nextpnr/himbaechel/uarch/gowin/globals.cc
gatecat 9b51c6e337 clangformat
Signed-off-by: gatecat <gatecat@ds0.me>
2024-09-30 14:51:33 +02:00

703 lines
28 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <queue>
#define HIMBAECHEL_CONSTIDS "uarch/gowin/constids.inc"
#include "himbaechel_constids.h"
#include "himbaechel_helpers.h"
#include "globals.h"
#include "gowin.h"
#include "gowin_utils.h"
NEXTPNR_NAMESPACE_BEGIN
struct GowinGlobalRouter
{
Context *ctx;
GowinUtils gwu;
GowinGlobalRouter(Context *ctx) : ctx(ctx) { gwu.init(ctx); };
bool global_pip_available(PipId pip) const { return gwu.is_global_pip(pip) || ctx->checkPipAvail(pip); };
// allow io->global, global->global and global->tile clock
bool global_pip_filter(PipId pip) const
{
auto is_local = [&](IdString wire_type) {
return !wire_type.in(id_GLOBAL_CLK, id_IO_O, id_IO_I, id_PLL_O, id_PLL_I, id_TILE_CLK);
};
WireId src, dst;
src = ctx->getPipSrcWire(pip);
dst = ctx->getPipDstWire(pip);
IdString dst_name = ctx->getWireName(dst)[1];
bool not_dsc_pip = dst_name != id_CLKOUT;
IdString src_type = ctx->getWireType(src);
IdString dst_type = ctx->getWireType(dst);
bool src_valid = not_dsc_pip && src_type.in(id_GLOBAL_CLK, id_IO_O, id_PLL_O, id_HCLK);
bool dst_valid = not_dsc_pip && dst_type.in(id_GLOBAL_CLK, id_TILE_CLK, id_PLL_I, id_IO_I, id_HCLK);
bool res = (src_valid && dst_valid) || (src_valid && is_local(dst_type)) || (is_local(src_type) && dst_valid);
if (ctx->debug && false /*&& res*/) {
log_info("%s <- %s [%s <- %s]\n", ctx->getWireName(ctx->getPipDstWire(pip)).str(ctx).c_str(),
ctx->getWireName(ctx->getPipSrcWire(pip)).str(ctx).c_str(), dst_type.c_str(ctx),
src_type.c_str(ctx));
log_info("res:%d, src_valid:%d, dst_valid:%d, src local:%d, dst local:%d\n", res, src_valid, dst_valid,
is_local(src_type), is_local(dst_type));
}
return res;
}
bool global_DQCE_pip_filter(PipId pip) const
{
auto is_local = [&](IdString wire_type) {
return !wire_type.in(id_GLOBAL_CLK, id_IO_O, id_IO_I, id_PLL_O, id_PLL_I, id_TILE_CLK);
};
auto is_dcs_input = [&](IdString wire_name) {
return wire_name.in(id_P16A, id_P16B, id_P16C, id_P16D, id_P17A, id_P17B, id_P17C, id_P17D, id_P26A,
id_P26B, id_P26C, id_P26D, id_P27A, id_P27B, id_P27C, id_P27D, id_P36A, id_P36B,
id_P36C, id_P36D, id_P37A, id_P37B, id_P37C, id_P37D, id_P46A, id_P46B, id_P46C,
id_P46D, id_P47A, id_P47B, id_P47C, id_P47D);
};
WireId src, dst;
src = ctx->getPipSrcWire(pip);
dst = ctx->getPipDstWire(pip);
IdString src_name = ctx->getWireName(dst)[1];
IdString dst_name = ctx->getWireName(dst)[1];
bool not_dsc_pip = dst_name != id_CLKOUT && !is_dcs_input(src_name);
IdString src_type = ctx->getWireType(src);
IdString dst_type = ctx->getWireType(dst);
bool src_valid = not_dsc_pip && src_type.in(id_GLOBAL_CLK, id_IO_O, id_PLL_O, id_HCLK);
bool dst_valid = not_dsc_pip && dst_type.in(id_GLOBAL_CLK, id_TILE_CLK, id_PLL_I, id_IO_I, id_HCLK);
bool res = (src_valid && dst_valid) || (src_valid && is_local(dst_type)) || (is_local(src_type) && dst_valid);
if (ctx->debug && false /*&& res*/) {
