr_x;
}
x = xorshift32(x + xorshift32(attr_x_sum));
uint32_t wire_x_sum = 0;
for (auto &w : ni.wires) {
uint32_t wire_x = 123456789;
wire_x = xorshift32(wire_x + xorshift32(getWireChecksum(w.first)));
wire_x = xorshift32(wire_x + xorshift32(getPipChecksum(w.second.pip)));
wire_x = xorshift32(wire_x + xorshift32(int(w.second.strength)));
wire_x_sum += wire_x;
}
x = xorshift32(x + xorshift32(wire_x_sum));
cksum_nets_sum += x;
}
cksum = xorshift32(cksum + xorshift32(cksum_nets_sum));
uint32_t cksum_cells_sum = 0;
for (auto &it : cells) {
auto &ci = *it.second;
uint32_t x = 123456789;
x = xorshift32(x + xorshift32(it.first.index));
x = xorshift32(x + xorshift32(ci.name.index));
x = xorshift32(x + xorshift32(ci.type.index));
uint32_t port_x_sum = 0;
for (auto &p : ci.ports) {
uint32_t port_x = 123456789;
port_x = xorshift32(port_x + xorshift32(p.first.index));
port_x = xorshift32(port_x + xorshift32(p.second.name.index));
if (p.second.net)
port_x = xorshift32(port_x + xorshift32(p.second.net->name.index));
port_x = xorshift32(port_x + xorshift32(p.second.type));
port_x_sum += port_x;
}
x = xorshift32(x + xorshift32(port_x_sum));
uint32_t attr_x_sum = 0;
for (auto &a : ci.attrs) {
uint32_t attr_x = 123456789;
attr_x = xorshift32(attr_x + xorshift32(a.first.index));
for (char ch : a.second.str)
attr_x = xorshift32(attr_x + xorshift32((int)ch));
attr_x_sum += attr_x;
}
x = xorshift32(x + xorshift32(attr_x_sum));
uint32_t param_x_sum = 0;
for (auto &p : ci.params) {
uint32_t param_x = 123456789;
param_x = xorshift32(param_x + xorshift32(p.first.index));
for (char ch : p.second.str)
param_x = xorshift32(param_x + xorshift32((int)ch));
param_x_sum += param_x;
}
x = xorshift32(x + xorshift32(param_x_sum));
x = xorshift32(x + xorshift32(getBelChecksum(ci.bel)));
x = xorshift32(x + xorshift32(ci.belStrength));
cksum_cells_sum += x;
}
cksum = xorshift32(cksum + xorshift32(cksum_cells_sum));
return cksum;
}
void Context::check() const
{
bool check_failed = false;
#define CHECK_FAIL(...) \
do { \
log_nonfatal_error(__VA_ARGS__); \
check_failed = true; \
} while (false)
for (auto &n : nets) {
auto ni = n.second.get();
if (n.first != ni->name)
CHECK_FAIL("net key '%s' not equal to name '%s'\n", nameOf(n.first), nameOf(ni->name));
for (auto &w : ni->wires) {
if (ni != getBoundWireNet(w.first))
CHECK_FAIL("net '%s' not bound to wire '%s' in wires map\n", nameOf(n.first), nameOfWire(w.first));
if (w.second.pip != PipId()) {
if (w.first != getPipDstWire(w.second.pip))
CHECK_FAIL("net '%s' has dest mismatch '%s' vs '%s' in for pip '%s'\n", nameOf(n.first),
nameOfWire(w.first), nameOfWire(getPipDstWire(w.second.pip)), nameOfPip(w.second.pip));
if (ni != getBoundPipNet(w.second.pip))
CHECK_FAIL("net '%s' not bound to pip '%s' in wires map\n", nameOf(n.first),
nameOfPip(w.second.pip));
}
}
if (ni->driver.cell != nullptr) {
if (!ni->driver.cell->ports.count(ni->driver.port)) {
CHECK_FAIL("net '%s' driver port '%s' missing on cell '%s'\n", nameOf(n.first), nameOf(ni->driver.port),
nameOf(ni->driver.cell));
} else {
const NetInfo *p_net = ni->driver.cell->ports.at(ni->driver.port).net;
if (p_net != ni)
CHECK_FAIL("net '%s' driver port '%s.%s' connected to incorrect net '%s'\n", nameOf(n.first),
nameOf(ni->driver.cell), nameOf(ni->driver.port), p_net ? nameOf(p_net) : "<nullptr>");
}
}
for (auto user : ni->users) {
if (!user.cell->ports.count(user.port)) {
CHECK_FAIL("net '%s' user port '%s' missing on cell '%s'\n", nameOf(n.first), nameOf(user.port),
nameOf(user.cell));
} else {
const NetInfo *p_net = user.cell->ports.at(user.port).net;
if (p_net != ni)
