nextpnr/machxo2/arch.h
gatecat 76683a1e3c refactor: Use constids instead of id("..")
Signed-off-by: gatecat <gatecat@ds0.me>
2022-02-16 17:09:54 +00:00

694 lines
20 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Xenia Wolf <claire@yosyshq.com>
* Copyright (C) 2021 William D. Jones <wjones@wdj-consulting.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef MACHXO2_ARCH_H
#define MACHXO2_ARCH_H
#include <cstdint>
#include "base_arch.h"
#include "nextpnr_namespaces.h"
#include "nextpnr_types.h"
NEXTPNR_NAMESPACE_BEGIN
/**** Everything in this section must be kept in sync with chipdb.py ****/
template <typename T> struct RelPtr
{
int32_t offset;
// void set(const T *ptr) {
// offset = reinterpret_cast<const char*>(ptr) -
// reinterpret_cast<const char*>(this);
// }
const T *get() const { return reinterpret_cast<const T *>(reinterpret_cast<const char *>(this) + offset); }
const T &operator[](std::size_t index) const { return get()[index]; }
const T &operator*() const { return *(get()); }
const T *operator->() const { return get(); }
};
// FIXME: All "rel locs" are actually absolute, naming typo in facade_import.
// Does not affect runtime functionality.
NPNR_PACKED_STRUCT(struct BelWirePOD {
LocationPOD rel_wire_loc;
int32_t wire_index;
int32_t port;
int32_t dir; // FIXME: Corresponds to "type" in ECP5.
});
NPNR_PACKED_STRUCT(struct BelInfoPOD {
RelPtr<char> name;
int32_t type;
int32_t z;
int32_t num_bel_wires;
RelPtr<BelWirePOD> bel_wires;
});
NPNR_PACKED_STRUCT(struct PipLocatorPOD {
LocationPOD rel_loc;
int32_t index;
});
NPNR_PACKED_STRUCT(struct BelPortPOD {
LocationPOD rel_bel_loc;
int32_t bel_index;
int32_t port;
});
NPNR_PACKED_STRUCT(struct PipInfoPOD {
LocationPOD src;
LocationPOD dst;
int32_t src_idx;
int32_t dst_idx;
int32_t timing_class;
int16_t tile_type;
int8_t pip_type;
int8_t padding;
});
NPNR_PACKED_STRUCT(struct WireInfoPOD {
RelPtr<char> name;
int32_t tile_wire;
int32_t num_uphill;
int32_t num_downhill;
RelPtr<PipLocatorPOD> pips_uphill;
RelPtr<PipLocatorPOD> pips_downhill;
int32_t num_bel_pins;
RelPtr<BelPortPOD> bel_pins;
});
NPNR_PACKED_STRUCT(struct TileTypePOD {
int32_t num_bels;
int32_t num_wires;
int32_t num_pips;
RelPtr<BelInfoPOD> bel_data;
RelPtr<WireInfoPOD> wire_data;
RelPtr<PipInfoPOD> pips_data;
});
NPNR_PACKED_STRUCT(struct PackagePinPOD {
RelPtr<char> name;
LocationPOD abs_loc;
int32_t bel_index;
});
NPNR_PACKED_STRUCT(struct PackageInfoPOD {
RelPtr<char> name;
int32_t num_pins;
RelPtr<PackagePinPOD> pin_data;
});
NPNR_PACKED_STRUCT(struct PIOInfoPOD {
LocationPOD abs_loc;
int32_t bel_index;
RelPtr<char> function_name;
int16_t bank;
int16_t dqsgroup;
});
NPNR_PACKED_STRUCT(struct TileNamePOD {
RelPtr<char> name;
int16_t type_idx;
int16_t padding;
});
NPNR_PACKED_STRUCT(struct TileInfoPOD {
int32_t num_tiles;
RelPtr<TileNamePOD> tile_names;
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {
int32_t width, height;
int32_t num_tiles;
int32_t num_packages, num_pios;
int32_t const_id_count;
RelPtr<TileTypePOD> tiles;
RelPtr<RelPtr<char>> tiletype_names;
RelPtr<PackageInfoPOD> package_info;
RelPtr<PIOInfoPOD> pio_info;
RelPtr<TileInfoPOD> tile_info;
});
/************************ End of chipdb section. ************************/
// Iterators
// Iterate over Bels across tiles.
