nextpnr/fpga_interchange/arch_pack_clusters.cc
Alessandro Comodi b65dbd5c9e interchange: clusters: always get cell bel map and add asserts
Signed-off-by: Alessandro Comodi <acomodi@antmicro.com>
2021-06-11 11:19:01 +02:00

573 lines
19 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "arch.h"
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <boost/algorithm/string.hpp>
#include <queue>
NEXTPNR_NAMESPACE_BEGIN
enum ClusterWireNodeState
{
IN_SINK_SITE = 0,
IN_ROUTING = 1,
IN_SOURCE_SITE = 2,
ONLY_IN_SOURCE_SITE = 3
};
enum ExpansionDirection
{
CLUSTER_UPHILL_DIR = 0,
CLUSTER_DOWNHILL_DIR = 1
};
struct ClusterWireNode
{
WireId wire;
ClusterWireNodeState state;
int depth;
};
static void handle_expansion_node(const Context *ctx, WireId prev_wire, PipId pip, ClusterWireNode curr_node,
std::vector<ClusterWireNode> &nodes_to_expand, pool<BelId> &bels,
ExpansionDirection direction)
{
WireId wire;
if (direction == CLUSTER_UPHILL_DIR)
wire = ctx->getPipSrcWire(pip);
else
wire = ctx->getPipDstWire(pip);
if (wire == WireId())
return;
ClusterWireNode next_node;
next_node.wire = wire;
next_node.depth = curr_node.depth;
if (next_node.depth >= 2)
return;
auto const &wire_data = ctx->wire_info(wire);
bool expand_node = true;
if (ctx->is_site_port(pip)) {
switch (curr_node.state) {
case ONLY_IN_SOURCE_SITE:
expand_node = false;
break;
case IN_SOURCE_SITE:
NPNR_ASSERT(wire_data.site == -1);
next_node.state = IN_ROUTING;
break;
case IN_ROUTING:
NPNR_ASSERT(wire_data.site != -1);
next_node.state = IN_SINK_SITE;
break;
case IN_SINK_SITE:
expand_node = false;
break;
default:
// Unreachable!!!
NPNR_ASSERT(false);
}
} else {
if (next_node.state == IN_ROUTING)
next_node.depth++;
next_node.state = curr_node.state;
}
if (expand_node)
nodes_to_expand.push_back(next_node);
else
return;
if (next_node.state == IN_SINK_SITE || next_node.state == ONLY_IN_SOURCE_SITE) {
for (BelPin bel_pin : ctx->getWireBelPins(wire)) {
BelId bel = bel_pin.bel;
auto const &bel_data = bel_info(ctx->chip_info, bel);
if (bels.count(bel))
continue;
if (bel_data.category != BEL_CATEGORY_LOGIC)
return;
if (bel_data.synthetic)
return;
if (direction == CLUSTER_UPHILL_DIR) {
// Check that the BEL is indeed the one reached by backward exploration,
// by checking the previous visited wire.
for (IdString check_pin : ctx->getBelPins(bel)) {
if (prev_wire == ctx->getBelPinWire(bel, check_pin)) {
bels.insert(bel);
break;
}
}
} else {
bels.insert(bel);
}
}
}
return;
}
static pool<BelId> find_cluster_bels(const Context *ctx, WireId wire, ExpansionDirection direction,
bool out_of_site_expansion = false)
{
std::vector<ClusterWireNode> nodes_to_expand;
pool<BelId> bels;
const auto &wire_data = ctx->wire_info(wire);
NPNR_ASSERT(wire_data.site != -1);
ClusterWireNode wire_node;
wire_node.wire = wire;
wire_node.state = IN_SOURCE_SITE;
if (!out_of_site_expansion)
wire_node.state = ONLY_IN_SOURCE_SITE;
wire_node.depth = 0;
nodes_to_expand.push_back(wire_node);
while (!nodes_to_expand.empty()) {
ClusterWireNode node_to_expand = nodes_to_expand.back();
WireId prev_wire = node_to_expand.wire;
nodes_to_expand.pop_back();
if (direction == CLUSTER_DOWNHILL_DIR) {
for (PipId pip : ctx->getPipsDownhill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip))
continue;
handle_expansion_node(ctx, prev_wire, pip, node_to_expand, nodes_to_expand, bels, direction);
