nextpnr/nexus/fasm.cc
Keith Rothman c99fbde0eb Mark IdString and IdStringList single argument constructors explicit.
Single argument constructors will silently convert to that type.  This
is typically not the right thing to do.  For example, the nexus and
ice40 arch_pybindings.h files were incorrectly parsing bel name strings,
etc.

Signed-off-by: Keith Rothman <537074+litghost@users.noreply.github.com>
2021-02-04 16:38:07 -08:00

766 lines
29 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2020 David Shah <dave@ds0.me>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <queue>
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct NexusFasmWriter
{
const Context *ctx;
std::ostream &out;
std::vector<std::string> fasm_ctx;
NexusFasmWriter(const Context *ctx, std::ostream &out) : ctx(ctx), out(out) {}
// Add a 'dot' prefix to the FASM context stack
void push(const std::string &x) { fasm_ctx.push_back(x); }
// Remove a prefix from the FASM context stack
void pop() { fasm_ctx.pop_back(); }
// Remove N prefices from the FASM context stack
void pop(int N)
{
for (int i = 0; i < N; i++)
fasm_ctx.pop_back();
}
bool last_was_blank = true;
// Insert a blank line if the last wasn't blank
void blank()
{
if (!last_was_blank)
out << std::endl;
last_was_blank = true;
}
// Write out all prefices from the stack, interspersed with .
void write_prefix()
{
for (auto &x : fasm_ctx)
out << x << ".";
last_was_blank = false;
}
// Write a single config bit; if value is true
void write_bit(const std::string &name, bool value = true)
{
if (value) {
write_prefix();
out << name << std::endl;
}
}
// Write a FASM attribute
void write_attribute(const std::string &key, const std::string &value, bool str = true)
{
std::string qu = str ? "\"" : "";
out << "{ " << key << "=" << qu << value << qu << " }" << std::endl;
last_was_blank = false;
}
// Write a FASM comment
void write_comment(const std::string &cmt) { out << "# " << cmt << std::endl; }
// Write a FASM bitvector; optionally inverting the values in the process
void write_vector(const std::string &name, const std::vector<bool> &value, bool invert = false)
{
write_prefix();
out << name << " = " << int(value.size()) << "'b";
for (auto bit : boost::adaptors::reverse(value))
out << ((bit ^ invert) ? '1' : '0');
out << std::endl;
}
// Write a FASM bitvector given an integer value
void write_int_vector(const std::string &name, uint64_t value, int width, bool invert = false)
{
std::vector<bool> bits(width, false);
for (int i = 0; i < width; i++)
bits[i] = (value & (1ULL << i)) != 0;
write_vector(name, bits, invert);
}
// Write an int vector param
void write_int_vector_param(const CellInfo *cell, const std::string &name, uint64_t defval, int width,
bool invert = false)
{
uint64_t value = int_or_default(cell->params, ctx->id(name), defval);
std::vector<bool> bits(width, false);
for (int i = 0; i < width; i++)
bits[i] = (value & (1ULL << i)) != 0;
write_vector(stringf("%s[%d:0]", name.c_str(), width - 1), bits, invert);
}
// Look up an enum value in a cell's parameters and write it to the FASM in name.value format
void write_enum(const CellInfo *cell, const std::string &name, const std::string &defval = "")