struct BelIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
BelIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_bels) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
BelIterator operator++(int)
{
BelIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const BelIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const BelIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
BelId operator*() const
{
BelId ret;
ret.location.x = cursor_tile % chip->width;
ret.location.y = cursor_tile / chip->width;
ret.index = cursor_index;
return ret;
}
};
struct BelRange
{
BelIterator b, e;
BelIterator begin() const { return b; }
BelIterator end() const { return e; }
};
// Iterate over Downstream/Upstream Bels for a Wire.
struct BelPinIterator
{
const BelPortPOD *ptr = nullptr;
Location wire_loc;
void operator++() { ptr++; }
bool operator!=(const BelPinIterator &other) const { return ptr != other.ptr; }
BelPin operator*() const
{
BelPin ret;
ret.bel.index = ptr->bel_index;
ret.bel.location = ptr->rel_bel_loc;
ret.pin.index = ptr->port;
return ret;
}
};
struct BelPinRange
{
BelPinIterator b, e;
BelPinIterator begin() const { return b; }
BelPinIterator end() const { return e; }
};
// Iterator over Wires across tiles.
struct WireIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
WireIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_wires) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
WireIterator operator++(int)
{
WireIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const WireIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const WireIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
WireId operator*() const
{
WireId ret;
ret.location.x = cursor_tile % chip->width;
ret.location.y = cursor_tile / chip->width;
ret.index = cursor_index;
return ret;
}
};
struct WireRange
{
WireIterator b, e;
WireIterator begin() const { return b; }
WireIterator end() const { return e; }
};
// Iterator over Pips across tiles.
struct AllPipIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
AllPipIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_pips) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
AllPipIterator operator++(int)
{
AllPipIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const AllPipIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const AllPipIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
PipId operator*() const
{
PipId ret;
ret.location.x = cursor_tile % chip->width;
ret.location.y = cursor_tile / chip->width;
ret.index = cursor_index;
return ret;
}
};
struct AllPipRange
{
AllPipIterator b, e;
AllPipIterator begin() const { return b; }
AllPipIterator end() const { return e; }
};
// Iterate over Downstream/Upstream Pips for a Wire.
struct PipIterator
{
const PipLocatorPOD *cursor = nullptr;
Location wire_loc;
void operator++() { cursor++; }
bool operator!=(const PipIterator &other) const { return cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
ret.index = cursor->index;
ret.location = cursor->rel_loc;
return ret;
}
};
struct PipRange
{
PipIterator b, e;
PipIterator begin() const { return b; }
PipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct ArchArgs
{
enum ArchArgsTypes
{
NONE,
LCMXO2_256HC,
LCMXO2_640HC,
LCMXO2_1200HC,
LCMXO2_2000HC,
LCMXO2_4000HC,
LCMXO2_7000HC,
} type = NONE;
std::string package;
enum SpeedGrade
{
SPEED_1 = 0,
SPEED_2,
SPEED_3,
SPEED_4,
SPEED_5,
SPEED_6,
} speed = SPEED_4;
};
struct ArchRanges : BaseArchRanges
{
using ArchArgsT = ArchArgs;
// Bels
using AllBelsRangeT = BelRange;
using TileBelsRangeT = BelRange;
using BelPinsRangeT = std::vector<IdString>;
// Wires
using AllWiresRangeT = WireRange;
using DownhillPipRangeT = PipRange;
using UphillPipRangeT = PipRange;
using WireBelPinRangeT = BelPinRange;
// Pips
using AllPipsRangeT = AllPipRange;
};
struct Arch : BaseArch<ArchRanges>
{
const ChipInfoPOD *chip_info;
const PackageInfoPOD *package_info;
mutable dict<IdStringList, PipId> pip_by_name;
// fast access to X and Y IdStrings for building object names
std::vector<IdString> x_ids, y_ids;
// inverse of the above for name->object mapping
dict<IdString, int> id_to_x, id_to_y;
// Helpers
template <typename Id> const TileTypePOD *tile_info(Id &id) const
{
return &(chip_info->tiles[id.location.y * chip_info->width + id.location.x]);
}
int get_bel_flat_index(BelId bel) const
{
return (bel.location.y * chip_info->width + bel.location.x) * max_loc_bels + bel.index;
}
// ---------------------------------------------------------------
// Common Arch API. Every arch must provide the following methods.
