nextpnr/common/nextpnr.h
Keith Rothman c99fbde0eb Mark IdString and IdStringList single argument constructors explicit.
Single argument constructors will silently convert to that type.  This
is typically not the right thing to do.  For example, the nexus and
ice40 arch_pybindings.h files were incorrectly parsing bel name strings,
etc.

Signed-off-by: Keith Rothman <537074+litghost@users.noreply.github.com>
2021-02-04 16:38:07 -08:00

1088 lines
30 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 Serge Bazanski <q3k@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <assert.h>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <boost/functional/hash.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/range/adaptor/reversed.hpp>
#ifndef NPNR_DISABLE_THREADS
#include <boost/thread.hpp>
#endif
#ifndef NEXTPNR_H
#define NEXTPNR_H
#ifdef NEXTPNR_NAMESPACE
#define NEXTPNR_NAMESPACE_PREFIX NEXTPNR_NAMESPACE::
#define NEXTPNR_NAMESPACE_BEGIN namespace NEXTPNR_NAMESPACE {
#define NEXTPNR_NAMESPACE_END }
#define USING_NEXTPNR_NAMESPACE using namespace NEXTPNR_NAMESPACE;
#else
#define NEXTPNR_NAMESPACE_PREFIX
#define NEXTPNR_NAMESPACE_BEGIN
#define NEXTPNR_NAMESPACE_END
#define USING_NEXTPNR_NAMESPACE
#endif
#if defined(__GNUC__) || defined(__clang__)
#define NPNR_ATTRIBUTE(...) __attribute__((__VA_ARGS__))
#define NPNR_NORETURN __attribute__((noreturn))
#define NPNR_DEPRECATED __attribute__((deprecated))
#define NPNR_PACKED_STRUCT(...) __VA_ARGS__ __attribute__((packed))
#elif defined(_MSC_VER)
#define NPNR_ATTRIBUTE(...)
#define NPNR_NORETURN __declspec(noreturn)
#define NPNR_DEPRECATED __declspec(deprecated)
#define NPNR_PACKED_STRUCT(...) __pragma(pack(push, 1)) __VA_ARGS__ __pragma(pack(pop))
#else
#define NPNR_ATTRIBUTE(...)
#define NPNR_NORETURN
#define NPNR_DEPRECATED
#define NPNR_PACKED_STRUCT(...) __VA_ARGS__
#endif
NEXTPNR_NAMESPACE_BEGIN
class assertion_failure : public std::runtime_error
{
public:
assertion_failure(std::string msg, std::string expr_str, std::string filename, int line);
std::string msg;
std::string expr_str;
std::string filename;
int line;
};
NPNR_NORETURN
inline void assert_fail_impl(const char *message, const char *expr_str, const char *filename, int line)
{
throw assertion_failure(message, expr_str, filename, line);
}
NPNR_NORETURN
inline void assert_fail_impl_str(std::string message, const char *expr_str, const char *filename, int line)
{
throw assertion_failure(message, expr_str, filename, line);
}
#define NPNR_ASSERT(cond) (!(cond) ? assert_fail_impl(#cond, #cond, __FILE__, __LINE__) : (void)true)
#define NPNR_ASSERT_MSG(cond, msg) (!(cond) ? assert_fail_impl(msg, #cond, __FILE__, __LINE__) : (void)true)
#define NPNR_ASSERT_FALSE(msg) (assert_fail_impl(msg, "false", __FILE__, __LINE__))
#define NPNR_ASSERT_FALSE_STR(msg) (assert_fail_impl_str(msg, "false", __FILE__, __LINE__))
struct BaseCtx;
struct Context;
struct IdString
{
int index;
static void initialize_arch(const BaseCtx *ctx);
static void initialize_add(const BaseCtx *ctx, const char *s, int idx);
constexpr IdString() : index(0) {}
explicit constexpr IdString(int index) : index(index) {}
void set(const BaseCtx *ctx, const std::string &s);
IdString(const BaseCtx *ctx, const std::string &s) { set(ctx, s); }
IdString(const BaseCtx *ctx, const char *s) { set(ctx, s); }
const std::string &str(const BaseCtx *ctx) const;
const char *c_str(const BaseCtx *ctx) const;
bool operator<(const IdString &other) const { return index < other.index; }
bool operator==(const IdString &other) const { return index == other.index; }