}
} else {
NPNR_ASSERT(direction == CLUSTER_UPHILL_DIR);
for (PipId pip : ctx->getPipsUphill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip))
continue;
handle_expansion_node(ctx, prev_wire, pip, node_to_expand, nodes_to_expand, bels, direction);
}
}
}
return bels;
}
CellInfo *Arch::getClusterRootCell(ClusterId cluster) const
{
NPNR_ASSERT(cluster != ClusterId());
return clusters.at(cluster).root;
}
bool Arch::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
const Context *ctx = getCtx();
const Cluster &packed_cluster = clusters.at(cluster);
CellInfo *root_cell = getClusterRootCell(cluster);
if (!ctx->isValidBelForCellType(root_cell->type, root_bel))
return false;
BelId next_bel;
// Place cluster
for (CellInfo *cluster_node : packed_cluster.cluster_nodes) {
if (cluster_node == root_cell) {
next_bel = root_bel;
} else {
// Find next chained cluster node
auto &cluster_data = cluster_info(chip_info, packed_cluster.index);
IdString next_bel_pin(cluster_data.chainable_ports[0].bel_source);
WireId next_bel_pin_wire = ctx->getBelPinWire(next_bel, next_bel_pin);
next_bel = BelId();
for (BelId bel :
find_cluster_bels(ctx, next_bel_pin_wire, CLUSTER_DOWNHILL_DIR, /*out_of_site_expansion=*/true)) {
if (ctx->isValidBelForCellType(cluster_node->type, bel)) {
next_bel = bel;
break;
}
}
if (next_bel == BelId())
return false;
}
// Build a cell to bell mapping required to find BELs connected to the cluster ports.
dict<IdString, std::vector<IdString>> cell_bel_pins;
int32_t mapping = bel_info(chip_info, next_bel).pin_map[get_cell_type_index(cluster_node->type)];
NPNR_ASSERT(mapping >= 0);
const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping];
for (const auto &pin_map : cell_pin_map.common_pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
cell_bel_pins[cell_pin].push_back(bel_pin);
}
placement.emplace_back(cluster_node, next_bel);
// Place cluster node cells at the same site
for (auto port_cell : packed_cluster.cluster_node_cells.at(cluster_node->name)) {
bool placed_cell = false;
IdString port = port_cell.first;
CellInfo *cell = port_cell.second;
NPNR_ASSERT(cell_bel_pins.count(port));
PortType port_type = cluster_node->ports.at(port).type;
if (port_type == PORT_INOUT)
continue;
for (auto &bel_pin : cell_bel_pins.at(port)) {
WireId bel_pin_wire = ctx->getBelPinWire(next_bel, bel_pin);
ExpansionDirection direction = port_type == PORT_IN ? CLUSTER_UPHILL_DIR : CLUSTER_DOWNHILL_DIR;
pool<BelId> cluster_bels = find_cluster_bels(ctx, bel_pin_wire, direction);
if (cluster_bels.size() == 0)
continue;
for (BelId bel : cluster_bels) {
if (ctx->isValidBelForCellType(cell->type, bel)) {
placement.emplace_back(cell, bel);
placed_cell = true;
break;
}
}
if (placed_cell)
break;
}
if (!placed_cell)
return false;
}
}
return true;
}
ArcBounds Arch::getClusterBounds(ClusterId cluster) const
{
// TODO: Implement this
ArcBounds bounds(0, 0, 0, 0);
return bounds;
}
Loc Arch::getClusterOffset(const CellInfo *cell) const
{
Loc offset;
CellInfo *root = getClusterRootCell(cell->cluster);
if (cell->bel != BelId() && root->bel != BelId()) {
Loc root_loc = getBelLocation(root->bel);
Loc cell_loc = getBelLocation(cell->bel);
offset.x = cell_loc.x - root_loc.x;
offset.y = cell_loc.y - root_loc.y;
offset.z = cell_loc.z - root_loc.z;
} else {
Cluster cluster = clusters.at(cell->cluster);
