nextpnr/himbaechel/uarch/ng-ultra/ng_ultra.cc
2024-11-26 10:58:38 +01:00

651 lines
25 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2023 Lofty <lofty@yosyshq.com>
* Copyright (C) 2023 Miodrag Milanovic <micko@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <boost/algorithm/string.hpp>
#include <fstream>
#include "himbaechel_api.h"
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include "extra_data.h"
#include "placer_heap.h"
#include "himbaechel_helpers.h"
#include "ng_ultra.h"
#define GEN_INIT_CONSTIDS
#define HIMBAECHEL_CONSTIDS "uarch/ng-ultra/constids.inc"
#include "himbaechel_constids.h"
NEXTPNR_NAMESPACE_BEGIN
NgUltraImpl::~NgUltraImpl(){};
void NgUltraImpl::init_database(Arch *arch)
{
init_uarch_constids(arch);
arch->load_chipdb("ng-ultra/ng-ultra.bin");
arch->set_package("FF-1760");
arch->set_speed_grade("DEFAULT");
}
void NgUltraImpl::init(Context *ctx)
{
HimbaechelAPI::init(ctx);
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_IOM) {
std::deque<BelId> wfgs;
IdString bank = tile_name_id(bel.tile);
iom_bels.emplace(bank,bel);
} else if (ctx->getBelType(bel) == id_IOTP) {
if (ctx->getBelName(bel)[1] == ctx->id("D08P_CLK.IOTP")) {
global_capable_bels.emplace(bel,id_P17RI);
} else if (ctx->getBelName(bel)[1] == ctx->id("D09P_CLK.IOTP")) {
global_capable_bels.emplace(bel,id_P19RI);
}
}
}
}
const NGUltraTileInstExtraDataPOD *NgUltraImpl::tile_extra_data(int tile) const
{
return reinterpret_cast<const NGUltraTileInstExtraDataPOD *>(ctx->chip_info->tile_insts[tile].extra_data.get());
}
IdString NgUltraImpl::tile_name_id(int tile) const
{
const auto &data = *tile_extra_data(tile);
return IdString(data.name);
}
std::string NgUltraImpl::tile_name(int tile) const
{
return stringf("%s", tile_name_id(tile).c_str(ctx));
}
int NgUltraImpl::tile_lobe(int tile) const
{
const auto &data = *tile_extra_data(tile);
return data.lobe;
}
void NgUltraImpl::preRoute()
{
log_break();
route_clocks();
log_break();
}
bool NgUltraImpl::get_mux_data(BelId bel, IdString port, uint8_t *value)
{
return get_mux_data(ctx->getBelPinWire(bel, port), value);
}
bool NgUltraImpl::get_mux_data(WireId wire, uint8_t *value)
{
for (PipId pip : ctx->getPipsUphill(wire)) {
if (!ctx->getBoundPipNet(pip))
continue;
const auto &pip_data = chip_pip_info(ctx->chip_info, pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pip_data.extra_data.get());
if (!extra_data.name) continue;
if (extra_data.type == PipExtra::PIP_EXTRA_MUX) {
*value = extra_data.input;
return true;
}
}
return false;
}
void NgUltraImpl::postRoute()
{
ctx->assignArchInfo();
log_break();
log_info("Resources spent on routing:\n");
int dff_bypass = 0, lut_bypass = 0, fe_new = 0, wfg_bypass = 0, gck_bypass = 0;
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
for (auto &w : ni->wires) {
if (w.second.pip != PipId()) {
const auto &pip_data = chip_pip_info(ctx->chip_info, w.second.pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pip_data.extra_data.get());
if (!extra_data.name) continue;
if (extra_data.type == PipExtra::PIP_EXTRA_BYPASS) {
IdStringList id = ctx->getPipName(w.second.pip);
BelId bel = ctx->getBelByName(IdStringList::concat(id[0], IdString(extra_data.name)));
IdString type = ctx->getBelType(bel);
if (!ctx->getBoundBelCell(bel)) {
CellInfo *cell = ctx->createCell(ctx->id(ctx->nameOfBel(bel)), type);
ctx->bindBel(bel,cell,PlaceStrength::STRENGTH_FIXED);
if (type==id_BEYOND_FE) fe_new++;
}
CellInfo *cell = ctx->getBoundBelCell(bel);
switch(type.index) {
case id_BEYOND_FE.index :
if (extra_data.input==0) {