bool operator!=(const IdString &other) const { return index != other.index; }
bool empty() const { return index == 0; }
};
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX IdString>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX IdString &obj) const noexcept
{
return std::hash<int>()(obj.index);
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
// An small size optimised array that is statically allocated when the size is N or less; heap allocated otherwise
template <typename T, size_t N> class SSOArray
{
private:
union
{
T data_static[N];
T *data_heap;
};
size_t m_size;
inline bool is_heap() const { return (m_size > N); }
void alloc()
{
if (is_heap()) {
data_heap = new T[m_size];
}
}
public:
T *data() { return is_heap() ? data_heap : data_static; }
const T *data() const { return is_heap() ? data_heap : data_static; }
size_t size() const { return m_size; }
T *begin() { return data(); }
T *end() { return data() + m_size; }
const T *begin() const { return data(); }
const T *end() const { return data() + m_size; }
SSOArray() : m_size(0){};
SSOArray(size_t size, const T &init = T()) : m_size(size)
{
alloc();
std::fill(begin(), end(), init);
}
SSOArray(const SSOArray &other) : m_size(other.size())
{
alloc();
std::copy(other.begin(), other.end(), begin());
}
template <typename Tother> SSOArray(const Tother &other) : m_size(other.size())
{
alloc();
std::copy(other.begin(), other.end(), begin());
}
~SSOArray()
{
if (is_heap()) {
delete[] data_heap;
}
}
bool operator==(const SSOArray &other) const
{
if (size() != other.size())
return false;
return std::equal(begin(), end(), other.begin());
}
bool operator!=(const SSOArray &other) const
{
if (size() != other.size())
return true;
return !std::equal(begin(), end(), other.begin());
}
T &operator[](size_t idx)
{
NPNR_ASSERT(idx < m_size);
return data()[idx];
}
const T &operator[](size_t idx) const
{
NPNR_ASSERT(idx < m_size);
return data()[idx];
}
};
struct IdStringList
{
SSOArray<IdString, 4> ids;
IdStringList(){};
explicit IdStringList(size_t n) : ids(n, IdString()){};
explicit IdStringList(IdString id) : ids(1, id){};
template <typename Tlist> explicit IdStringList(const Tlist &list) : ids(list){};
static IdStringList parse(Context *ctx, const std::string &str);
void build_str(const Context *ctx, std::string &str) const;
std::string str(const Context *ctx) const;
size_t size() const { return ids.size(); }
const IdString *begin() const { return ids.begin(); }
const IdString *end() const { return ids.end(); }
const IdString &operator[](size_t idx) const { return ids[idx]; }
bool operator==(const IdStringList &other) const { return ids == other.ids; }
bool operator!=(const IdStringList &other) const { return ids != other.ids; }
bool operator<(const IdStringList &other) const
{
if (size() > other.size())
return false;
if (size() < other.size())
return true;
for (size_t i = 0; i < size(); i++) {
IdString a = ids[i], b = other[i];
if (a.index < b.index)
return true;
if (a.index > b.index)
return false;
}
return false;
}
};
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX IdStringList>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX IdStringList &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<size_t>()(obj.size()));
for (auto &id : obj)
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(id));
return seed;
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
// A ring buffer of strings, so we can return a simple const char * pointer for %s formatting - inspired by how logging
// in Yosys works Let's just hope noone tries to log more than 100 things in one call....