log_info("%s <- %s [%s <- %s]\n", ctx->getWireName(ctx->getPipDstWire(pip)).str(ctx).c_str(),
ctx->getWireName(ctx->getPipSrcWire(pip)).str(ctx).c_str(), dst_type.c_str(ctx),
src_type.c_str(ctx));
log_info("res:%d, src_valid:%d, dst_valid:%d, src local:%d, dst local:%d\n", res, src_valid, dst_valid,
is_local(src_type), is_local(dst_type));
}
return res;
}
bool global_DCS_pip_filter(PipId pip) const
{
auto is_local = [&](IdString wire_type) {
return !wire_type.in(id_GLOBAL_CLK, id_IO_O, id_IO_I, id_PLL_O, id_PLL_I, id_TILE_CLK);
};
WireId src = ctx->getPipSrcWire(pip);
IdString src_type = ctx->getWireType(src);
IdString src_name = ctx->getWireName(src)[1];
bool src_is_spine = src_name.str(ctx).rfind("SPINE", 0) == 0;
IdString dst_type = ctx->getWireType(ctx->getPipDstWire(pip));
bool src_valid = ((!src_is_spine) && src_type.in(id_GLOBAL_CLK, id_IO_O, id_PLL_O, id_HCLK)) ||
src_name.in(id_SPINE6, id_SPINE7, id_SPINE14, id_SPINE15, id_SPINE22, id_SPINE23, id_SPINE30,
id_SPINE31);
bool dst_valid = dst_type.in(id_GLOBAL_CLK, id_TILE_CLK, id_PLL_I, id_IO_I, id_HCLK);
bool res = (src_valid && dst_valid) || (src_valid && is_local(dst_type)) || (is_local(src_type) && dst_valid);
if (ctx->debug && false /*&& res*/) {
log_info("%s <- %s [%s <- %s]\n", ctx->getWireName(ctx->getPipDstWire(pip)).str(ctx).c_str(),
ctx->getWireName(ctx->getPipSrcWire(pip)).str(ctx).c_str(), dst_type.c_str(ctx),
src_type.c_str(ctx));
log_info("res:%d, src_valid:%d, dst_valid:%d, src local:%d, dst local:%d\n", res, src_valid, dst_valid,
is_local(src_type), is_local(dst_type));
}
return res;
}
bool is_relaxed_sink(const PortRef &sink) const { return false; }
// Dedicated backwards BFS routing for global networks
template <typename Tfilt>
bool backwards_bfs_route(NetInfo *net, WireId src, WireId dst, int iter_limit, bool strict, Tfilt pip_filter,
std::vector<PipId> *path = nullptr)
{
// Queue of wires to visit
std::queue<WireId> visit;
// Wire -> upstream pip
dict<WireId, PipId> backtrace;
if (src == dst) {
// Nothing more to do
return true;
}
visit.push(dst);
backtrace[dst] = PipId();
int iter = 0;
while (!visit.empty() && (iter++ < iter_limit)) {
WireId cursor = visit.front();
visit.pop();
// Search uphill pips
for (PipId pip : ctx->getPipsUphill(cursor)) {
// Skip pip if unavailable, and not because it's already used for this net
if (!global_pip_available(pip) && ctx->getBoundPipNet(pip) != net) {
continue;
}
WireId prev = ctx->getPipSrcWire(pip);
// Ditto for the upstream wire
if (!ctx->checkWireAvail(prev) && ctx->getBoundWireNet(prev) != net) {
continue;
}
// Skip already visited wires
if (backtrace.count(prev)) {
continue;
}
// Apply our custom pip filter
if (!pip_filter(pip)) {
continue;
}
// Add to the queue
visit.push(prev);
backtrace[prev] = pip;
// Check if we are done yet
if (prev == src) {
goto done;
}
}
if (false) {
done:
break;
}
}
if (backtrace.count(src)) {
WireId cursor = src;
std::vector<PipId> pips;
// Create a list of pips on the routed path
while (true) {
PipId pip = backtrace.at(cursor);