dff_bypass++;
// set bypass mode for DFF
cell->setParam(ctx->id("type"), Property("BFF"));
cell->params[id_dff_used] = Property(1,1);
} else {
lut_bypass++;
cell->params[id_lut_used] = Property(1,1);
cell->params[id_lut_table] = Property(0xaaaa, 16);
}
break;
case id_WFG.index : wfg_bypass++;
cell->type = id_WFB;
break;
case id_GCK.index : gck_bypass++;
cell->setParam(ctx->id("std_mode"), extra_data.input == 0 ? Property("BYPASS") : Property("CSC"));
break;
default:
log_error("Unmaped bel type '%s' for routing\n",type.c_str(ctx));
}
}
}
}
}
log_info(" %6d DFFs used in bypass mode (BFF)\n", dff_bypass);
log_info(" %6d LUTs used in bypass mode\n", lut_bypass);
log_info(" %6d newly allocated FEs\n", fe_new);
log_info(" %6d WFGs used as WFB\n", wfg_bypass);
log_info(" %6d GCK\n", gck_bypass);
// Handle LUT permutation
for (auto &cell : ctx->cells) {
if (cell.second->type == id_BEYOND_FE) {
// if LUT part used
if (cell.second->params.count(id_lut_table) != 0) {
std::array<std::vector<unsigned>, 4> phys_to_log;
unsigned orig_init = int_or_default(cell.second->params, id_lut_table);
const std::array<IdString, 4> ports{id_I1, id_I2, id_I3, id_I4};
for (unsigned i = 0; i < 4; i++) {
WireId pin_wire = ctx->getBelPinWire(cell.second->bel, ports[i]);
for (PipId pip : ctx->getPipsUphill(pin_wire)) {
if (!ctx->getBoundPipNet(pip))
continue;
const auto &pip_data = chip_pip_info(ctx->chip_info, pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pip_data.extra_data.get());
if (!extra_data.name) continue;
if (extra_data.type == PipExtra::PIP_EXTRA_LUT_PERMUTATION) {
NPNR_ASSERT(extra_data.output == i);
phys_to_log[extra_data.input].push_back(i);
}
}
}
unsigned permuted_init = 0;
for (unsigned i = 0; i < 16; i++) {
unsigned log_idx = 0;
for (unsigned j = 0; j < 4; j++) {
if ((i >> j) & 0x1) {
for (auto log_pin : phys_to_log[j])
log_idx |= (1 << log_pin);
}
}
if ((orig_init >> log_idx) & 0x1)
permuted_init |= (1 << i);
}
cell.second->params[id_lut_table] = Property(permuted_init, 16);
}
}
}
print_utilisation(ctx);
const ArchArgs &args = ctx->args;
if (args.options.count("bit")) {
write_bitstream_json(args.options.at("bit"));
}
}
void NgUltraImpl::configurePlacerHeap(PlacerHeapCfg &cfg)
{
cfg.hpwl_scale_x = 2;
cfg.hpwl_scale_y = 1;
cfg.beta = 0.5;
cfg.placeAllAtOnce = true;
}
namespace {
template <size_t N> bool check_assign_sig(std::array<const NetInfo*, N> &sig_set, const NetInfo *sig)
{
if (sig == nullptr)
return true;
for (size_t i = 0; i < N; i++)
if (sig_set[i] == sig) {
return true;
} else if (sig_set[i] == nullptr) {
sig_set[i] = sig;
return true;
}
return false;
};
struct SectionFEWorker
{
std::array<const NetInfo *, 2> clk{};
std::array<const NetInfo *, 4> reset_load{};
bool run(const NgUltraImpl *impl,const Context *ctx, BelId bel)
{
Loc loc = ctx->getBelLocation(bel);
for (uint8_t id = 0; id <= BEL_LUT_MAX_Z; id++) {
const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,id)));
if (ff == nullptr)
continue;
// TODO: This restriction is too limited, need to revisit
/*
if (!check_assign_sig(reset_load, ff->getPort(id_R)))
return false;
if (!check_assign_sig(reset_load, ff->getPort(id_L)))
return false;
*/
if (!check_assign_sig(clk, ff->getPort(id_CK)))
return false;
}
return true;
}
};
}; // namespace
bool NgUltraImpl::isBelLocationValid(BelId bel, bool explain_invalid) const
{
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell == nullptr) {
return true;
}
if (ctx->getBelType(bel) == id_BEYOND_FE) {
SectionFEWorker worker;
return worker.run(this, ctx, bel);
}