CHECK_FAIL("net '%s' user port '%s.%s' connected to incorrect net '%s'\n", nameOf(n.first),
nameOf(user.cell), nameOf(user.port), p_net ? nameOf(p_net) : "<nullptr>");
}
}
}
#ifdef CHECK_WIRES
for (auto w : getWires()) {
auto ni = getBoundWireNet(w);
if (ni != nullptr) {
if (!ni->wires.count(w))
CHECK_FAIL("wire '%s' missing in wires map of bound net '%s'\n", nameOfWire(w), nameOf(ni));
}
}
#endif
for (auto &c : cells) {
auto ci = c.second.get();
if (c.first != ci->name)
CHECK_FAIL("cell key '%s' not equal to name '%s'\n", nameOf(c.first), nameOf(ci->name));
if (ci->bel != BelId()) {
if (getBoundBelCell(c.second->bel) != ci)
CHECK_FAIL("cell '%s' not bound to bel '%s' in bel field\n", nameOf(c.first), nameOfBel(ci->bel));
}
for (auto &port : c.second->ports) {
NetInfo *net = port.second.net;
if (net != nullptr) {
if (nets.find(net->name) == nets.end()) {
CHECK_FAIL("cell port '%s.%s' connected to non-existent net '%s'\n", nameOf(c.first),
nameOf(port.first), nameOf(net->name));
} else if (port.second.type == PORT_OUT) {
if (net->driver.cell != c.second.get() || net->driver.port != port.first) {
CHECK_FAIL("output cell port '%s.%s' not in driver field of net '%s'\n", nameOf(c.first),
nameOf(port.first), nameOf(net));
}
} else if (port.second.type == PORT_IN) {
int usr_count = std::count_if(net->users.begin(), net->users.end(), [&](const PortRef &pr) {
return pr.cell == c.second.get() && pr.port == port.first;
});
if (usr_count != 1)
CHECK_FAIL("input cell port '%s.%s' appears %d rather than expected 1 times in users vector of "
"net '%s'\n",
nameOf(c.first), nameOf(port.first), usr_count, nameOf(net));
}
}
}
}
#undef CHECK_FAIL
if (check_failed)
log_error("INTERNAL CHECK FAILED: please report this error with the design and full log output. Failure "
"details are above this message.\n");
}
void BaseCtx::addClock(IdString net, float freq)
{
std::unique_ptr<ClockConstraint> cc(new ClockConstraint());
cc->period = DelayPair(getCtx()->getDelayFromNS(1000 / freq));
cc->high = DelayPair(getCtx()->getDelayFromNS(500 / freq));
cc->low = DelayPair(getCtx()->getDelayFromNS(500 / freq));
if (!net_aliases.count(net)) {
log_warning("net '%s' does not exist in design, ignoring clock constraint\n", net.c_str(this));
} else {
getNetByAlias(net)->clkconstr = std::move(cc);
log_info("constraining clock net '%s' to %.02f MHz\n", net.c_str(this), freq);
}
}
void BaseCtx::createRectangularRegion(IdString name, int x0, int y0, int x1, int y1)
{
std::unique_ptr<Region> new_region(new Region());
new_region->name = name;
new_region->constr_bels = true;
new_region->constr_pips = false;
new_region->constr_wires = false;
for (int x = x0; x <= x1; x++) {
for (int y = y0; y <= y1; y++) {
for (auto bel : getCtx()->getBelsByTile(x, y))
new_region->bels.insert(bel);
}
}
region[name] = std::move(new_region);
}
void BaseCtx::addBelToRegion(IdString name, BelId bel) { region[name]->bels.insert(bel); }
void BaseCtx::constrainCellToRegion(IdString cell, IdString region_name)
{
// Support hierarchical cells as well as leaf ones
bool matched = false;
if (hierarchy.count(cell)) {
auto &hc = hierarchy.at(cell);
for (auto &lc : hc.leaf_cells)
constrainCellToRegion(lc.second, region_name);
for (auto &hsc : hc.hier_cells)
constrainCellToRegion(hsc.second, region_name);
matched = true;
}
if (cells.count(cell)) {
cells.at(cell)->region = region[region_name].get();
matched = true;
}
if (!matched)
log_warning("No cell matched '%s' when constraining to region '%s'\n", nameOf(cell), nameOf(region_name));
}
DecalXY BaseCtx::constructDecalXY(DecalId decal, float x, float y)
{
DecalXY dxy;
dxy.decal = decal;