{
auto fnd = cell->params.find(ctx->id(name));
if (fnd == cell->params.end()) {
if (!defval.empty())
write_bit(stringf("%s.%s", name.c_str(), defval.c_str()));
} else {
write_bit(stringf("%s.%s", name.c_str(), fnd->second.c_str()));
}
}
// Look up an IO attribute in the cell's attributes and write it to the FASM in name.value format
void write_ioattr(const CellInfo *cell, const std::string &name, const std::string &defval = "")
{
auto fnd = cell->attrs.find(ctx->id(name));
if (fnd == cell->attrs.end()) {
if (!defval.empty())
write_bit(stringf("%s.%s", name.c_str(), defval.c_str()));
} else {
write_bit(stringf("%s.%s", name.c_str(), fnd->second.c_str()));
}
}
void write_ioattr_postfix(const CellInfo *cell, const std::string &name, const std::string &postfix,
const std::string &defval = "")
{
auto fnd = cell->attrs.find(ctx->id(name));
if (fnd == cell->attrs.end()) {
if (!defval.empty())
write_bit(stringf("%s_%s.%s", name.c_str(), postfix.c_str(), defval.c_str()));
} else {
write_bit(stringf("%s_%s.%s", name.c_str(), postfix.c_str(), fnd->second.c_str()));
}
}
// Gets the full name of a tile
std::string tile_name(int loc, const PhysicalTileInfoPOD &tile)
{
int r = loc / ctx->chip_info->width;
int c = loc % ctx->chip_info->width;
return stringf("%sR%dC%d__%s", ctx->nameOf(IdString(tile.prefix)), r, c, ctx->nameOf(IdString(tile.tiletype)));
}
// Look up a tile by location index and tile type
const PhysicalTileInfoPOD &tile_by_type_and_loc(int loc, IdString type)
{
auto &ploc = ctx->chip_info->grid[loc];
for (auto &pt : ploc.phys_tiles) {
if (pt.tiletype == type.index)
return pt;
}
log_error("No tile of type %s found at location R%dC%d", ctx->nameOf(type), loc / ctx->chip_info->width,
loc % ctx->chip_info->width);
}
// Gets the single tile at a location
const PhysicalTileInfoPOD &tile_at_loc(int loc)
{
auto &ploc = ctx->chip_info->grid[loc];
NPNR_ASSERT(ploc.phys_tiles.size() == 1);
return ploc.phys_tiles[0];
}
// Escape an internal prjoxide name for FASM by replacing : with __
std::string escape_name(const std::string &name)
{
std::string escaped;
for (char c : name) {
if (c == ':')
escaped += "__";
else
escaped += c;
}
return escaped;
}
// Push a tile name onto the prefix stack
void push_tile(int loc, IdString tile_type) { push(tile_name(loc, tile_by_type_and_loc(loc, tile_type))); }
void push_tile(int loc) { push(tile_name(loc, tile_at_loc(loc))); }
// Push a bel name onto the prefix stack
void push_belname(BelId bel) { push(ctx->nameOf(IdString(ctx->bel_data(bel).name))); }
// Push the tile group name corresponding to a bel onto the prefix stack
void push_belgroup(BelId bel)
{
int r = bel.tile / ctx->chip_info->width;
int c = bel.tile % ctx->chip_info->width;
auto &bel_data = ctx->bel_data(bel);
r += bel_data.rel_y;
c += bel_data.rel_x;
std::string s = stringf("R%dC%d_%s", r, c, ctx->nameOf(IdString(ctx->bel_data(bel).name)));
push(s);
}
// Push a bel's group and name
void push_bel(BelId bel)
{
push_belgroup(bel);
fasm_ctx.back() += stringf(".%s", ctx->nameOf(IdString(ctx->bel_data(bel).name)));
}
// Write out a pip in tile.dst.src format
void write_pip(PipId pip)
{
auto &pd = ctx->pip_data(pip);