else if (ctx->getBelType(bel).in(id_RF, id_XRF)) {
Loc loc = ctx->getBelLocation(bel);
if (loc.z == BEL_XRF_Z) {
// If we used any of RFs we can not used XRF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z+1)))) return false;
// If we used any FIFO we can not use XRF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z+1)))) return false;
// If we used XFIFO we can not use XRF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
} else {
// If we used XRF we can not use individual RF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XRF_Z)))) return false;
// If we used XFIFO we can not use RF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
int index = loc.z - BEL_RF_Z;
// If we used coresponding FIFO we can not use RF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z + index)))) return false;
}
}
else if (ctx->getBelType(bel).in(id_FIFO, id_XFIFO)) {
Loc loc = ctx->getBelLocation(bel);
if (loc.z == BEL_XFIFO_Z) {
// If we used any of RFs we can not used XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z+1)))) return false;
// If we used any FIFO we can not use XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z+1)))) return false;
// If we used XFIFO we can not use XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
// If we used any CDC we can not use XFIFO
// NOTE: CDC1 is in S4 and CDC2 is S12
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x-1,loc.y,BEL_CDC_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+1,loc.y,BEL_CDC_Z+1)))) return false;
// If we used XCDC we can not use XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XCDC_Z)))) return false;
} else {
// If we used XFIFO we can not use individual FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
// If we used XRF we can not use FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XRF_Z)))) return false;
// If we used XCDC we can not use FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XCDC_Z)))) return false;
int index = loc.z - BEL_FIFO_Z;
// If we used coresponding RF we can not use FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z + index)))) return false;
// If we used coresponding CDC we can not use FIFO
// NOTE: CDC1 is in S4 and CDC2 is S12
int rel = (index == 0) ? -1 : +1;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x + rel,loc.y,BEL_CDC_Z + index)))) return false;
}
}
else if (ctx->getBelType(bel).in(id_CDC, id_XCDC)) {
Loc loc = ctx->getBelLocation(bel);
if (loc.z == BEL_XCDC_Z) {
// If we used any of CDCs we can not used XCDC
// NOTE: CDC1 is in S4 and CDC2 is S12
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x-1,loc.y,BEL_CDC_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+1,loc.y,BEL_CDC_Z+1)))) return false;
// If we used any FIFO we can not use XCDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z+1)))) return false;
// If we used XFIFO we can not use XCDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
} else {
// NOTE: CDC1 is in S4 and CDC2 is S12 so we move calculation relative to S8
int index = loc.z - BEL_CDC_Z;
int fix = (index == 0) ? +1 : -1;
// If we used XCDC we can not use individual CDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+fix,loc.y,BEL_XCDC_Z)))) return false;
// If we used XFIFO we can not use CDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+fix,loc.y,BEL_XFIFO_Z)))) return false;
// If we used coresponding FIFO we can not use CDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+fix,loc.y,BEL_FIFO_Z + index)))) return false;
}
}
return true;
}
// Bel bucket functions