class StrRingBuffer
{
private:
static const size_t N = 100;
std::array<std::string, N> buffer;
size_t index = 0;
public:
std::string &next();
};
struct GraphicElement
{
enum type_t
{
TYPE_NONE,
TYPE_LINE,
TYPE_ARROW,
TYPE_BOX,
TYPE_CIRCLE,
TYPE_LABEL,
TYPE_MAX
} type = TYPE_NONE;
enum style_t
{
STYLE_GRID,
STYLE_FRAME, // Static "frame". Contrast between STYLE_INACTIVE and STYLE_ACTIVE
STYLE_HIDDEN, // Only display when object is selected or highlighted
STYLE_INACTIVE, // Render using low-contrast color
STYLE_ACTIVE, // Render using high-contast color
// UI highlight groups
STYLE_HIGHLIGHTED0,
STYLE_HIGHLIGHTED1,
STYLE_HIGHLIGHTED2,
STYLE_HIGHLIGHTED3,
STYLE_HIGHLIGHTED4,
STYLE_HIGHLIGHTED5,
STYLE_HIGHLIGHTED6,
STYLE_HIGHLIGHTED7,
STYLE_SELECTED,
STYLE_HOVER,
STYLE_MAX
} style = STYLE_FRAME;
float x1 = 0, y1 = 0, x2 = 0, y2 = 0, z = 0;
std::string text;
GraphicElement(){};
GraphicElement(type_t type, style_t style, float x1, float y1, float x2, float y2, float z)
: type(type), style(style), x1(x1), y1(y1), x2(x2), y2(y2), z(z){};
};
struct Loc
{
int x = -1, y = -1, z = -1;
Loc() {}
Loc(int x, int y, int z) : x(x), y(y), z(z) {}
bool operator==(const Loc &other) const { return (x == other.x) && (y == other.y) && (z == other.z); }
bool operator!=(const Loc &other) const { return (x != other.x) || (y != other.y) || (z != other.z); }
};
struct ArcBounds
{
int x0 = -1, y0 = -1, x1 = -1, y1 = -1;
ArcBounds() {}
ArcBounds(int x0, int y0, int x1, int y1) : x0(x0), y0(y0), x1(x1), y1(y1){};
int distance(Loc loc) const
{
int dist = 0;
if (loc.x < x0)
dist += x0 - loc.x;
if (loc.x > x1)
dist += loc.x - x1;
if (loc.y < y0)
dist += y0 - loc.y;
if (loc.y > y1)
dist += loc.y - y1;
return dist;
};
};
struct TimingConstrObjectId
{
int32_t index = -1;
bool operator==(const TimingConstrObjectId &other) const { return index == other.index; }
bool operator!=(const TimingConstrObjectId &other) const { return index != other.index; }
};
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX Loc>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX Loc &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<int>()(obj.x));
boost::hash_combine(seed, hash<int>()(obj.y));
boost::hash_combine(seed, hash<int>()(obj.z));
return seed;
}
};
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX TimingConstrObjectId>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX TimingConstrObjectId &obj) const noexcept
{
return hash<int>()(obj.index);
}
};
} // namespace std
#include "archdefs.h"
NEXTPNR_NAMESPACE_BEGIN
struct DecalXY
{
DecalId decal;
float x = 0, y = 0;
bool operator==(const DecalXY &other) const { return (decal == other.decal && x == other.x && y == other.y); }
};
struct BelPin
{
BelId bel;
IdString pin;
};
struct CellInfo;
struct Region
{
IdString name;
bool constr_bels = false;
bool constr_wires = false;
bool constr_pips = false;
std::unordered_set<BelId> bels;
std::unordered_set<WireId> wires;
std::unordered_set<Loc> piplocs;
};
enum PlaceStrength
{
STRENGTH_NONE = 0,
STRENGTH_WEAK = 1,
STRENGTH_STRONG = 2,
STRENGTH_FIXED = 3,
STRENGTH_LOCKED = 4,
STRENGTH_USER = 5
};
struct PortRef
{
CellInfo *cell = nullptr;
IdString port;
delay_t budget = 0;
};
struct PipMap
{
PipId pip = PipId();
PlaceStrength strength = STRENGTH_NONE;
};
struct Property
{
enum State : char
{
S0 = '0',
S1 = '1',
Sx = 'x',
Sz = 'z'
};
Property();
Property(int64_t intval, int width = 32);
Property(const std::string &strval);
Property(State bit);
Property &operator=(const Property &other) = default;
bool is_string;
// The string literal (for string values), or a string of [01xz] (for numeric values)
std::string str;