if (pd.flags & PIP_FIXED_CONN)
return;
std::string tile = tile_name(pip.tile, tile_by_type_and_loc(pip.tile, IdString(pd.tile_type)));
std::string source_wire = escape_name(ctx->pip_src_wire_name(pip).str(ctx));
std::string dest_wire = escape_name(ctx->pip_dst_wire_name(pip).str(ctx));
out << stringf("%s.PIP.%s.%s", tile.c_str(), dest_wire.c_str(), source_wire.c_str()) << std::endl;
}
// Write out all the pips corresponding to a net
void write_net(const NetInfo *net)
{
write_comment(stringf("Net %s", ctx->nameOf(net)));
std::set<PipId> sorted_pips;
for (auto &w : net->wires)
if (w.second.pip != PipId())
sorted_pips.insert(w.second.pip);
for (auto p : sorted_pips)
write_pip(p);
blank();
}
// Find the CIBMUX output for a signal
WireId find_cibmux(const CellInfo *cell, IdString pin)
{
WireId cursor = ctx->getBelPinWire(cell->bel, pin);
if (cursor == WireId())
return WireId();
for (int i = 0; i < 10; i++) {
std::string cursor_name = IdString(ctx->wire_data(cursor).name).str(ctx);
if (cursor_name.find("JCIBMUXOUT") == 0) {
return cursor;
}
for (PipId pip : ctx->getPipsUphill(cursor))
if (ctx->checkPipAvail(pip)) {
cursor = ctx->getPipSrcWire(pip);
break;
}
}
return WireId();
}
// Write out the mux config for a cell
void write_cell_muxes(const CellInfo *cell)
{
for (auto port : sorted_cref(cell->ports)) {
// Only relevant to inputs
if (port.second.type != PORT_IN)
continue;
auto pin_style = ctx->get_cell_pin_style(cell, port.first);
auto pin_mux = ctx->get_cell_pinmux(cell, port.first);
// Invertible pins
if (pin_style & PINOPT_INV) {
if (pin_mux == PINMUX_INV || pin_mux == PINMUX_0)
write_bit(stringf("%sMUX.INV", ctx->nameOf(port.first)));
else if (pin_mux == PINMUX_SIG)
write_bit(stringf("%sMUX.%s", ctx->nameOf(port.first), ctx->nameOf(port.first)));
}
// Pins that must be explictly enabled
if ((pin_style & PINBIT_GATED) && (pin_mux == PINMUX_SIG))
write_bit(stringf("%sMUX.%s", ctx->nameOf(port.first), ctx->nameOf(port.first)));
// Pins that must be explictly set to 1 rather than just left floating
if ((pin_style & PINBIT_1) && (pin_mux == PINMUX_1))
write_bit(stringf("%sMUX.1", ctx->nameOf(port.first)));
// Handle CIB muxes - these must be set such that floating pins really are floating to VCC and not connected
// to another CIB signal
if ((pin_style & PINBIT_CIBMUX) && port.second.net == nullptr) {
WireId cibmuxout = find_cibmux(cell, port.first);
if (cibmuxout != WireId()) {
write_comment(stringf("CIBMUX for unused pin %s", ctx->nameOf(port.first)));
bool found = false;
for (PipId pip : ctx->getPipsUphill(cibmuxout)) {
if (ctx->checkPipAvail(pip) && ctx->checkWireAvail(ctx->getPipSrcWire(pip))) {
write_pip(pip);
found = true;
break;
}
}
NPNR_ASSERT(found);
}
}
}
}
// Write config for an OXIDE_COMB cell
void write_comb(const CellInfo *cell)
{
BelId bel = cell->bel;
int z = ctx->bel_data(bel).z;
int k = z & 0x1;
char slice = 'A' + (z >> 3);
push_tile(bel.tile, id_PLC);
push(stringf("SLICE%c", slice));
if (cell->params.count(id_INIT))
write_int_vector(stringf("K%d.INIT[15:0]", k), int_or_default(cell->params, id_INIT, 0), 16);
if (cell->lutInfo.is_carry) {
write_bit("MODE.CCU2");
write_enum(cell, "CCU2.INJECT", "NO");