if (pip == PipId()) {
break;
}
pips.push_back(pip);
cursor = ctx->getPipDstWire(pip);
}
// Reverse that list
std::reverse(pips.begin(), pips.end());
// Bind pips until we hit already-bound routing
for (PipId pip : pips) {
WireId dst = ctx->getPipDstWire(pip);
if (ctx->getBoundWireNet(dst) == net) {
break;
}
ctx->bindPip(pip, net, STRENGTH_LOCKED);
if (path != nullptr) {
path->push_back(pip);
}
}
return true;
} else {
if (strict) {
log_error("Failed to route net '%s' from %s to %s using dedicated routing.\n", ctx->nameOf(net),
ctx->nameOfWire(src), ctx->nameOfWire(dst));
} else {
log_warning("Failed to route net '%s' from %s to %s using dedicated routing.\n", ctx->nameOf(net),
ctx->nameOfWire(src), ctx->nameOfWire(dst));
return false;
}
}
}
bool driver_is_buf(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_BUFG, id_O); }
bool driver_is_dqce(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_DQCE, id_CLKOUT); }
bool driver_is_dcs(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_DCS, id_CLKOUT); }
bool driver_is_dhcen(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_DHCEN, id_CLKOUT); }
bool driver_is_clksrc(const PortRef &driver)
{
// dedicated pins
if (CellTypePort(driver) == CellTypePort(id_IBUF, id_O)) {
NPNR_ASSERT(driver.cell->bel != BelId());
IdStringList pin_func = gwu.get_pin_funcs(driver.cell->bel);
for (size_t i = 0; i < pin_func.size(); ++i) {
if (ctx->debug) {
log_info("bel:%s, pin func: %zu:%s\n", ctx->nameOfBel(driver.cell->bel), i,
pin_func[i].str(ctx).c_str());
}
if (pin_func[i].str(ctx).rfind("GCLKT", 0) == 0) {
if (ctx->debug) {
log_info("Clock pin:%s:%s\n", ctx->getBelName(driver.cell->bel).str(ctx).c_str(),
pin_func[i].c_str(ctx));
}
return true;
}
}
}
// PLL outputs
if (driver.cell->type.in(id_rPLL, id_PLLVR)) {
if (driver.port.in(id_CLKOUT, id_CLKOUTD, id_CLKOUTD3, id_CLKOUTP)) {
if (ctx->debug) {
log_info("PLL out:%s:%s\n", ctx->getBelName(driver.cell->bel).str(ctx).c_str(),
driver.port.c_str(ctx));
}
return true;
}
}
// HCLK outputs
if (driver.cell->type.in(id_CLKDIV, id_CLKDIV2)) {
if (driver.port.in(id_CLKOUT)) {
if (ctx->debug) {
log_info("%s out:%s:%s\n", driver.cell->type.c_str(ctx),
ctx->getBelName(driver.cell->bel).str(ctx).c_str(), driver.port.c_str(ctx));
}
return true;
}
}
return false;
}
enum RouteResult
{
NOT_ROUTED = 0,
ROUTED_PARTIALLY,
ROUTED_ALL
};
template <typename Tfilter>
RouteResult route_direct_net(NetInfo *net, Tfilter pip_filter, WireId aux_src = WireId(),
std::vector<PipId> *path = nullptr)
{
WireId src;
src = aux_src == WireId() ? ctx->getNetinfoSourceWire(net) : aux_src;
if (src == WireId()) {
log_error("Net '%s' has an invalid source port %s.%s\n", ctx->nameOf(net), ctx->nameOf(net->driver.cell),
ctx->nameOf(net->driver.port));
}
if (aux_src == WireId() && ctx->getBoundWireNet(src) != net) {
ctx->bindWire(src, net, STRENGTH_LOCKED);
}
RouteResult routed = NOT_ROUTED;
for (auto usr : net->users) {
WireId dst = ctx->getNetinfoSinkWire(net, usr, 0);
if (dst == WireId()) {
