nextpnr/common/place_common.cc
D. Shah 6d23461bcd ecp5: Proof-of-concept using IdStringList for bel names
This uses the new IdStringList API to store bel names for the ECP5. Note
that other arches and the GUI do not yet build with this
proof-of-concept patch.

getBelByName still uses the old implementation and could be more
efficiently implemented with further development.

Signed-off-by: D. Shah <dave@ds0.me>
2021-02-02 17:00:12 +00:00

541 lines
20 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "place_common.h"
#include <cmath>
#include "log.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
// Get the total estimated wirelength for a net
wirelen_t get_net_metric(const Context *ctx, const NetInfo *net, MetricType type, float &tns)
{
wirelen_t wirelength = 0;
CellInfo *driver_cell = net->driver.cell;
if (!driver_cell)
return 0;
if (driver_cell->bel == BelId())
return 0;
bool driver_gb = ctx->getBelGlobalBuf(driver_cell->bel);
if (driver_gb)
return 0;
int clock_count;
bool timing_driven = ctx->setting<bool>("timing_driven") && type == MetricType::COST &&
ctx->getPortTimingClass(driver_cell, net->driver.port, clock_count) != TMG_IGNORE;
delay_t negative_slack = 0;
delay_t worst_slack = std::numeric_limits<delay_t>::max();
Loc driver_loc = ctx->getBelLocation(driver_cell->bel);
int xmin = driver_loc.x, xmax = driver_loc.x, ymin = driver_loc.y, ymax = driver_loc.y;
for (auto load : net->users) {
if (load.cell == nullptr)
continue;
CellInfo *load_cell = load.cell;
if (load_cell->bel == BelId())
continue;
if (timing_driven) {
delay_t net_delay = ctx->predictDelay(net, load);
auto slack = load.budget - net_delay;
if (slack < 0)
negative_slack += slack;
worst_slack = std::min(slack, worst_slack);
}
if (ctx->getBelGlobalBuf(load_cell->bel))
continue;
Loc load_loc = ctx->getBelLocation(load_cell->bel);
xmin = std::min(xmin, load_loc.x);
ymin = std::min(ymin, load_loc.y);
xmax = std::max(xmax, load_loc.x);
ymax = std::max(ymax, load_loc.y);
}
if (timing_driven) {
wirelength = wirelen_t(
(((ymax - ymin) + (xmax - xmin)) * std::min(5.0, (1.0 + std::exp(-ctx->getDelayNS(worst_slack) / 5)))));
} else {
wirelength = wirelen_t((ymax - ymin) + (xmax - xmin));
}
tns += ctx->getDelayNS(negative_slack);
return wirelength;
}
// Get the total wirelength for a cell
wirelen_t get_cell_metric(const Context *ctx, const CellInfo *cell, MetricType type)
{
std::set<IdString> nets;
for (auto p : cell->ports) {
if (p.second.net)
nets.insert(p.second.net->name);
}
wirelen_t wirelength = 0;
float tns = 0;
for (auto n : nets) {
wirelength += get_net_metric(ctx, ctx->nets.at(n).get(), type, tns);
}
return wirelength;
}
wirelen_t get_cell_metric_at_bel(const Context *ctx, CellInfo *cell, BelId bel, MetricType type)
{
BelId oldBel = cell->bel;
cell->bel = bel;
wirelen_t wirelen = get_cell_metric(ctx, cell, type);
cell->bel = oldBel;
return wirelen;
}
// Placing a single cell
bool place_single_cell(Context *ctx, CellInfo *cell, bool require_legality)
{
bool all_placed = false;
int iters = 25;
while (!all_placed) {
BelId best_bel = BelId();
wirelen_t best_wirelen = std::numeric_limits<wirelen_t>::max(),
best_ripup_wirelen = std::numeric_limits<wirelen_t>::max();
CellInfo *ripup_target = nullptr;
BelId ripup_bel = BelId();
if (cell->bel != BelId()) {
ctx->unbindBel(cell->bel);
}
IdString targetType = cell->type;
for (auto bel : ctx->getBels()) {
if (ctx->isValidBelForCellType(targetType, bel) &&
(!require_legality || ctx->isValidBelForCell(cell, bel))) {
if (ctx->checkBelAvail(bel)) {
wirelen_t wirelen = get_cell_metric_at_bel(ctx, cell, bel, MetricType::COST);
if (iters >= 4)
wirelen += ctx->rng(25);
if (wirelen <= best_wirelen) {
best_wirelen = wirelen;
best_bel = bel;
}
} else {