}
pop(2);
}
// Write config for an OXIDE_FF cell
void write_ff(const CellInfo *cell)
{
BelId bel = cell->bel;
int z = ctx->bel_data(bel).z;
int k = z & 0x1;
char slice = 'A' + (z >> 3);
push_tile(bel.tile, id_PLC);
push(stringf("SLICE%c", slice));
push(stringf("REG%d", k));
write_bit("USED.YES");
write_enum(cell, "REGSET", "RESET");
write_enum(cell, "LSRMODE", "LSR");
write_enum(cell, "SEL", "DF");
pop();
write_enum(cell, "REGDDR");
write_enum(cell, "SRMODE");
write_cell_muxes(cell);
pop(2);
}
// Write out config for an OXIDE_RAMW cell
void write_ramw(const CellInfo *cell)
{
BelId bel = cell->bel;
push_tile(bel.tile, id_PLC);
push("SLICEC");
write_bit("MODE.RAMW");
write_cell_muxes(cell);
pop(2);
}
std::unordered_set<BelId> used_io;
struct BankConfig
{
bool diff_used = false;
bool lvds_used = false;
bool slvs_used = false;
bool dphy_used = false;
};
std::map<int, BankConfig> bank_cfg;
// Write config for an SEIO33_CORE cell
void write_io33(const CellInfo *cell)
{
BelId bel = cell->bel;
used_io.insert(bel);
push_bel(bel);
const NetInfo *t = get_net_or_empty(cell, id_T);
auto tmux = ctx->get_cell_pinmux(cell, id_T);
bool is_input = false, is_output = false;
if (tmux == PINMUX_0) {
is_output = true;
} else if (tmux == PINMUX_1 || t == nullptr) {
is_input = true;
}
const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
write_bit(stringf("BASE_TYPE.%s_%s", iodir, str_or_default(cell->attrs, id_IO_TYPE, "LVCMOS33").c_str()));
write_ioattr(cell, "PULLMODE", "NONE");
write_cell_muxes(cell);
pop();
}
// Write config for an SEIO18_CORE cell
void write_io18(const CellInfo *cell)
{
BelId bel = cell->bel;
used_io.insert(bel);
push_bel(bel);
push("SEIO18");
const NetInfo *t = get_net_or_empty(cell, id_T);
auto tmux = ctx->get_cell_pinmux(cell, id_T);
bool is_input = false, is_output = false;
if (tmux == PINMUX_0) {
is_output = true;
} else if (tmux == PINMUX_1 || t == nullptr) {
is_input = true;
}
const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
write_bit(stringf("BASE_TYPE.%s_%s", iodir, str_or_default(cell->attrs, id_IO_TYPE, "LVCMOS18H").c_str()));
write_ioattr(cell, "PULLMODE", "NONE");
pop();
write_cell_muxes(cell);
pop();
}
// Write config for an SEIO18_CORE cell
void write_diffio18(const CellInfo *cell)
{
BelId bel = cell->bel;
Loc bel_loc = ctx->getBelLocation(bel);
for (int i = 0; i < 2; i++) {
// Mark both A and B pins as used
used_io.insert(ctx->getBelByLocation(Loc(bel_loc.x, bel_loc.y, i)));
}
push_belgroup(bel);
push("PIOA");
push("DIFFIO18");
auto &bank = bank_cfg[ctx->get_bel_pad(ctx->getBelByLocation(Loc(bel_loc.x, bel_loc.y, 0)))->bank];
bank.diff_used = true;
const NetInfo *t = get_net_or_empty(cell, id_T);
auto tmux = ctx->get_cell_pinmux(cell, id_T);
bool is_input = false, is_output = false;
if (tmux == PINMUX_0) {
is_output = true;
} else if (tmux == PINMUX_1 || t == nullptr) {
is_input = true;
}
const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
std::string type = str_or_default(cell->attrs, id_IO_TYPE, "LVDS");
write_bit(stringf("BASE_TYPE.%s_%s", iodir, type.c_str()));
if (type == "LVDS") {
write_ioattr_postfix(cell, "DIFFDRIVE", "LVDS", "3P5");
bank.lvds_used = true;