log_error("Net '%s' has an invalid sink port %s.%s\n", ctx->nameOf(net), ctx->nameOf(usr.cell),
ctx->nameOf(usr.port));
}
bool bfs_res;
bfs_res = backwards_bfs_route(
net, src, dst, 1000000, false, [&](PipId pip) { return (is_relaxed_sink(usr) || pip_filter(pip)); },
path);
if (bfs_res) {
routed = routed == ROUTED_PARTIALLY ? routed : ROUTED_ALL;
} else {
routed = routed == NOT_ROUTED ? routed : ROUTED_PARTIALLY;
}
}
if (routed == NOT_ROUTED) {
if (aux_src == WireId()) {
ctx->unbindWire(src);
}
}
return routed;
}
void route_dqce_net(NetInfo *net)
{
// route net after dqce using source of CLKIN net
CellInfo *dqce_ci = net->driver.cell;
NetInfo *net_before_dqce = dqce_ci->getPort(id_CLKIN);
NPNR_ASSERT(net_before_dqce != nullptr);
PortRef driver = net_before_dqce->driver;
NPNR_ASSERT_MSG(driver_is_buf(driver) || driver_is_clksrc(driver),
stringf("The input source for %s is not a clock.", ctx->nameOf(dqce_ci)).c_str());
WireId src;
// use BUF input if there is one
if (driver_is_buf(driver)) {
src = ctx->getBelPinWire(driver.cell->bel, id_I);
} else {
src = ctx->getBelPinWire(driver.cell->bel, driver.port);
}
RouteResult route_result = route_direct_net(net, [&](PipId pip) { return global_DQCE_pip_filter(pip); }, src);
if (route_result == NOT_ROUTED) {
log_error("Can't route the %s network.\n", ctx->nameOf(net));
}
if (route_result == ROUTED_PARTIALLY) {
log_error("It was not possible to completely route the %s net using only global resources. This is not "
"allowed for DQCE managed networks.\n",
ctx->nameOf(net));
}
// In networks controlled by DQCE, the source can only connect to the
// "spine" wires. Here we not only check this fact, but also find out
// how many and what kind of "spine" wires were used for network
// roaming.
for (PipId pip : ctx->getPipsDownhill(src)) {
if (ctx->getBoundPipNet(pip) == nullptr) {
continue;
}
WireId dst = ctx->getPipDstWire(pip);
BelId dqce_bel = gwu.get_dqce_bel(ctx->getWireName(dst)[1]);
NPNR_ASSERT(dqce_bel != BelId());
// One pseudo DQCE (either logical or custom, whatever you like)
// can be implemented as several hardware dqce - this is because
// each hardware dqce can control only one "spine", that is, a bus
// within one quadrant. Here we find suitable hardware dqces.
CellInfo *hw_dqce = ctx->getBoundBelCell(dqce_bel);
if (ctx->debug) {
log_info(" use %s spine and %s bel for '%s' hw cell.\n", ctx->nameOfWire(dst),
ctx->nameOfBel(dqce_bel), ctx->nameOf(hw_dqce));
}
hw_dqce->setAttr(id_DQCE_PIP, Property(ctx->getPipName(pip).str(ctx)));
ctx->unbindPip(pip);
ctx->bindWire(dst, net, STRENGTH_LOCKED);
// The control network must connect the CE inputs of all hardware dqces.
dqce_ci->copyPortTo(id_CE, hw_dqce, id_CE);
}
net->driver.cell->disconnectPort(net->driver.port);
// remove the virtual DQCE
dqce_ci->disconnectPort(id_CLKIN);
dqce_ci->disconnectPort(id_CE);
ctx->cells.erase(dqce_ci->name);
}
void route_dcs_net(NetInfo *net)
{
// Since CLKOUT is responsible for only one quadrant, we will do
// routing not from it, but from any CLK0-3 input actually connected to
// the clock source.