// The lower 64 bits (for numeric values), unused for string values
int64_t intval;
void update_intval()
{
intval = 0;
for (int i = 0; i < int(str.size()); i++) {
NPNR_ASSERT(str[i] == S0 || str[i] == S1 || str[i] == Sx || str[i] == Sz);
if ((str[i] == S1) && i < 64)
intval |= (1ULL << i);
}
}
int64_t as_int64() const
{
NPNR_ASSERT(!is_string);
return intval;
}
std::vector<bool> as_bits() const
{
std::vector<bool> result;
result.reserve(str.size());
NPNR_ASSERT(!is_string);
for (auto c : str)
result.push_back(c == S1);
return result;
}
std::string as_string() const
{
NPNR_ASSERT(is_string);
return str;
}
const char *c_str() const
{
NPNR_ASSERT(is_string);
return str.c_str();
}
size_t size() const { return is_string ? 8 * str.size() : str.size(); }
double as_double() const
{
NPNR_ASSERT(is_string);
return std::stod(str);
}
bool as_bool() const
{
if (int(str.size()) <= 64)
return intval != 0;
else
return std::any_of(str.begin(), str.end(), [](char c) { return c == S1; });
}
bool is_fully_def() const
{
return !is_string && std::all_of(str.begin(), str.end(), [](char c) { return c == S0 || c == S1; });
}
Property extract(int offset, int len, State padding = State::S0) const
{
Property ret;
ret.is_string = false;
ret.str.reserve(len);
for (int i = offset; i < offset + len; i++)
ret.str.push_back(i < int(str.size()) ? str[i] : padding);
ret.update_intval();
return ret;
}
// Convert to a string representation, escaping literal strings matching /^[01xz]* *$/ by adding a space at the end,
// to disambiguate from binary strings
std::string to_string() const;
// Convert a string of four-value binary [01xz], or a literal string escaped according to the above rule
// to a Property
static Property from_string(const std::string &s);
};
inline bool operator==(const Property &a, const Property &b) { return a.is_string == b.is_string && a.str == b.str; }
inline bool operator!=(const Property &a, const Property &b) { return a.is_string != b.is_string || a.str != b.str; }
struct ClockConstraint;
struct NetInfo : ArchNetInfo
{
IdString name, hierpath;
int32_t udata = 0;
PortRef driver;
std::vector<PortRef> users;
std::unordered_map<IdString, Property> attrs;
// wire -> uphill_pip
std::unordered_map<WireId, PipMap> wires;
std::vector<IdString> aliases; // entries in net_aliases that point to this net
std::unique_ptr<ClockConstraint> clkconstr;
TimingConstrObjectId tmg_id;
Region *region = nullptr;
};
enum PortType
{
PORT_IN = 0,
PORT_OUT = 1,
PORT_INOUT = 2
};
struct PortInfo
{
IdString name;
NetInfo *net;
PortType type;
TimingConstrObjectId tmg_id;
};
struct CellInfo : ArchCellInfo
{
IdString name, type, hierpath;
int32_t udata;
std::unordered_map<IdString, PortInfo> ports;
std::unordered_map<IdString, Property> attrs, params;
BelId bel;
PlaceStrength belStrength = STRENGTH_NONE;
// cell_port -> bel_pin
std::unordered_map<IdString, IdString> pins;
// placement constraints
CellInfo *constr_parent = nullptr;
std::vector<CellInfo *> constr_children;
const int UNCONSTR = INT_MIN;
int constr_x = UNCONSTR; // this.x - parent.x
int constr_y = UNCONSTR; // this.y - parent.y
int constr_z = UNCONSTR; // this.z - parent.z
bool constr_abs_z = false; // parent.z := 0
// parent.[xyz] := 0 when (constr_parent == nullptr)
Region *region = nullptr;
TimingConstrObjectId tmg_id;
void addInput(IdString name);
void addOutput(IdString name);
void addInout(IdString name);
void setParam(IdString name, Property value);
void unsetParam(IdString name);
void setAttr(IdString name, Property value);
void unsetAttr(IdString name);
};
enum TimingPortClass
{
TMG_CLOCK_INPUT, // Clock input to a sequential cell
TMG_GEN_CLOCK, // Generated clock output (PLL, DCC, etc)