} else if (type == "SLVS") {
write_ioattr_postfix(cell, "DIFFDRIVE", "SLVS", "2P0");
bank.slvs_used = true;
} else if (type == "MIPI_DPHY") {
write_ioattr_postfix(cell, "DIFFDRIVE", "MIPI_DPHY", "2P0");
bank.dphy_used = true;
}
write_ioattr(cell, "PULLMODE", "FAILSAFE");
write_ioattr(cell, "DIFFRESISTOR");
pop();
write_cell_muxes(cell);
pop(2);
}
// Write config for an OSC_CORE cell
void write_osc(const CellInfo *cell)
{
BelId bel = cell->bel;
push_tile(bel.tile);
push_belname(bel);
write_enum(cell, "HF_OSC_EN");
write_enum(cell, "HF_FABRIC_EN");
write_enum(cell, "HFDIV_FABRIC_EN", "ENABLED");
write_enum(cell, "LF_FABRIC_EN");
write_enum(cell, "LF_OUTPUT_EN");
write_enum(cell, "DEBUG_N", "DISABLED");
write_int_vector(stringf("HF_CLK_DIV[7:0]"), ctx->parse_lattice_param(cell, id_HF_CLK_DIV, 8, 0).intval, 8);
write_cell_muxes(cell);
pop(2);
}
// Write config for an OXIDE_EBR cell
void write_bram(const CellInfo *cell)
{
// EBR configuration
BelId bel = cell->bel;
push_bel(bel);
int wid = int_or_default(cell->params, id_WID, 0);
std::string mode = str_or_default(cell->params, id_MODE, "");
write_bit(stringf("MODE.%s_MODE", mode.c_str()));
write_enum(cell, "INIT_DATA", "STATIC");
write_enum(cell, "GSR", "DISABLED");
write_int_vector("WID[10:0]", wid, 11);
push(stringf("%s_MODE", mode.c_str()));
if (mode == "DP16K") {
write_int_vector_param(cell, "CSDECODE_A", 7, 3, true);
write_int_vector_param(cell, "CSDECODE_B", 7, 3, true);
write_enum(cell, "ASYNC_RST_RELEASE_A");
write_enum(cell, "ASYNC_RST_RELEASE_B");
write_enum(cell, "DATA_WIDTH_A");
write_enum(cell, "DATA_WIDTH_B");
write_enum(cell, "OUTREG_A");
write_enum(cell, "OUTREG_B");
write_enum(cell, "RESETMODE_A");
write_enum(cell, "RESETMODE_B");
} else if (mode == "PDP16K" || mode == "PDPSC16K") {
write_int_vector_param(cell, "CSDECODE_W", 7, 3, true);
write_int_vector_param(cell, "CSDECODE_R", 7, 3, true);
write_enum(cell, "ASYNC_RST_RELEASE");
write_enum(cell, "DATA_WIDTH_W");
write_enum(cell, "DATA_WIDTH_R");
write_enum(cell, "OUTREG");
write_enum(cell, "RESETMODE");
}
pop();
push("DP16K_MODE"); // muxes always use the DP16K perspective
write_cell_muxes(cell);
pop(2);
blank();
// EBR initialisation
if (wid > 0) {
push(stringf("IP_EBR_WID%d", wid));
for (int i = 0; i < 64; i++) {
IdString param = ctx->id(stringf("INITVAL_%02X", i));
if (!cell->params.count(param))
continue;
auto &prop = cell->params.at(param);
std::string value;
if (prop.is_string) {
NPNR_ASSERT(prop.str.substr(0, 2) == "0x");
// Lattice-style hex string
value = prop.str.substr(2);
value = stringf("320'h%s", value.c_str());
} else {
// True Verilog bitvector
value = stringf("320'b%s", prop.str.c_str());
}
write_bit(stringf("INITVAL_%02X[319:0] = %s", i, value.c_str()));
}
pop();
}
}
bool is_mux_param(const std::string &key)
{
return (key.size() >= 3 && (key.compare(key.size() - 3, 3, "MUX") == 0));
}
// Write config for some kind of DSP cell
void write_dsp(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
if (cell->type != id_MULT18_CORE && cell->type != id_MULT18X36_CORE && cell->type != id_MULT36_CORE)
write_bit(stringf("MODE.%s", ctx->nameOf(cell->type)));
for (auto param : sorted_cref(cell->params)) {
