nextpnr/generic/viaduct/example/example.cc
gatecat 77c82b0fbf refactor: id(stringf(...)) to new idf(...) helper
Signed-off-by: gatecat <gatecat@ds0.me>
2022-08-10 10:57:46 +01:00

305 lines
11 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include "viaduct_api.h"
#include "viaduct_helpers.h"
#define GEN_INIT_CONSTIDS
#define VIADUCT_CONSTIDS "viaduct/example/constids.inc"
#include "viaduct_constids.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct ExampleImpl : ViaductAPI
{
~ExampleImpl(){};
void init(Context *ctx) override
{
init_uarch_constids(ctx);
ViaductAPI::init(ctx);
h.init(ctx);
init_wires();
init_bels();
init_pips();
}
void pack() override
{
// Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis
const pool<CellTypePort> top_ports{
CellTypePort(id_INBUF, id_PAD),
CellTypePort(id_OUTBUF, id_PAD),
};
h.remove_nextpnr_iobs(top_ports);
// Replace constants with LUTs
const dict<IdString, Property> vcc_params = {{id_INIT, Property(0xFFFF, 16)}};
const dict<IdString, Property> gnd_params = {{id_INIT, Property(0x0000, 16)}};
h.replace_constants(CellTypePort(id_LUT4, id_F), CellTypePort(id_LUT4, id_F), vcc_params, gnd_params);
// Constrain directly connected LUTs and FFs together to use dedicated resources
int lutffs = h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
void prePlace() override { assign_cell_info(); }
bool isBelLocationValid(BelId bel) const override
{
Loc l = ctx->getBelLocation(bel);
if (is_io(l.x, l.y)) {
return true;
} else {
return slice_valid(l.x, l.y, l.z / 2);
}
}
private:
ViaductHelpers h;
// Configuration
// Grid size including IOBs at edges
const int X = 32, Y = 32;
// SLICEs per tile
const int N = 8;
// LUT input count
const int K = 4;
// Number of local wires
const int Wl = N * (K + 1) + 8;
// 1/Fc for bel input wire pips; local wire pips and neighbour pips
const int Si = 4, Sq = 4, Sl = 8;
// For fast wire lookups
struct TileWires
{
std::vector<WireId> clk, q, f, d, i;
std::vector<WireId> l;
std::vector<WireId> pad;
};
std::vector<std::vector<TileWires>> wires_by_tile;
// Create wires to attach to bels and pips
void init_wires()
{
log_info("Creating wires...\n");
wires_by_tile.resize(Y);
for (int y = 0; y < Y; y++) {
auto &row_wires = wires_by_tile.at(y);
row_wires.resize(X);
for (int x = 0; x < X; x++) {
auto &w = row_wires.at(x);
for (int z = 0; z < N; z++) {
// Clock input
w.clk.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("CLK%d", z)), ctx->id("CLK"), x, y));
// FF input
w.d.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("D%d", z)), ctx->id("D"), x, y));
// FF and LUT outputs
w.q.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("Q%d", z)), ctx->id("Q"), x, y));
w.f.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("F%d", z)), ctx->id("F"), x, y));
// LUT inputs
for (int i = 0; i < K; i++)
w.i.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("L%dI%d", z, i)), ctx->id("I"), x, y));
}
// Local wires
for (int l = 0; l < Wl; l++)
w.l.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("LOCAL%d", l)), ctx->id("LOCAL"), x, y));
// Pad wires for IO
if (is_io(x, y) && x != y)
for (int z = 0; z < 2; z++)
w.pad.push_back(ctx->addWire(h.xy_id(x, y, ctx->idf("PAD%d", z)), id_PAD, x, y));
}
}
}
bool is_io(int x, int y) const
{
// IO are on the edges of the device
return (x == 0) || (x == (X - 1)) || (y == 0) || (y == (Y - 1));
}
// Create IO bels in an IO tile
void add_io_bels(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
for (int z = 0; z < 2; z++) {
BelId b = ctx->addBel(h.xy_id(x, y, ctx->idf("IO%d", z)), id_IOB, Loc(x, y, z), false, false);
ctx->addBelInout(b, id_PAD, w.pad.at(z));
ctx->addBelInput(b, id_I, w.i.at(z * K + 0));
ctx->addBelInput(b, id_EN, w.i.at(z * K + 1));
ctx->addBelOutput(b, id_O, w.q.at(z));
}
}
PipId add_pip(Loc loc, WireId src, WireId dst, delay_t delay = 0.05)
{
IdStringList name = IdStringList::concat(ctx->getWireName(dst), ctx->getWireName(src));
return ctx->addPip(name, ctx->id("PIP"), src, dst, delay, loc);
}
// Create LUT and FF bels in a logic tile
void add_slice_bels(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
for (int z = 0; z < N; z++) {
// Create LUT bel
BelId lut = ctx->addBel(h.xy_id(x, y, ctx->idf("SLICE%d_LUT", z)), id_LUT4, Loc(x, y, z * 2), false, false);