dxy.x = x;
dxy.y = y;
return dxy;
}
void BaseCtx::archInfoToAttributes()
{
for (auto &cell : cells) {
auto ci = cell.second.get();
if (ci->bel != BelId()) {
if (ci->attrs.find(id("BEL")) != ci->attrs.end()) {
ci->attrs.erase(ci->attrs.find(id("BEL")));
}
ci->attrs[id("NEXTPNR_BEL")] = getCtx()->getBelName(ci->bel).str(getCtx());
ci->attrs[id("BEL_STRENGTH")] = (int)ci->belStrength;
}
if (ci->constr_x != ci->UNCONSTR)
ci->attrs[id("CONSTR_X")] = ci->constr_x;
if (ci->constr_y != ci->UNCONSTR)
ci->attrs[id("CONSTR_Y")] = ci->constr_y;
if (ci->constr_z != ci->UNCONSTR) {
ci->attrs[id("CONSTR_Z")] = ci->constr_z;
ci->attrs[id("CONSTR_ABS_Z")] = ci->constr_abs_z ? 1 : 0;
}
if (ci->constr_parent != nullptr)
ci->attrs[id("CONSTR_PARENT")] = ci->constr_parent->name.str(this);
if (!ci->constr_children.empty()) {
std::string constr = "";
for (auto &item : ci->constr_children) {
if (!constr.empty())
constr += std::string(";");
constr += item->name.c_str(this);
}
ci->attrs[id("CONSTR_CHILDREN")] = constr;
}
}
for (auto &net : getCtx()->nets) {
auto ni = net.second.get();
std::string routing;
bool first = true;
for (auto &item : ni->wires) {
if (!first)
routing += ";";
routing += getCtx()->getWireName(item.first).str(getCtx());
routing += ";";
if (item.second.pip != PipId())
routing += getCtx()->getPipName(item.second.pip).str(getCtx());
routing += ";" + std::to_string(item.second.strength);
first = false;
}
ni->attrs[id("ROUTING")] = routing;
}
}
void BaseCtx::attributesToArchInfo()
{
for (auto &cell : cells) {
auto ci = cell.second.get();
auto val = ci->attrs.find(id("NEXTPNR_BEL"));
if (val != ci->attrs.end()) {
auto str = ci->attrs.find(id("BEL_STRENGTH"));
PlaceStrength strength = PlaceStrength::STRENGTH_USER;
if (str != ci->attrs.end())
strength = (PlaceStrength)str->second.as_int64();
BelId b = getCtx()->getBelByNameStr(val->second.as_string());
getCtx()->bindBel(b, ci, strength);
}
val = ci->attrs.find(id("CONSTR_PARENT"));
if (val != ci->attrs.end()) {
auto parent = cells.find(id(val->second.str));
if (parent != cells.end())
ci->constr_parent = parent->second.get();
else
continue;
}
val = ci->attrs.find(id("CONSTR_X"));
if (val != ci->attrs.end())
ci->constr_x = val->second.as_int64();
val = ci->attrs.find(id("CONSTR_Y"));
if (val != ci->attrs.end())
ci->constr_y = val->second.as_int64();
val = ci->attrs.find(id("CONSTR_Z"));
if (val != ci->attrs.end())
ci->constr_z = val->second.as_int64();
val = ci->attrs.find(id("CONSTR_ABS_Z"));
if (val != ci->attrs.end())
ci->constr_abs_z = val->second.as_int64() == 1;
val = ci->attrs.find(id("CONSTR_PARENT"));
if (val != ci->attrs.end()) {
auto parent = cells.find(id(val->second.as_string()));
if (parent != cells.end())
ci->constr_parent = parent->second.get();
}
val = ci->attrs.find(id("CONSTR_CHILDREN"));
if (val != ci->attrs.end()) {
std::vector<std::string> strs;
auto children = val->second.as_string();
boost::split(strs, children, boost::is_any_of(";"));
for (auto val : strs) {
if (cells.count(id(val.c_str())))
ci->constr_children.push_back(cells.find(id(val.c_str()))->second.get());
}
}
}
for (auto &net : getCtx()->nets) {
auto ni = net.second.get();
auto val = ni->attrs.find(id("ROUTING"));
if (val != ni->attrs.end()) {
std::vector<std::string> strs;
auto routing = val->second.as_string();
boost::split(strs, routing, boost::is_any_of(";"));
for (size_t i = 0; i < strs.size() / 3; i++) {
std::string wire = strs[i * 3];
std::string pip = strs[i * 3 + 1];
PlaceStrength strength = (PlaceStrength)std::stoi(strs[i * 3 + 2]);
if (pip.empty())
getCtx()->bindWire(getCtx()->getWireByName(IdStringList::parse(getCtx(), wire)), ni, strength);