const std::string &param_name = param.first.str(ctx);
if (is_mux_param(param_name))
continue;
if (param.first == id_ROUNDBIT) {
// currently unsupported in oxide, but appears rarely used
NPNR_ASSERT(param.second.as_string() == "ROUND_TO_BIT0");
continue;
}
write_enum(cell, param_name);
}
write_cell_muxes(cell);
pop();
}
// Which PLL params are 'word' values
/* clang-format off */
const std::unordered_map<std::string, int> pll_word_params = {
{"DIVA", 7}, {"DELA", 7}, {"PHIA", 3}, {"DIVB", 7},
{"DELB", 7}, {"PHIB", 3}, {"DIVC", 7}, {"DELC", 7},
{"PHIC", 3}, {"DIVD", 7}, {"DELD", 7}, {"PHID", 3},
{"DIVE", 7}, {"DELE", 7}, {"PHIE", 3}, {"DIVF", 7},
{"DELF", 7}, {"PHIF", 3}, {"BW_CTL_BIAS", 4},
{"CLKOP_TRIM", 4}, {"CLKOS_TRIM", 4}, {"CLKOS2_TRIM", 4},
{"CLKOS3_TRIM", 4}, {"CLKOS4_TRIM", 4}, {"CLKOS5_TRIM", 4},
{"DIV_DEL", 7}, {"DYN_SEL", 3}, {"FBK_CUR_BLE", 8}, {"FBK_IF_TIMING_CTL", 2},
{"FBK_MASK", 8}, {"FBK_MMD_DIG", 8}, {"FBK_MMD_PULS_CTL", 4},
{"FBK_MODE", 2}, {"FBK_PI_RC", 4}, {"FBK_PR_CC", 4},
{"FBK_PR_IC", 4}, {"FBK_RSV", 16},
{"IPI_CMP", 4}, {"IPI_CMPN", 4},
{"IPP_CTRL", 4}, {"IPP_SEL", 4},
{"KP_VCO", 5},
{"MFG_CTRL", 4}, {"MFGOUT1_SEL", 3}, {"MFGOUT2_SEL", 3},
{"REF_MASK", 8}, {"REF_MMD_DIG", 8}, {"REF_MMD_IN", 8},
{"REF_MMD_PULS_CTL", 4}, {"REF_TIMING_CTL", 2},
{"RESERVED", 7}, {"SSC_DELTA", 15},
{"SSC_DELTA_CTL", 2}, {"SSC_F_CODE", 15},
{"SSC_N_CODE", 9}, {"SSC_REG_WEIGHTING_SEL", 3},
{"SSC_STEP_IN", 7}, {"SSC_TBASE", 12},
{"V2I_PP_ICTRL", 5},
};
/* clang-format on */
// Write out config for some kind of PLL cell
void write_pll(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
write_bit("MODE.PLL_CORE");
write_enum(cell, "CLKMUX_FB");
write_cell_muxes(cell);
pop();
push(stringf("IP_%s", ctx->nameOf(IdString(ctx->bel_data(bel).name))));
for (auto param : sorted_cref(cell->params)) {
const std::string &name = param.first.str(ctx);
if (is_mux_param(name) || name == "CLKMUX_FB" || name == "SEL_FBK")
continue;
auto fnd_word = pll_word_params.find(name);
if (fnd_word != pll_word_params.end()) {
write_int_vector(stringf("%s[%d:0]", name.c_str(), fnd_word->second - 1),
ctx->parse_lattice_param(cell, param.first, fnd_word->second, 0).as_int64(),
fnd_word->second);
} else {
write_bit(stringf("%s.%s", name.c_str(), param.second.as_string().c_str()));
}
}
pop();
}
// Write out config for an LRAM_CORE cell
void write_lram(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
write_enum(cell, "ASYNC_RST_RELEASE", "SYNC");
write_enum(cell, "EBR_SP_EN", "DISABLE");
write_enum(cell, "ECC_BYTE_SEL", "BYTE_EN");
write_enum(cell, "GSR", "DISABLED");
write_enum(cell, "OUT_REGMODE_A", "NO_REG");
write_enum(cell, "OUT_REGMODE_B", "NO_REG");
write_enum(cell, "RESETMODE", "SYNC");
write_enum(cell, "UNALIGNED_READ", "DISABLE");
write_cell_muxes(cell);
pop();
blank();
Loc l = ctx->getBelLocation(bel);
push(stringf("IP_LRAM_CORE_R%dC%d", l.y, l.x));
for (int i = 0; i < 128; i++) {
IdString param = ctx->id(stringf("INITVAL_%02X", i));
if (!cell->params.count(param))
continue;
auto &prop = cell->params.at(param);
std::string value;
if (prop.is_string) {
NPNR_ASSERT(prop.str.substr(0, 2) == "0x");
// Lattice-style hex string