TMG_REGISTER_INPUT, // Input to a register, with an associated clock (may also have comb. fanout too)
TMG_REGISTER_OUTPUT, // Output from a register
TMG_COMB_INPUT, // Combinational input, no paths end here
TMG_COMB_OUTPUT, // Combinational output, no paths start here
TMG_STARTPOINT, // Unclocked primary startpoint, such as an IO cell output
TMG_ENDPOINT, // Unclocked primary endpoint, such as an IO cell input
TMG_IGNORE, // Asynchronous to all clocks, "don't care", and should be ignored (false path) for analysis
};
enum ClockEdge
{
RISING_EDGE,
FALLING_EDGE
};
struct TimingClockingInfo
{
IdString clock_port; // Port name of clock domain
ClockEdge edge;
DelayInfo setup, hold; // Input timing checks
DelayInfo clockToQ; // Output clock-to-Q time
};
struct ClockConstraint
{
DelayInfo high;
DelayInfo low;
DelayInfo period;
TimingConstrObjectId domain_tmg_id;
};
struct TimingConstraintObject
{
TimingConstrObjectId id;
enum
{
ANYTHING,
CLOCK_DOMAIN,
NET,
CELL,
CELL_PORT
} type;
IdString entity; // Name of clock net; net or cell
IdString port; // Name of port on a cell
};
struct TimingConstraint
{
IdString name;
enum
{
FALSE_PATH,
MIN_DELAY,
MAX_DELAY,
MULTICYCLE,
} type;
delay_t value;
std::unordered_set<TimingConstrObjectId> from;
std::unordered_set<TimingConstrObjectId> to;
};
// Represents the contents of a non-leaf cell in a design
// with hierarchy
struct HierarchicalPort
{
IdString name;
PortType dir;
std::vector<IdString> nets;
int offset;
bool upto;
};
struct HierarchicalCell
{
IdString name, type, parent, fullpath;
// Name inside cell instance -> global name
std::unordered_map<IdString, IdString> leaf_cells, nets;
// Global name -> name inside cell instance
std::unordered_map<IdString, IdString> leaf_cells_by_gname, nets_by_gname;
// Cell port to net
std::unordered_map<IdString, HierarchicalPort> ports;
// Name inside cell instance -> global name
std::unordered_map<IdString, IdString> hier_cells;
};
inline bool operator==(const std::pair<const TimingConstrObjectId, TimingConstraint *> &a,
const std::pair<TimingConstrObjectId, TimingConstraint *> &b)
{
return a.first == b.first && a.second == b.second;
}
struct DeterministicRNG
{
uint64_t rngstate;
DeterministicRNG() : rngstate(0x3141592653589793) {}
uint64_t rng64()
{
// xorshift64star
// https://arxiv.org/abs/1402.6246
uint64_t retval = rngstate * 0x2545F4914F6CDD1D;
rngstate ^= rngstate >> 12;
rngstate ^= rngstate << 25;
rngstate ^= rngstate >> 27;
return retval;
}
int rng() { return rng64() & 0x3fffffff; }
int rng(int n)
{
assert(n > 0);
// round up to power of 2
int m = n - 1;
m |= (m >> 1);
m |= (m >> 2);
m |= (m >> 4);
m |= (m >> 8);
m |= (m >> 16);
m += 1;
while (1) {
int x = rng64() & (m - 1);
if (x < n)
return x;
}
}
void rngseed(uint64_t seed)
{
rngstate = seed ? seed : 0x3141592653589793;
for (int i = 0; i < 5; i++)
rng64();
}
template <typename Iter> void shuffle(const Iter &begin, const Iter &end)
{
size_t size = end - begin;
for (size_t i = 0; i != size; i++) {
size_t j = i + rng(size - i);
if (j > i)
std::swap(*(begin + i), *(begin + j));
}
}
template <typename T> void shuffle(std::vector<T> &a) { shuffle(a.begin(), a.end()); }
template <typename T> void sorted_shuffle(std::vector<T> &a)
{
std::sort(a.begin(), a.end());
shuffle(a);
}
};
struct BaseCtx
{
#ifndef NPNR_DISABLE_THREADS
// Lock to perform mutating actions on the Context.
std::mutex mutex;
boost::thread::id mutex_owner;
// Lock to be taken by UI when wanting to access context - the yield()
// method will lock/unlock it when its' released the main mutex to make
// sure the UI is not starved.
std::mutex ui_mutex;
#endif
// ID String database.