wirelen_t wirelen = get_cell_metric_at_bel(ctx, cell, bel, MetricType::COST);
if (iters >= 4)
wirelen += ctx->rng(25);
if (wirelen <= best_ripup_wirelen) {
CellInfo *curr_cell = ctx->getBoundBelCell(bel);
if (curr_cell->belStrength < STRENGTH_STRONG) {
best_ripup_wirelen = wirelen;
ripup_bel = bel;
ripup_target = curr_cell;
}
}
}
}
}
if (best_bel == BelId()) {
if (iters == 0) {
log_error("failed to place cell '%s' of type '%s' (ripup iteration limit exceeded)\n",
cell->name.c_str(ctx), cell->type.c_str(ctx));
}
if (ripup_bel == BelId()) {
log_error("failed to place cell '%s' of type '%s'\n", cell->name.c_str(ctx), cell->type.c_str(ctx));
}
--iters;
ctx->unbindBel(ripup_target->bel);
best_bel = ripup_bel;
} else {
all_placed = true;
}
if (ctx->verbose)
log_info(" placed single cell '%s' at '%s'\n", cell->name.c_str(ctx), ctx->nameOfBel(best_bel));
ctx->bindBel(best_bel, cell, STRENGTH_WEAK);
cell = ripup_target;
}
return true;
}
class ConstraintLegaliseWorker
{
private:
Context *ctx;
std::set<IdString> rippedCells;
std::unordered_map<IdString, Loc> oldLocations;
class IncreasingDiameterSearch
{
public:
IncreasingDiameterSearch() : start(0), min(0), max(-1){};
IncreasingDiameterSearch(int x) : start(x), min(x), max(x){};
IncreasingDiameterSearch(int start, int min, int max) : start(start), min(min), max(max){};
bool done() const { return (diameter > (max - min)); };
int get() const
{
int val = start + sign * diameter;
val = std::max(val, min);
val = std::min(val, max);
return val;
}
void next()
{
if (sign == 0) {
sign = 1;
diameter = 1;
} else if (sign == -1) {
sign = 1;
if ((start + sign * diameter) > max)
sign = -1;
++diameter;
} else {
sign = -1;
if ((start + sign * diameter) < min) {
sign = 1;
++diameter;
}
}
}
void reset()
{
sign = 0;
diameter = 0;
}
private:
int start, min, max;
int diameter = 0;
int sign = 0;
};
typedef std::unordered_map<IdString, Loc> CellLocations;
// Check if a location would be suitable for a cell and all its constrained children
// This also makes a crude attempt to "solve" unconstrained constraints, that is slow and horrible
// and will need to be reworked if mixed constrained/unconstrained chains become common
bool valid_loc_for(const CellInfo *cell, Loc loc, CellLocations &solution, std::unordered_set<Loc> &usedLocations)
{
BelId locBel = ctx->getBelByLocation(loc);
if (locBel == BelId()) {
return false;
}
if (!ctx->isValidBelForCellType(cell->type, locBel)) {
return false;
}
if (!ctx->checkBelAvail(locBel)) {
CellInfo *confCell = ctx->getConflictingBelCell(locBel);
if (confCell->belStrength >= STRENGTH_STRONG) {
return false;
}
}
// Don't place at tiles where any strongly bound Bels exist, as we might need to rip them up later
for (auto tilebel : ctx->getBelsByTile(loc.x, loc.y)) {
CellInfo *tcell = ctx->getBoundBelCell(tilebel);
if (tcell && tcell->belStrength >= STRENGTH_STRONG)
return false;
}
usedLocations.insert(loc);
for (auto child : cell->constr_children) {
IncreasingDiameterSearch xSearch, ySearch, zSearch;
if (child->constr_x == child->UNCONSTR) {
xSearch = IncreasingDiameterSearch(loc.x, 0, ctx->getGridDimX() - 1);
} else {
xSearch = IncreasingDiameterSearch(loc.x + child->constr_x);
}
if (child->constr_y == child->UNCONSTR) {
ySearch = IncreasingDiameterSearch(loc.y, 0, ctx->getGridDimY() - 1);
} else {
ySearch = IncreasingDiameterSearch(loc.y + child->constr_y);
}
if (child->constr_z == child->UNCONSTR) {
zSearch = IncreasingDiameterSearch(loc.z, 0, ctx->getTileBelDimZ(loc.x, loc.y));
} else {
if (child->constr_abs_z) {
zSearch = IncreasingDiameterSearch(child->constr_z);
} else {
zSearch = IncreasingDiameterSearch(loc.z + child->constr_z);
}
}
bool success = false;
while (!xSearch.done()) {
Loc cloc;
cloc.x = xSearch.get();