value = prop.str.substr(2);
value = stringf("5120'h%s", value.c_str());
} else {
// True Verilog bitvector
value = stringf("5120'b%s", prop.str.c_str());
}
write_bit(stringf("INITVAL_%02X[5119:0] = %s", i, value.c_str()));
}
pop();
}
// Write out FASM for unused bels where needed
void write_unused()
{
write_comment("# Unused bels");
// DSP primitives are configured to a default mode; even if unused
static const std::unordered_map<IdString, std::vector<std::string>> dsp_defconf = {
{id_MULT9_CORE,
{
"GSR.ENABLED",
"MODE.NONE",
"RSTAMUX.RSTA",
"RSTPMUX.RSTP",
}},
{id_PREADD9_CORE,
{
"GSR.ENABLED",
"MODE.NONE",
"RSTBMUX.RSTB",
"RSTCLMUX.RSTCL",
}},
{id_REG18_CORE,
{
"GSR.ENABLED",
"MODE.NONE",
"RSTPMUX.RSTP",
}},
{id_ACC54_CORE,
{
"ACCUBYPS.BYPASS",
"MODE.NONE",
}},
};
for (BelId bel : ctx->getBels()) {
IdString type = ctx->getBelType(bel);
if (type == id_SEIO33_CORE && !used_io.count(bel)) {
push_bel(bel);
write_bit("BASE_TYPE.NONE");
pop();
blank();
} else if (type == id_SEIO18_CORE && !used_io.count(bel)) {
push_bel(bel);
push("SEIO18");
write_bit("BASE_TYPE.NONE");
pop(2);
blank();
} else if (dsp_defconf.count(type) && ctx->getBoundBelCell(bel) == nullptr) {
push_bel(bel);
for (const auto &cbit : dsp_defconf.at(type))
write_bit(cbit);
pop();
blank();
}
}
}
// Write out placeholder bankref config
void write_bankcfg()
{
for (int i = 0; i < 8; i++) {
if (i >= 3 && i <= 5) {
// 1.8V banks
push(stringf("GLOBAL.BANK%d", i));
auto &bank = bank_cfg[i];
write_bit("DIFF_IO.ON", bank.diff_used);
write_bit("LVDS_IO.ON", bank.lvds_used);
write_bit("SLVS_IO.ON", bank.slvs_used);
write_bit("MIPI_DPHY_IO.ON", bank.dphy_used);
pop();
} else {
// 3.3V banks, this should eventually be set based on the bank config
write_bit(stringf("GLOBAL.BANK%d.VCC.3V3", i));
}
}
blank();
}
// Write out FASM for the whole design
void operator()()
{
// Write device config
write_attribute("oxide.device", ctx->device);
write_attribute("oxide.device_variant", ctx->variant);
blank();
// Write routing
for (auto n : sorted(ctx->nets)) {
write_net(n.second);
}
// Write cell config
for (auto c : sorted(ctx->cells)) {
const CellInfo *ci = c.second;
write_comment(stringf("# Cell %s", ctx->nameOf(ci)));
if (ci->type == id_OXIDE_COMB)
write_comb(ci);
else if (ci->type == id_OXIDE_FF)
write_ff(ci);
else if (ci->type == id_RAMW)
write_ramw(ci);
else if (ci->type == id_SEIO33_CORE)
write_io33(ci);
else if (ci->type == id_SEIO18_CORE)
write_io18(ci);
else if (ci->type == id_DIFFIO18_CORE)
write_diffio18(ci);
else if (ci->type == id_OSC_CORE)
write_osc(ci);
else if (ci->type == id_OXIDE_EBR)
write_bram(ci);
else if (ci->type == id_MULT9_CORE || ci->type == id_PREADD9_CORE || ci->type == id_MULT18_CORE ||
ci->type == id_MULT18X36_CORE || ci->type == id_MULT36_CORE || ci->type == id_REG18_CORE ||
ci->type == id_ACC54_CORE)
write_dsp(ci);
else if (ci->type == id_PLL_CORE)
write_pll(ci);
else if (ci->type == id_LRAM_CORE)
write_lram(ci);
blank();
}
// Write config for unused bels
write_unused();
// Write bank config
write_bankcfg();
}
};
} // namespace
void Arch::write_fasm(std::ostream &out) const { NexusFasmWriter(getCtx(), out)(); }
NEXTPNR_NAMESPACE_END