CellInfo *dcs_ci = net->driver.cell;
NetInfo *net_before_dcs;
PortRef driver;
for (int i = 0; i < 4; ++i) {
net_before_dcs = dcs_ci->getPort(ctx->idf("CLK%d", i));
if (net_before_dcs == nullptr) {
continue;
}
driver = net_before_dcs->driver;
if (driver_is_buf(driver) || driver_is_clksrc(driver)) {
break;
}
net_before_dcs = nullptr;
}
NPNR_ASSERT_MSG(net_before_dcs != nullptr, stringf("No clock inputs for %s.", ctx->nameOf(dcs_ci)).c_str());
WireId src;
// use BUF input if there is one
if (driver_is_buf(driver)) {
src = ctx->getBelPinWire(driver.cell->bel, id_I);
} else {
src = ctx->getBelPinWire(driver.cell->bel, driver.port);
}
RouteResult route_result = route_direct_net(net, [&](PipId pip) { return global_DCS_pip_filter(pip); }, src);
if (route_result == NOT_ROUTED) {
log_error("Can't route the %s network.\n", ctx->nameOf(net));
}
if (route_result == ROUTED_PARTIALLY) {
log_error("It was not possible to completely route the %s net using only global resources. This is not "
"allowed for DCS managed networks.\n",
ctx->nameOf(net));
}
// In networks controlled by DCS, the source can only connect to the
// "spine" wires. Here we not only check this fact, but also find out
// how many and what kind of "spine" wires were used for network
// roaming.
for (PipId pip : ctx->getPipsDownhill(src)) {
if (ctx->getBoundPipNet(pip) == nullptr) {
continue;
}
WireId dst = ctx->getPipDstWire(pip);
BelId dcs_bel = gwu.get_dcs_bel(ctx->getWireName(dst)[1]);
NPNR_ASSERT(dcs_bel != BelId());
// One pseudo DCS (either logical or custom, whatever you like)
// can be implemented as several hardware dcs - this is because
// each hardware dcs can control only one "spine", that is, a bus
// within one quadrant. Here we find suitable hardware dcses.
CellInfo *hw_dcs = ctx->getBoundBelCell(dcs_bel);
if (ctx->debug) {
log_info(" use %s spine and %s bel for '%s' hw cell.\n", ctx->nameOfWire(dst), ctx->nameOfBel(dcs_bel),
ctx->nameOf(hw_dcs));
}
if (dcs_ci->attrs.count(id_DCS_MODE) != 0) {
hw_dcs->setAttr(id_DCS_MODE, dcs_ci->attrs.at(id_DCS_MODE));
} else {
hw_dcs->setAttr(id_DCS_MODE, Property("RISING"));
}
// Need to release the fake internal DCS PIP which is the only
// downhill pip for DCS inputs
PipId fake_pip = *ctx->getPipsDownhill(dst).begin();
WireId clkout_wire = ctx->getPipDstWire(fake_pip);
if (ctx->debug) {
log_info("fake pip:%s, CLKOUT src:%s\n", ctx->nameOfPip(fake_pip), ctx->nameOfWire(clkout_wire));
}
ctx->unbindPip(fake_pip);
ctx->bindWire(clkout_wire, net, STRENGTH_LOCKED);
ctx->unbindWire(dst);
// The input networks must bs same for all hardware dcs.