// General
ArchArgs args;
Arch(ArchArgs args);
static bool is_available(ArchArgs::ArchArgsTypes chip);
static std::vector<std::string> get_supported_packages(ArchArgs::ArchArgsTypes chip);
std::string getChipName() const override;
// Extra helper
std::string get_full_chip_name() const;
IdString archId() const override { return id_machxo2; }
ArchArgs archArgs() const override { return args; }
IdString archArgsToId(ArchArgs args) const override;
static const int max_loc_bels = 20;
int getGridDimX() const override { return chip_info->width; }
int getGridDimY() const override { return chip_info->height; }
int getTileBelDimZ(int x, int y) const override { return max_loc_bels; }
// TODO: Make more precise? The CENTER MUX having config bits across
// tiles can complicate this?
int getTilePipDimZ(int x, int y) const override { return 2; }
char getNameDelimiter() const override { return '/'; }
// Bels
BelId getBelByName(IdStringList name) const override;
IdStringList getBelName(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
std::array<IdString, 3> ids{x_ids.at(bel.location.x), y_ids.at(bel.location.y),
id(tile_info(bel)->bel_data[bel.index].name.get())};
return IdStringList(ids);
}
Loc getBelLocation(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
Loc loc;
loc.x = bel.location.x;
loc.y = bel.location.y;
loc.z = tile_info(bel)->bel_data[bel.index].z;
return loc;
}
BelId getBelByLocation(Loc loc) const override;
BelRange getBelsByTile(int x, int y) const override;
bool getBelGlobalBuf(BelId bel) const override;
BelRange getBels() const override
{
BelRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
IdString getBelType(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
IdString id;
id.index = tile_info(bel)->bel_data[bel.index].type;
return id;
}
WireId getBelPinWire(BelId bel, IdString pin) const override;
PortType getBelPinType(BelId bel, IdString pin) const override;
std::vector<IdString> getBelPins(BelId bel) const override;
// Package
BelId getPackagePinBel(const std::string &pin) const;
// Wires
WireId getWireByName(IdStringList name) const override;
IdStringList getWireName(WireId wire) const override
{
NPNR_ASSERT(wire != WireId());
std::array<IdString, 3> ids{x_ids.at(wire.location.x), y_ids.at(wire.location.y),
id(tile_info(wire)->wire_data[wire.index].name.get())};
return IdStringList(ids);
}
DelayQuad getWireDelay(WireId wire) const override { return DelayQuad(0.01); }
WireRange getWires() const override
{
WireRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no wries in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
BelPinRange getWireBelPins(WireId wire) const override
{
BelPinRange range;
NPNR_ASSERT(wire != WireId());
range.b.ptr = tile_info(wire)->wire_data[wire.index].bel_pins.get();
range.b.wire_loc = wire.location;
range.e.ptr = range.b.ptr + tile_info(wire)->wire_data[wire.index].num_bel_pins;
range.e.wire_loc = wire.location;
return range;
}
// Pips
PipId getPipByName(IdStringList name) const override;
IdStringList getPipName(PipId pip) const override;
AllPipRange getPips() const override
{
AllPipRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getPipLocation(PipId pip) const override
{
Loc loc;
loc.x = pip.location.x;
loc.y = pip.location.y;
// FIXME: Some Pip's config bits span across tiles. Will Z
// be affected by this?