mutable std::unordered_map<std::string, int> *idstring_str_to_idx;
mutable std::vector<const std::string *> *idstring_idx_to_str;
// Temporary string backing store for logging
mutable StrRingBuffer log_strs;
// Project settings and config switches
std::unordered_map<IdString, Property> settings;
// Placed nets and cells.
std::unordered_map<IdString, std::unique_ptr<NetInfo>> nets;
std::unordered_map<IdString, std::unique_ptr<CellInfo>> cells;
// Hierarchical (non-leaf) cells by full path
std::unordered_map<IdString, HierarchicalCell> hierarchy;
// This is the root of the above structure
IdString top_module;
// Aliases for nets, which may have more than one name due to assignments and hierarchy
std::unordered_map<IdString, IdString> net_aliases;
// Top-level ports
std::unordered_map<IdString, PortInfo> ports;
// Floorplanning regions
std::unordered_map<IdString, std::unique_ptr<Region>> region;
// Context meta data
std::unordered_map<IdString, Property> attrs;
BaseCtx()
{
idstring_str_to_idx = new std::unordered_map<std::string, int>;
idstring_idx_to_str = new std::vector<const std::string *>;
IdString::initialize_add(this, "", 0);
IdString::initialize_arch(this);
TimingConstraintObject wildcard;
wildcard.id.index = 0;
wildcard.type = TimingConstraintObject::ANYTHING;
constraintObjects.push_back(wildcard);
}
~BaseCtx()
{
delete idstring_str_to_idx;
delete idstring_idx_to_str;
}
// Must be called before performing any mutating changes on the Ctx/Arch.
void lock(void)
{
#ifndef NPNR_DISABLE_THREADS
mutex.lock();
mutex_owner = boost::this_thread::get_id();
#endif
}
void unlock(void)
{
#ifndef NPNR_DISABLE_THREADS
NPNR_ASSERT(boost::this_thread::get_id() == mutex_owner);
mutex.unlock();
#endif
}
// Must be called by the UI before rendering data. This lock will be
// prioritized when processing code calls yield().
void lock_ui(void)
{
#ifndef NPNR_DISABLE_THREADS
ui_mutex.lock();
mutex.lock();
#endif
}
void unlock_ui(void)
{
#ifndef NPNR_DISABLE_THREADS
mutex.unlock();
ui_mutex.unlock();
#endif
}
// Yield to UI by unlocking the main mutex, flashing the UI mutex and
// relocking the main mutex. Call this when you're performing a
// long-standing action while holding a lock to let the UI show
// visualization updates.
// Must be called with the main lock taken.
void yield(void)
{
#ifndef NPNR_DISABLE_THREADS
unlock();
ui_mutex.lock();
ui_mutex.unlock();
lock();
#endif
}
IdString id(const std::string &s) const { return IdString(this, s); }
IdString id(const char *s) const { return IdString(this, s); }
Context *getCtx() { return reinterpret_cast<Context *>(this); }
const Context *getCtx() const { return reinterpret_cast<const Context *>(this); }
const char *nameOf(IdString name) const { return name.c_str(this); }
template <typename T> const char *nameOf(const T *obj) const
{
if (obj == nullptr)
return "";
return obj->name.c_str(this);
}
const char *nameOfBel(BelId bel) const;
const char *nameOfWire(WireId wire) const;
const char *nameOfPip(PipId pip) const;
const char *nameOfGroup(GroupId group) const;
// Wrappers of arch functions that take a string and handle IdStringList parsing
BelId getBelByNameStr(const std::string &str);
WireId getWireByNameStr(const std::string &str);
PipId getPipByNameStr(const std::string &str);
GroupId getGroupByNameStr(const std::string &str);
// --------------------------------------------------------------
bool allUiReload = true;
bool frameUiReload = false;
std::unordered_set<BelId> belUiReload;
std::unordered_set<WireId> wireUiReload;
std::unordered_set<PipId> pipUiReload;
std::unordered_set<GroupId> groupUiReload;
void refreshUi() { allUiReload = true; }
void refreshUiFrame() { frameUiReload = true; }
void refreshUiBel(BelId bel) { belUiReload.insert(bel); }
void refreshUiWire(WireId wire) { wireUiReload.insert(wire); }
void refreshUiPip(PipId pip) { pipUiReload.insert(pip); }
void refreshUiGroup(GroupId group) { groupUiReload.insert(group); }