dcs_ci->copyPortTo(id_SELFORCE, hw_dcs, id_SELFORCE);
dcs_ci->copyPortBusTo(id_CLK, 0, false, hw_dcs, id_CLK, 0, false, 4);
dcs_ci->copyPortBusTo(id_CLKSEL, 0, true, hw_dcs, id_CLKSEL, 0, false, 4);
}
// remove the virtual DCS
dcs_ci->disconnectPort(id_SELFORCE);
dcs_ci->disconnectPort(id_CLKOUT);
for (int i = 0; i < 4; ++i) {
dcs_ci->disconnectPort(ctx->idf("CLKSEL[%d]", i));
dcs_ci->disconnectPort(ctx->idf("CLK%d", i));
}
log_info(" '%s' net was routed.\n", ctx->nameOf(net));
ctx->cells.erase(dcs_ci->name);
}
void route_dhcen_net(NetInfo *net)
{
// route net after dhcen source of CLKIN net
CellInfo *dhcen_ci = net->driver.cell;
NetInfo *net_before_dhcen = dhcen_ci->getPort(id_CLKIN);
NPNR_ASSERT(net_before_dhcen != nullptr);
PortRef driver = net_before_dhcen->driver;
NPNR_ASSERT_MSG(driver_is_buf(driver) || driver_is_clksrc(driver),
stringf("The input source for %s is not a clock.", ctx->nameOf(dhcen_ci)).c_str());
IdString port;
// use BUF input if there is one
if (driver_is_buf(driver)) {
port = id_I;
} else {
port = driver.port;
}
WireId src = ctx->getBelPinWire(driver.cell->bel, port);
std::vector<PipId> path;
RouteResult route_result = route_direct_net(net, [&](PipId pip) { return global_pip_filter(pip); }, src, &path);
if (route_result == NOT_ROUTED) {
log_error("Can't route the %s network.\n", ctx->nameOf(net));
}
if (route_result == ROUTED_PARTIALLY) {
log_error("It was not possible to completely route the %s net using only global resources. This is not "
"allowed for dhcen managed networks.\n",
ctx->nameOf(net));
}
// In networks controlled by dhcen we disable/enable only HCLK - if
// there are ordinary cells among the sinks, then they are not affected
// by this primitive.
for (PipId pip : path) {
// move to upper level net
ctx->unbindPip(pip);
ctx->bindPip(pip, net_before_dhcen, STRENGTH_LOCKED);
WireId dst = ctx->getPipDstWire(pip);
IdString side;
BelId dhcen_bel = gwu.get_dhcen_bel(dst, side);
if (dhcen_bel == BelId()) {
continue;
}
// One pseudo dhcen can be implemented as several hardware dhcen.
// Here we find suitable hardware dhcens.
CellInfo *hw_dhcen = ctx->getBoundBelCell(dhcen_bel);
if (ctx->debug) {
log_info(" use %s wire and %s bel for '%s' hw cell.\n", ctx->nameOfWire(dst),
ctx->nameOfBel(dhcen_bel), ctx->nameOf(hw_dhcen));
}
// The control network must connect the CE inputs of all hardware dhcens.