else
getCtx()->bindPip(getCtx()->getPipByName(IdStringList::parse(getCtx(), pip)), ni, strength);
}
}
}
getCtx()->assignArchInfo();
}
NetInfo *BaseCtx::createNet(IdString name)
{
NPNR_ASSERT(!nets.count(name));
NPNR_ASSERT(!net_aliases.count(name));
std::unique_ptr<NetInfo> net{new NetInfo};
net->name = name;
net_aliases[name] = name;
NetInfo *ptr = net.get();
nets[name] = std::move(net);
refreshUi();
return ptr;
}
void BaseCtx::connectPort(IdString net, IdString cell, IdString port)
{
NetInfo *net_info = getNetByAlias(net);
CellInfo *cell_info = cells.at(cell).get();
connect_port(getCtx(), net_info, cell_info, port);
}
void BaseCtx::disconnectPort(IdString cell, IdString port)
{
CellInfo *cell_info = cells.at(cell).get();
disconnect_port(getCtx(), cell_info, port);
}
void BaseCtx::ripupNet(IdString name)
{
NetInfo *net_info = getNetByAlias(name);
std::vector<WireId> to_unbind;
for (auto &wire : net_info->wires)
to_unbind.push_back(wire.first);
for (auto &unbind : to_unbind)
getCtx()->unbindWire(unbind);
}
void BaseCtx::lockNetRouting(IdString name)
{
NetInfo *net_info = getNetByAlias(name);
for (auto &wire : net_info->wires)
wire.second.strength = STRENGTH_USER;
}
CellInfo *BaseCtx::createCell(IdString name, IdString type)
{
NPNR_ASSERT(!cells.count(name));
std::unique_ptr<CellInfo> cell{new CellInfo};
cell->name = name;
cell->type = type;
CellInfo *ptr = cell.get();
cells[name] = std::move(cell);
refreshUi();
return ptr;
}
void BaseCtx::copyBelPorts(IdString cell, BelId bel)
{
CellInfo *cell_info = cells.at(cell).get();
for (auto pin : getCtx()->getBelPins(bel)) {
cell_info->ports[pin].name = pin;
cell_info->ports[pin].type = getCtx()->getBelPinType(bel, pin);
}
}
namespace {
struct FixupHierarchyWorker
{
FixupHierarchyWorker(Context *ctx) : ctx(ctx){};
Context *ctx;
void run()
{
trim_hierarchy(ctx->top_module);
rebuild_hierarchy();
};
// Remove cells and nets that no longer exist in the netlist
std::vector<IdString> todelete_cells, todelete_nets;
void trim_hierarchy(IdString path)
{
auto &h = ctx->hierarchy.at(path);
todelete_cells.clear();
todelete_nets.clear();
for (auto &lc : h.leaf_cells) {
if (!ctx->cells.count(lc.second))
todelete_cells.push_back(lc.first);
}
for (auto &n : h.nets)
if (!ctx->nets.count(n.second))
todelete_nets.push_back(n.first);
for (auto tdc : todelete_cells) {
h.leaf_cells_by_gname.erase(h.leaf_cells.at(tdc));
h.leaf_cells.erase(tdc);
}
for (auto tdn : todelete_nets) {
h.nets_by_gname.erase(h.nets.at(tdn));
h.nets.erase(tdn);
}
for (auto &sc : h.hier_cells)
trim_hierarchy(sc.second);
}
IdString construct_local_name(HierarchicalCell &hc, IdString global_name, bool is_cell)
{
std::string gn = global_name.str(ctx);
auto dp = gn.find_last_of('.');
if (dp != std::string::npos)
gn = gn.substr(dp + 1);
IdString name = ctx->id(gn);
// Make sure name is unique
int adder = 0;
while (is_cell ? hc.leaf_cells.count(name) : hc.nets.count(name)) {
++adder;
name = ctx->id(gn + "$" + std::to_string(adder));
}
return name;
}
// Update hierarchy structure for nets and cells that have hiercell set
void rebuild_hierarchy()
{
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (ci->hierpath == IdString())
ci->hierpath = ctx->top_module;
auto &hc = ctx->hierarchy.at(ci->hierpath);
if (hc.leaf_cells_by_gname.count(ci->name))
continue; // already known
IdString local_name = construct_local_name(hc, ci->name, true);
hc.leaf_cells_by_gname[ci->name] = local_name;
hc.leaf_cells[local_name] = ci->name;
}
}
};
} // namespace
void Context::fixupHierarchy() { FixupHierarchyWorker(this).run(); }
NEXTPNR_NAMESPACE_END