// --------------------------------------------------------------
// Timing Constraint API
// constraint name -> constraint
std::unordered_map<IdString, std::unique_ptr<TimingConstraint>> constraints;
// object ID -> object
std::vector<TimingConstraintObject> constraintObjects;
// object ID -> constraint
std::unordered_multimap<TimingConstrObjectId, TimingConstraint *> constrsFrom;
std::unordered_multimap<TimingConstrObjectId, TimingConstraint *> constrsTo;
TimingConstrObjectId timingWildcardObject();
TimingConstrObjectId timingClockDomainObject(NetInfo *clockDomain);
TimingConstrObjectId timingNetObject(NetInfo *net);
TimingConstrObjectId timingCellObject(CellInfo *cell);
TimingConstrObjectId timingPortObject(CellInfo *cell, IdString port);
NetInfo *getNetByAlias(IdString alias) const
{
return nets.count(alias) ? nets.at(alias).get() : nets.at(net_aliases.at(alias)).get();
}
void addConstraint(std::unique_ptr<TimingConstraint> constr);
void removeConstraint(IdString constrName);
// Intended to simplify Python API
void addClock(IdString net, float freq);
void createRectangularRegion(IdString name, int x0, int y0, int x1, int y1);
void addBelToRegion(IdString name, BelId bel);
void constrainCellToRegion(IdString cell, IdString region_name);
// Helper functions for Python bindings
NetInfo *createNet(IdString name);
void connectPort(IdString net, IdString cell, IdString port);
void disconnectPort(IdString cell, IdString port);
void ripupNet(IdString name);
void lockNetRouting(IdString name);
CellInfo *createCell(IdString name, IdString type);
void copyBelPorts(IdString cell, BelId bel);
// Workaround for lack of wrappable constructors
DecalXY constructDecalXY(DecalId decal, float x, float y);
void archInfoToAttributes();
void attributesToArchInfo();
};
NEXTPNR_NAMESPACE_END
#include "arch.h"
NEXTPNR_NAMESPACE_BEGIN
struct Context : Arch, DeterministicRNG
{
bool verbose = false;
bool debug = false;
bool force = false;
// Should we disable printing of the location of nets in the critical path?
bool disable_critical_path_source_print = false;
Context(ArchArgs args) : Arch(args) {}
// --------------------------------------------------------------
WireId getNetinfoSourceWire(const NetInfo *net_info) const;
WireId getNetinfoSinkWire(const NetInfo *net_info, const PortRef &sink) const;
delay_t getNetinfoRouteDelay(const NetInfo *net_info, const PortRef &sink) const;
// provided by router1.cc
bool checkRoutedDesign() const;
bool getActualRouteDelay(WireId src_wire, WireId dst_wire, delay_t *delay = nullptr,
std::unordered_map<WireId, PipId> *route = nullptr, bool useEstimate = true);
// --------------------------------------------------------------
// call after changing hierpath or adding/removing nets and cells
void fixupHierarchy();
// --------------------------------------------------------------
// provided by sdf.cc
void writeSDF(std::ostream &out, bool cvc_mode = false) const;
// --------------------------------------------------------------
// provided by svg.cc
void writeSVG(const std::string &filename, const std::string &flags = "") const;
// --------------------------------------------------------------
uint32_t checksum() const;
void check() const;
void archcheck() const;
template <typename T> T setting(const char *name, T defaultValue)
{
IdString new_id = id(name);
auto found = settings.find(new_id);
if (found != settings.end())
return boost::lexical_cast<T>(found->second.is_string ? found->second.as_string()
: std::to_string(found->second.as_int64()));
else
settings[id(name)] = std::to_string(defaultValue);
return defaultValue;
}
template <typename T> T setting(const char *name) const
{
IdString new_id = id(name);
auto found = settings.find(new_id);
if (found != settings.end())
return boost::lexical_cast<T>(found->second.is_string ? found->second.as_string()
: std::to_string(found->second.as_int64()));
else
throw std::runtime_error("settings does not exists");
}
};
NEXTPNR_NAMESPACE_END
#endif