cloc.y = ySearch.get();
cloc.z = zSearch.get();
zSearch.next();
if (zSearch.done()) {
zSearch.reset();
ySearch.next();
if (ySearch.done()) {
ySearch.reset();
xSearch.next();
}
}
if (usedLocations.count(cloc))
continue;
if (valid_loc_for(child, cloc, solution, usedLocations)) {
success = true;
break;
}
}
if (!success) {
usedLocations.erase(loc);
return false;
}
}
if (solution.count(cell->name))
usedLocations.erase(solution.at(cell->name));
solution[cell->name] = loc;
return true;
}
// Set the strength to locked on all cells in chain
void lockdown_chain(CellInfo *root)
{
root->belStrength = STRENGTH_STRONG;
for (auto child : root->constr_children)
lockdown_chain(child);
}
// Legalise placement constraints on a cell
bool legalise_cell(CellInfo *cell)
{
if (cell->constr_parent != nullptr)
return true; // Only process chain roots
if (constraints_satisfied(cell)) {
if (cell->constr_children.size() > 0 || cell->constr_x != cell->UNCONSTR ||
cell->constr_y != cell->UNCONSTR || cell->constr_z != cell->UNCONSTR)
lockdown_chain(cell);
} else {
IncreasingDiameterSearch xRootSearch, yRootSearch, zRootSearch;
Loc currentLoc;
if (cell->bel != BelId())
currentLoc = ctx->getBelLocation(cell->bel);
else
currentLoc = oldLocations[cell->name];
if (cell->constr_x == cell->UNCONSTR)
xRootSearch = IncreasingDiameterSearch(currentLoc.x, 0, ctx->getGridDimX() - 1);
else
xRootSearch = IncreasingDiameterSearch(cell->constr_x);
if (cell->constr_y == cell->UNCONSTR)
yRootSearch = IncreasingDiameterSearch(currentLoc.y, 0, ctx->getGridDimY() - 1);
else
yRootSearch = IncreasingDiameterSearch(cell->constr_y);
if (cell->constr_z == cell->UNCONSTR)
zRootSearch =
IncreasingDiameterSearch(currentLoc.z, 0, ctx->getTileBelDimZ(currentLoc.x, currentLoc.y));
else
zRootSearch = IncreasingDiameterSearch(cell->constr_z);
while (!xRootSearch.done()) {
Loc rootLoc;
rootLoc.x = xRootSearch.get();
rootLoc.y = yRootSearch.get();
rootLoc.z = zRootSearch.get();
zRootSearch.next();
if (zRootSearch.done()) {
zRootSearch.reset();
yRootSearch.next();
if (yRootSearch.done()) {
yRootSearch.reset();
xRootSearch.next();
}
}
CellLocations solution;
std::unordered_set<Loc> used;
if (valid_loc_for(cell, rootLoc, solution, used)) {
for (auto cp : solution) {
// First unbind all cells
if (ctx->cells.at(cp.first)->bel != BelId())
ctx->unbindBel(ctx->cells.at(cp.first)->bel);
}
for (auto cp : solution) {
if (ctx->verbose)
log_info(" placing '%s' at (%d, %d, %d)\n", cp.first.c_str(ctx), cp.second.x,
cp.second.y, cp.second.z);
BelId target = ctx->getBelByLocation(cp.second);
if (!ctx->checkBelAvail(target)) {
CellInfo *confl_cell = ctx->getConflictingBelCell(target);
if (confl_cell != nullptr) {
if (ctx->verbose)
log_info(" '%s' already placed at '%s'\n", ctx->nameOf(confl_cell),
ctx->nameOfBel(confl_cell->bel));
NPNR_ASSERT(confl_cell->belStrength < STRENGTH_STRONG);
ctx->unbindBel(target);
rippedCells.insert(confl_cell->name);
}
}
ctx->bindBel(target, ctx->cells.at(cp.first).get(), STRENGTH_STRONG);
rippedCells.erase(cp.first);
}
for (auto cp : solution) {
for (auto bel : ctx->getBelsByTile(cp.second.x, cp.second.y)) {
CellInfo *belCell = ctx->getBoundBelCell(bel);
if (belCell != nullptr && !solution.count(belCell->name)) {
if (!ctx->isValidBelForCell(belCell, bel)) {
NPNR_ASSERT(belCell->belStrength < STRENGTH_STRONG);
ctx->unbindBel(bel);
rippedCells.insert(belCell->name);
}
}
}
}
NPNR_ASSERT(constraints_satisfied(cell));
return true;
}
}
return false;
}
return true;
}
// Check if constraints are currently satisfied on a cell and its children
bool constraints_satisfied(const CellInfo *cell) { return get_constraints_distance(ctx, cell) == 0; }
public:
ConstraintLegaliseWorker(Context *ctx) : ctx(ctx){};