hw_dhcen->setAttr(id_DHCEN_USED, 1);
dhcen_ci->copyPortTo(id_CE, hw_dhcen, id_CE);
}
// connect all users to upper level net
std::vector<PortRef> users;
for (auto &cell_port : net->users) {
users.push_back(cell_port);
}
for (PortRef &user : users) {
user.cell->disconnectPort(user.port);
user.cell->connectPort(user.port, net_before_dhcen);
}
// remove the virtual dhcen
dhcen_ci->disconnectPort(id_CLKOUT);
dhcen_ci->disconnectPort(id_CLKIN);
dhcen_ci->disconnectPort(id_CE);
ctx->cells.erase(dhcen_ci->name);
}
void route_buffered_net(NetInfo *net)
{
// a) route net after buf using the buf input as source
CellInfo *buf_ci = net->driver.cell;
WireId src = ctx->getBelPinWire(buf_ci->bel, id_I);
NetInfo *net_before_buf = buf_ci->getPort(id_I);
NPNR_ASSERT(net_before_buf != nullptr);
RouteResult route_result = route_direct_net(net, [&](PipId pip) { return global_pip_filter(pip); }, src);
if (route_result == NOT_ROUTED || route_result == ROUTED_PARTIALLY) {
log_error("Can't route the %s net. It might be worth removing the BUFG buffer flag.\n", ctx->nameOf(net));
}
// b) route net before buf from whatever to the buf input
WireId dst = src;
CellInfo *true_src_ci = net_before_buf->driver.cell;
src = ctx->getBelPinWire(true_src_ci->bel, net_before_buf->driver.port);
ctx->bindWire(src, net, STRENGTH_LOCKED);
backwards_bfs_route(net, src, dst, 1000000, false, [&](PipId pip) { return true; });
// remove net
buf_ci->movePortTo(id_O, true_src_ci, net_before_buf->driver.port);
net_before_buf->driver.cell = nullptr;
log_info(" '%s' net was routed.\n", ctx->nameOf(net));
}
void route_clk_net(NetInfo *net)
{
RouteResult route_result = route_direct_net(net, [&](PipId pip) { return global_pip_filter(pip); });
if (route_result != NOT_ROUTED) {
log_info(" '%s' net was routed using global resources %s.\n", ctx->nameOf(net),
route_result == ROUTED_ALL ? "only" : "partially");
}
}
void run(void)
{
log_info("Routing globals...\n");
std::vector<IdString> dhcen_nets, dqce_nets, dcs_nets, buf_nets, clk_nets;
// Determining the priority of network routing
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
CellInfo *drv = ni->driver.cell;
if (drv == nullptr || ni->users.empty()) {
if (ctx->debug) {
log_info("skip empty or driverless net:%s\n", ctx->nameOf(ni));
}
continue;
}
if (driver_is_buf(ni->driver)) {
buf_nets.push_back(net.first);
} else {
if (driver_is_clksrc(ni->driver)) {
clk_nets.push_back(net.first);
} else {
if (driver_is_dqce(ni->driver)) {
dqce_nets.push_back(net.first);
} else {
if (driver_is_dcs(ni->driver)) {
dcs_nets.push_back(net.first);
} else {
if (driver_is_dhcen(ni->driver)) {
dhcen_nets.push_back(net.first);
}
}
}
}
}
}
// nets with DHCEN
for (IdString net_name : dhcen_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
if (ctx->verbose) {
log_info("route dhcen net '%s'\n", ctx->nameOf(ni));
}
route_dhcen_net(ni);
}
// nets with DQCE
for (IdString net_name : dqce_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
if (ctx->verbose) {
log_info("route dqce net '%s'\n", ctx->nameOf(ni));
}
route_dqce_net(ni);
}
// nets with DCS
for (IdString net_name : dcs_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
if (ctx->verbose) {
log_info("route dcs net '%s'\n", ctx->nameOf(ni));
}
route_dcs_net(ni);
}
// buffered nets
for (IdString net_name : buf_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
CellInfo *drv = ni->driver.cell;
if (drv == nullptr || ni->users.empty()) {
if (ctx->debug) {
log_info("skip empty or driverless net:%s\n", ctx->nameOf(ni));
}
continue;
}
if (ctx->verbose) {
log_info("route buffered net '%s'\n", ctx->nameOf(ni));
}
route_buffered_net(ni);
}
// clock nets
for (IdString net_name : clk_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
CellInfo *drv = ni->driver.cell;
if (drv == nullptr || ni->users.empty()) {
if (ctx->debug) {
log_info("skip empty or driverless net:%s\n", ctx->nameOf(ni));
}
continue;
}
if (ctx->verbose) {
log_info("route clock net '%s'\n", ctx->nameOf(ni));
}
route_clk_net(ni);
}
}
};
void gowin_route_globals(Context *ctx)
{
GowinGlobalRouter router(ctx);
router.run();
}
NEXTPNR_NAMESPACE_END