auto &cluster_data = cluster_info(chip_info, cluster.index);
if (cluster_data.chainable_ports.size() == 0)
return offset;
auto &chainable_port = cluster_data.chainable_ports[0];
IdString cluster_node = cluster.cell_cluster_node_map.at(cell->name);
CellInfo *cluster_node_cell = cells.at(cluster_node).get();
auto res = std::find(cluster.cluster_nodes.begin(), cluster.cluster_nodes.end(), cluster_node_cell);
NPNR_ASSERT(res != cluster.cluster_nodes.end());
auto distance = std::distance(cluster.cluster_nodes.begin(), res);
offset.x = chainable_port.avg_x_offset * distance;
offset.y = chainable_port.avg_y_offset * distance;
}
return offset;
}
bool Arch::isClusterStrict(const CellInfo *cell) const { return true; }
static void dump_clusters(const ChipInfoPOD *chip_info, Context *ctx)
{
for (size_t i = 0; i < chip_info->clusters.size(); ++i) {
const auto &cluster = chip_info->clusters[i];
IdString cluster_name(cluster.name);
log_info("Cluster '%s' loaded! Parameters:\n", cluster_name.c_str(ctx));
log_info(" - root cell types:\n");
for (auto cell : cluster.root_cell_types)
log_info(" - %s\n", IdString(cell).c_str(ctx));
for (auto chain_ports : cluster.chainable_ports)
log_info(" - chainable pair: source %s - sink %s\n", IdString(chain_ports.cell_source).c_str(ctx),
IdString(chain_ports.cell_sink).c_str(ctx));
if (cluster.cluster_cells_map.size() != 0)
log_info(" - cell port maps:\n");
for (auto cluster_cell : cluster.cluster_cells_map) {
log_info(" - cell: %s - port: %s\n", IdString(cluster_cell.cell).c_str(ctx),
IdString(cluster_cell.port).c_str(ctx));
}
}
}
static bool check_cluster_cells_compatibility(CellInfo *old_cell, CellInfo *new_cell, pool<IdString> &exclude_nets)
{
NPNR_ASSERT(new_cell->type == old_cell->type);
for (auto &new_port_pair : new_cell->ports) {
PortInfo new_port_info = new_port_pair.second;
PortInfo old_port_info = old_cell->ports.at(new_port_pair.first);
if (exclude_nets.count(new_port_info.net->name))
continue;
if (new_port_info.type != PORT_IN)
continue;
if (new_port_info.net != old_port_info.net)
return false;
}
return true;
}
void Arch::prepare_cluster(const ClusterPOD *cluster, uint32_t index)
{
Context *ctx = getCtx();
IdString cluster_name(cluster->name);
pool<IdString> cluster_cell_types;
for (auto cell_type : cluster->root_cell_types)
cluster_cell_types.insert(IdString(cell_type));
// Find cluster roots
std::vector<CellInfo *> roots;
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
if (ci->cluster != ClusterId())
continue;
if (!cluster_cell_types.count(ci->type))
continue;
if (cluster->chainable_ports.size() == 0) {
ci->cluster.set(ctx, ci->name.str(ctx));
roots.push_back(ci);
continue;
}
// Only one type of dedicated interconnect is allowed.
auto chain_ports = cluster->chainable_ports[0];
IdString source_port(chain_ports.cell_source);
IdString sink_port(chain_ports.cell_sink);
PortRef driver = ci->ports[sink_port].net->driver;
if (driver.cell == nullptr || driver.port != source_port) {
// We hit a root cell
ci->cluster.set(ctx, ci->name.c_str(ctx));
roots.push_back(ci);
// Chained cells use dedicated connections, usually not exposed to the
// general interconnect resources. The port disconnection is required for
// sink ports which are connected to GND or VCC by default, which are not
// reachable due to the fixed dedicated interconnect.