for (int k = 0; k < K; k++)
ctx->addBelInput(lut, ctx->idf("I[%d]", k), w.i.at(z * K + k));
ctx->addBelOutput(lut, id_F, w.f.at(z));
// FF data can come from LUT output or LUT I3
add_pip(Loc(x, y, 0), w.f.at(z), w.d.at(z));
add_pip(Loc(x, y, 0), w.i.at(z * K + (K - 1)), w.d.at(z));
// Create DFF bel
BelId dff =
ctx->addBel(h.xy_id(x, y, ctx->idf("SLICE%d_FF", z)), id_DFF, Loc(x, y, z * 2 + 1), false, false);
ctx->addBelInput(dff, id_CLK, w.clk.at(z));
ctx->addBelInput(dff, id_D, w.d.at(z));
ctx->addBelOutput(dff, id_Q, w.q.at(z));
}
}
// Create bels according to tile type
void init_bels()
{
log_info("Creating bels...\n");
for (int y = 0; y < Y; y++) {
for (int x = 0; x < X; x++) {
if (is_io(x, y)) {
if (x == y)
continue; // don't put IO in corners
add_io_bels(x, y);
} else {
add_slice_bels(x, y);
}
}
}
}
// Create PIPs inside a tile; following an example synthetic routing pattern
void add_tile_pips(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
Loc loc(x, y, 0);
auto create_input_pips = [&](WireId dst, int offset, int skip) {
for (int i = (offset % skip); i < Wl; i += skip)
add_pip(loc, w.l.at(i), dst, 0.05);
};
for (int z = 0; z < N; z++) {
create_input_pips(w.clk.at(z), 0, Si);
for (int k = 0; k < K; k++)
create_input_pips(w.i.at(z * K + k), k, Si);
}
auto create_output_pips = [&](WireId dst, int offset, int skip) {
for (int z = (offset % skip); z < N; z += skip) {
add_pip(loc, w.f.at(z), dst, 0.05);
add_pip(loc, w.q.at(z), dst, 0.05);
}
};
auto create_neighbour_pips = [&](WireId dst, int nx, int ny, int offset, int skip) {
if (nx < 0 || nx >= X)
return;
if (ny < 0 || ny >= Y)
return;
auto &nw = wires_by_tile.at(ny).at(nx);
for (int i = (offset % skip); i < Wl; i += skip)
add_pip(loc, dst, nw.l.at(i), 0.1);
};
for (int i = 0; i < Wl; i++) {
WireId dst = w.l.at(i);
create_output_pips(dst, i % Sq, Sq);
create_neighbour_pips(dst, x - 1, y - 1, (i + 1) % Sl, Sl);
create_neighbour_pips(dst, x - 1, y, (i + 2) % Sl, Sl);
create_neighbour_pips(dst, x - 1, y + 1, (i + 3) % Sl, Sl);
create_neighbour_pips(dst, x, y - 1, (i + 4) % Sl, Sl);
create_neighbour_pips(dst, x, y + 1, (i + 5) % Sl, Sl);
create_neighbour_pips(dst, x + 1, y - 1, (i + 6) % Sl, Sl);
create_neighbour_pips(dst, x + 1, y, (i + 7) % Sl, Sl);
create_neighbour_pips(dst, x + 1, y + 1, (i + 8) % Sl, Sl);
}
}
void init_pips()
{
log_info("Creating pips...\n");
for (int y = 0; y < Y; y++)
for (int x = 0; x < X; x++)
add_tile_pips(x, y);
}
// Validity checking
struct ExampleCellInfo
{
const NetInfo *lut_f = nullptr, *ff_d = nullptr;
bool lut_i3_used = false;
};
std::vector<ExampleCellInfo> fast_cell_info;
void assign_cell_info()
{
fast_cell_info.resize(ctx->cells.size());
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
auto &fc = fast_cell_info.at(ci->flat_index);
if (ci->type == id_LUT4) {
fc.lut_f = ci->getPort(id_F);
fc.lut_i3_used = (ci->getPort(ctx->idf("I[%d]", K - 1)) != nullptr);
} else if (ci->type == id_DFF) {
fc.ff_d = ci->getPort(id_D);
}
}
}
bool slice_valid(int x, int y, int z) const
{
const CellInfo *lut = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2)));
const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2 + 1)));
if (!lut || !ff)
return true; // always valid if only LUT or FF used
const auto &lut_data = fast_cell_info.at(lut->flat_index);
const auto &ff_data = fast_cell_info.at(ff->flat_index);
// In our example arch; the FF D can either be driven from LUT F or LUT I3
// so either; FF D must equal LUT F or LUT I3 must be unused
if (ff_data.ff_d == lut_data.lut_f)
return true;
if (lut_data.lut_i3_used)
return false;
return true;
}
// Bel bucket functions
IdString getBelBucketForCellType(IdString cell_type) const override
{
if (cell_type.in(id_INBUF, id_OUTBUF))
return id_IOB;
return cell_type;
}
bool isValidBelForCellType(IdString cell_type, BelId bel) const override
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_IOB)
return cell_type.in(id_INBUF, id_OUTBUF);
else
return (bel_type == cell_type);
}
};
struct ExampleArch : ViaductArch
{
ExampleArch() : ViaductArch("example"){};
std::unique_ptr<ViaductAPI> create(const dict<std::string, std::string> &args)
{
return std::make_unique<ExampleImpl>();
}
} exampleArch;
} // namespace
NEXTPNR_NAMESPACE_END