void print_chain(CellInfo *cell, int depth = 0)
{
for (int i = 0; i < depth; i++)
log(" ");
log("'%s' (", cell->name.c_str(ctx));
if (cell->constr_x != cell->UNCONSTR)
log("%d, ", cell->constr_x);
else
log("*, ");
if (cell->constr_y != cell->UNCONSTR)
log("%d, ", cell->constr_y);
else
log("*, ");
if (cell->constr_z != cell->UNCONSTR)
log("%d", cell->constr_z);
else
log("*");
log(")\n");
for (auto child : cell->constr_children)
print_chain(child, depth + 1);
}
unsigned print_stats(const char *point)
{
float distance_sum = 0;
float max_distance = 0;
unsigned moved_cells = 0;
unsigned unplaced_cells = 0;
for (auto orig : oldLocations) {
if (ctx->cells.at(orig.first)->bel == BelId()) {
unplaced_cells++;
continue;
}
Loc newLoc = ctx->getBelLocation(ctx->cells.at(orig.first)->bel);
if (newLoc != orig.second) {
float distance = std::sqrt(std::pow(newLoc.x - orig.second.x, 2) + pow(newLoc.y - orig.second.y, 2));
moved_cells++;
distance_sum += distance;
if (distance > max_distance)
max_distance = distance;
}
}
log_info(" moved %d cells, %d unplaced (after %s)\n", moved_cells, unplaced_cells, point);
if (moved_cells > 0) {
log_info(" average distance %f\n", (distance_sum / moved_cells));
log_info(" maximum distance %f\n", max_distance);
}
return moved_cells + unplaced_cells;
}
int legalise_constraints()
{
log_info("Legalising relative constraints...\n");
for (auto cell : sorted(ctx->cells)) {
oldLocations[cell.first] = ctx->getBelLocation(cell.second->bel);
}
for (auto cell : sorted(ctx->cells)) {
bool res = legalise_cell(cell.second);
if (!res) {
if (ctx->verbose)
print_chain(cell.second);
log_error("failed to place chain starting at cell '%s'\n", cell.first.c_str(ctx));
return -1;
}
}
if (print_stats("legalising chains") == 0)
return 0;
for (auto rippedCell : rippedCells) {
bool res = place_single_cell(ctx, ctx->cells.at(rippedCell).get(), true);
if (!res) {
log_error("failed to place cell '%s' after relative constraint legalisation\n", rippedCell.c_str(ctx));
return -1;
}
}
auto score = print_stats("replacing ripped up cells");
for (auto cell : sorted(ctx->cells))
if (get_constraints_distance(ctx, cell.second) != 0)
log_error("constraint satisfaction check failed for cell '%s' at Bel '%s'\n", cell.first.c_str(ctx),
ctx->nameOfBel(cell.second->bel));
return score;
}
};
bool legalise_relative_constraints(Context *ctx) { return ConstraintLegaliseWorker(ctx).legalise_constraints() > 0; }
// Get the total distance from satisfied constraints for a cell
int get_constraints_distance(const Context *ctx, const CellInfo *cell)
{
int dist = 0;
if (cell->bel == BelId())
return 100000;
Loc loc = ctx->getBelLocation(cell->bel);
if (cell->constr_parent == nullptr) {
if (cell->constr_x != cell->UNCONSTR)
dist += std::abs(cell->constr_x - loc.x);
if (cell->constr_y != cell->UNCONSTR)
dist += std::abs(cell->constr_y - loc.y);
if (cell->constr_z != cell->UNCONSTR)
dist += std::abs(cell->constr_z - loc.z);
} else {
if (cell->constr_parent->bel == BelId())
return 100000;
Loc parent_loc = ctx->getBelLocation(cell->constr_parent->bel);
if (cell->constr_x != cell->UNCONSTR)
dist += std::abs(cell->constr_x - (loc.x - parent_loc.x));
if (cell->constr_y != cell->UNCONSTR)
dist += std::abs(cell->constr_y - (loc.y - parent_loc.y));
if (cell->constr_z != cell->UNCONSTR) {
if (cell->constr_abs_z)
dist += std::abs(cell->constr_z - loc.z);
else
dist += std::abs(cell->constr_z - (loc.z - parent_loc.z));
}
}
for (auto child : cell->constr_children)
dist += get_constraints_distance(ctx, child);
return dist;
}
bool check_cell_bel_region(const CellInfo *cell, BelId bel)
{
if (cell->region != nullptr && cell->region->constr_bels && !cell->region->bels.count(bel))
return false;
else
return true;
}
NEXTPNR_NAMESPACE_END