loc.z = 0;
return loc;
}
WireId getPipSrcWire(PipId pip) const override
{
WireId wire;
NPNR_ASSERT(pip != PipId());
wire.index = tile_info(pip)->pips_data[pip.index].src_idx;
wire.location = tile_info(pip)->pips_data[pip.index].src;
return wire;
}
WireId getPipDstWire(PipId pip) const override
{
WireId wire;
NPNR_ASSERT(pip != PipId());
wire.index = tile_info(pip)->pips_data[pip.index].dst_idx;
wire.location = tile_info(pip)->pips_data[pip.index].dst;
return wire;
}
DelayQuad getPipDelay(PipId pip) const override { return DelayQuad(0.01); }
PipRange getPipsDownhill(WireId wire) const override
{
PipRange range;
NPNR_ASSERT(wire != WireId());
range.b.cursor = tile_info(wire)->wire_data[wire.index].pips_downhill.get();
range.b.wire_loc = wire.location;
range.e.cursor = range.b.cursor + tile_info(wire)->wire_data[wire.index].num_downhill;
range.e.wire_loc = wire.location;
return range;
}
PipRange getPipsUphill(WireId wire) const override
{
PipRange range;
NPNR_ASSERT(wire != WireId());
range.b.cursor = tile_info(wire)->wire_data[wire.index].pips_uphill.get();
range.b.wire_loc = wire.location;
range.e.cursor = range.b.cursor + tile_info(wire)->wire_data[wire.index].num_uphill;
range.e.wire_loc = wire.location;
return range;
}
// Extra Pip helpers.
int8_t get_pip_class(PipId pip) const { return tile_info(pip)->pips_data[pip.index].pip_type; }
std::string get_pip_tilename(PipId pip) const
{
auto &tileloc = chip_info->tile_info[pip.location.y * chip_info->width + pip.location.x];
for (int i = 0; i < tileloc.num_tiles; i++) {
if (tileloc.tile_names[i].type_idx == tile_info(pip)->pips_data[pip.index].tile_type)
return tileloc.tile_names[i].name.get();
}
NPNR_ASSERT_FALSE("failed to find Pip tile");
}
// Delay
delay_t estimateDelay(WireId src, WireId dst) const override;
delay_t predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const override;
delay_t getDelayEpsilon() const override { return 0.001; }
delay_t getRipupDelayPenalty() const override { return 0.015; }
float getDelayNS(delay_t v) const override { return v; }
delay_t getDelayFromNS(float ns) const override { return ns; }
uint32_t getDelayChecksum(delay_t v) const override { return v; }
ArcBounds getRouteBoundingBox(WireId src, WireId dst) const override;
// Flow
bool pack() override;
bool place() override;
bool route() override;
// Placer
bool isBelLocationValid(BelId bel) const override;
static const std::string defaultPlacer;
static const std::vector<std::string> availablePlacers;
static const std::string defaultRouter;
static const std::vector<std::string> availableRouters;
// ---------------------------------------------------------------
// Internal usage
bool cells_compatible(const CellInfo **cells, int count) const;
std::vector<std::pair<std::string, std::string>> get_tiles_at_location(int row, int col);
std::string get_tile_by_type_and_loc(int row, int col, std::string type) const
{
auto &tileloc = chip_info->tile_info[row * chip_info->width + col];
for (int i = 0; i < tileloc.num_tiles; i++) {
if (chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get() == type)
return tileloc.tile_names[i].name.get();
}
NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type " +
type);
}
std::string get_tile_by_type_and_loc(int row, int col, const std::set<std::string> &type) const
{
auto &tileloc = chip_info->tile_info[row * chip_info->width + col];
for (int i = 0; i < tileloc.num_tiles; i++) {
if (type.count(chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get()))
return tileloc.tile_names[i].name.get();
}
NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type in set");
}
std::string get_tile_by_type(std::string type) const
{
for (int i = 0; i < chip_info->height * chip_info->width; i++) {
auto &tileloc = chip_info->tile_info[i];
for (int j = 0; j < tileloc.num_tiles; j++)
if (chip_info->tiletype_names[tileloc.tile_names[j].type_idx].get() == type)
return tileloc.tile_names[j].name.get();
}
NPNR_ASSERT_FALSE_STR("no tile with type " + type);
}
};
NEXTPNR_NAMESPACE_END
#endif /* MACHXO2_ARCH_H */