// E.g.: The CI input of carry chains in 7series corresponds to the CIN bel port,
// which can only be connected to the COUT output of the tile below.
disconnect_port(ctx, ci, sink_port);
}
}
dict<IdString, pool<IdString>> port_cell_maps;
for (auto cell_port_map : cluster->cluster_cells_map) {
IdString cell(cell_port_map.cell);
IdString port(cell_port_map.port);
pool<IdString> cells_pool({cell});
port_cell_maps.emplace(port, cells_pool).first->second.insert(cell);
}
// Generate unique clusters starting from each root
for (auto root : roots) {
Cluster cluster_info;
cluster_info.root = root;
cluster_info.index = index;
CellInfo *next_cluster_node = root;
if (ctx->verbose)
log_info(" - forming cluster starting from root cell: %s\n", next_cluster_node->name.c_str(ctx));
// counter to determine whether this cluster needs to exist
uint32_t count_cluster_cells = 0;
do {
std::vector<std::pair<IdString, CellInfo *>> cluster_cells;
// type -> cells map to verify compatibility of cells in the same cluster
dict<IdString, CellInfo *> cell_type_dict;
pool<IdString> exclude_nets;
count_cluster_cells++;
for (auto port : next_cluster_node->ports) {
if (!port_cell_maps.count(port.first))
continue;
PortInfo port_info = port.second;
if (port_info.type == PORT_OUT) {
exclude_nets.insert(port_info.net->name);
auto &users = port_info.net->users;
if (users.size() != 1)
continue;
CellInfo *user_cell = users[0].cell;
if (user_cell == nullptr)
continue;
if (!port_cell_maps.at(port.first).count(user_cell->type))
continue;
auto res = cell_type_dict.emplace(user_cell->type, user_cell);
bool compatible = true;
if (!res.second)
// Check whether a cell of the same type has all the required nets compatible with
// all other nets for the same type. If not, discard the cell.
// An example is multiple FFs belonging to the same cluster, where one of them has a different
// Set/Reset or CE net w.r.t. the others, making the cluster unplaceable.
compatible = check_cluster_cells_compatibility(res.first->second, user_cell, exclude_nets);
if (!compatible)
continue;
user_cell->cluster = root->cluster;
cluster_cells.push_back(std::make_pair(port.first, user_cell));
cluster_info.cell_cluster_node_map.emplace(user_cell->name, next_cluster_node->name);
count_cluster_cells++;
if (ctx->verbose)
log_info(" - adding user cell: %s\n", user_cell->name.c_str(ctx));
} else if (port_info.type == PORT_IN) {
auto &driver = port_info.net->driver;
auto &users = port_info.net->users;
if (users.size() != 1)
continue;
CellInfo *driver_cell = driver.cell;
if (driver_cell == nullptr)
continue;
if (!port_cell_maps.at(port.first).count(driver_cell->type))
continue;
driver_cell->cluster = root->cluster;
cluster_cells.push_back(std::make_pair(port.first, driver_cell));
cluster_info.cell_cluster_node_map.emplace(driver_cell->name, next_cluster_node->name);
count_cluster_cells++;
if (ctx->verbose)
log_info(" - adding driver cell: %s\n", driver_cell->name.c_str(ctx));
}
}
cluster_info.cell_cluster_node_map.emplace(next_cluster_node->name, next_cluster_node->name);
cluster_info.cluster_nodes.push_back(next_cluster_node);
cluster_info.cluster_node_cells.emplace(next_cluster_node->name, cluster_cells);
if (cluster->chainable_ports.size() == 0)
break;
// Only one type of dedicated interconnect is allowed.
auto chain_ports = cluster->chainable_ports[0];
IdString source_port(chain_ports.cell_source);
IdString sink_port(chain_ports.cell_sink);
NetInfo *next_net = next_cluster_node->ports.at(source_port).net;
if (next_net == nullptr)
continue;
next_cluster_node = nullptr;
for (auto &user : next_net->users) {
CellInfo *user_cell = user.cell;
if (user_cell == nullptr)
continue;
if (cluster_cell_types.count(user_cell->type)) {
user_cell->cluster = root->cluster;
next_cluster_node = user_cell;
break;
}
}
if (next_cluster_node == nullptr)
break;
} while (true);
if (count_cluster_cells == 1 && cluster->chainable_ports.size() == 0) {
root->cluster = ClusterId();
continue;
}
clusters.emplace(root->cluster, cluster_info);
}
}
void Arch::pack_cluster()
{
Context *ctx = getCtx();
if (ctx->verbose)
dump_clusters(chip_info, ctx);
for (uint32_t i = 0; i < chip_info->clusters.size(); ++i) {
const auto &cluster = chip_info->clusters[i];
prepare_cluster(&cluster, i);
}
}
NEXTPNR_NAMESPACE_END