IdString NgUltraImpl::getBelBucketForCellType(IdString cell_type) const
{
if (cell_type.in(id_IOP,id_IP,id_OP))
return id_IOP;
else if (cell_type.in(id_IOTP,id_ITP,id_OTP))
return id_IOTP;
else if (cell_type.in(id_BFR))
return id_DFR;
else if (cell_type.in(id_RF, id_RFSP))
return id_RF;
else if (cell_type.in(id_XHRF, id_XWRF, id_XPRF))
return id_XRF;
else if (cell_type.in(id_WFB, id_WFG))
return id_WFG;
else
return cell_type;
}
bool NgUltraImpl::isValidBelForCellType(IdString cell_type, BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_IOTP)
return cell_type.in(id_IOP,id_IP,id_OP,id_IOTP,id_ITP,id_OTP);
else if (bel_type == id_IOP)
return cell_type.in(id_IOP,id_IP,id_OP);
else if (bel_type == id_DDFR)
return cell_type.in(id_BFR,id_DFR,id_DDFR);
else if (bel_type == id_DFR)
return cell_type.in(id_BFR,id_DFR);
else if (bel_type == id_RF)
return cell_type.in(id_RF,id_RFSP);
else if (bel_type == id_XRF)
return cell_type.in(id_XHRF,id_XWRF,id_XPRF);
else if (bel_type == id_WFG)
return cell_type.in(id_WFB,id_WFG);
else
return (bel_type == cell_type);
}
Loc getNextLocInCYChain(Loc loc)
{
static const std::vector<Loc> map =
{
Loc(0, 1, 0), // S1 0 -> S2 0 CY24->CY1
Loc(0, 0, -1), // S1 1 -> S1 0 CY23->CY24
Loc(0, 0, -1), // S1 2 -> S1 1 CY22->CY23
Loc(0, 0, -1), // S1 3 -> S1 2 CY21->CY22
Loc(-1, 0,+3), // S5 0 -> S1 1 CY20->CY21
Loc(0, 0, -1), // S5 1 -> S5 0 CY19->CY20
Loc(0, 0, -1), // S5 2 -> S5 1 CY18->CY19
Loc(0, 0, -1), // S5 3 -> S5 2 CY17->CY18
Loc(-1, 0,+3), // S9 0 -> S5 1 CY16->CY17
Loc(0, 0, -1), // S9 1 -> S9 0 CY15->CY16
Loc(0, 0, -1), // S9 2 -> S9 1 CY14->CY15
Loc(0, 0, -1), // S9 3 -> S9 2 CY13->CY14
Loc(0, 0, +1), // S2 0 -> S2 1 CY1->CY2
Loc(0, 0, +1), // S2 1 -> S2 2 CY2->CY3
Loc(0, 0, +1), // S2 2 -> S2 3 CY3->CY4
Loc(1, 0, -3), // S2 3 -> S6 0 CY4->CY5
Loc(0, 0, +1), // S6 0 -> S6 1 CY5->CY6
Loc(0, 0, +1), // S6 1 -> S6 2 CY6->CY7
Loc(0, 0, +1), // S6 2 -> S6 3 CY7->CY8
Loc(1, 0, -3), // S6 3 -> S10 0 CY8->CY9
Loc(0, 0, +1), // S10 0 -> S10 1 CY9->CY10
Loc(0, 0, +1), // S10 1 -> S10 2 CY10->CY11
Loc(0, 0, +1), // S10 2 -> S10 3 CY11->CY12
Loc(0,-1, 0), // S10 3 -> S9 3 CY12->CY13
};
int section = (loc.x % 4 - 1 + 3 * (loc.y % 4)) * 4 + loc.z - BEL_CY_Z;
Loc result = map.at(section);
result.x += loc.x;
result.y += loc.y;
result.z += loc.z;
return result;
}
Loc getCYFE(Loc root, int pos)
{
int p[] = { 2-1, 25-1, 10-1, 17-1 };
int cy = root.z - BEL_CY_Z;
Loc result;
result.x = root.x;
result.y = root.y;
result.z = p[pos] + cy * 2;
return result;
}
Loc getXRFFE(Loc root, int pos)
{
static const std::vector<Loc> map =
{
Loc(-1, 0, 1),// I/O1
Loc(-1, 0, 2),// I/O2
Loc(-1, 0, 5),// I/O3
Loc(-1, 0, 6),// I/O4
Loc(-1, 0, 7),// I/O5
Loc(-1, 0, 9),// I/O6
Loc(-1, 0, 10),// I/O7
Loc(-1, 0, 13),// I/O8
Loc(-1, 0, 14),// I/O9
Loc(-1, 0, 15),// I/O10
Loc(-1, 0, 16),// I/O11
Loc(-1, 0, 17),// I/O12
Loc(-1, 0, 18),// I/O13
Loc(-1, 0, 21),// I/O14
Loc(-1, 0, 24),// I/O15
Loc(-1, 0, 25),// I/O16
Loc(-1, 0, 26),// I/O17
Loc(-1, 0, 29),// I/O18
Loc(+1, 0, 1),// I/O19
Loc(+1, 0, 2),// I/O20
Loc(+1, 0, 5),// I/O21
Loc(+1, 0, 6),// I/O22
Loc(+1, 0, 7),// I/O23
Loc(+1, 0, 9),// I/O24
Loc(+1, 0, 10),// I/O25
Loc(+1, 0, 13),// I/O26
Loc(+1, 0, 14),// I/O27
Loc(+1, 0, 15),// I/O28
Loc(+1, 0, 16),// I/O29
Loc(+1, 0, 17),// I/O30
Loc(+1, 0, 18),// I/O31
Loc(+1, 0, 21),// I/O32
Loc(+1, 0, 24),// I/O33
Loc(+1, 0, 25),// I/O34
Loc(+1, 0, 26),// I/O35
Loc(+1, 0, 29),// I/O36
Loc(-1, 0, 4),// RA1
Loc(-1, 0, 12),// RA2
Loc(-1, 0, 20),// RA3
Loc(-1, 0, 27),// RA4
Loc(-1, 0, 31),// RA5
Loc(+1, 0, 4),// RA6
Loc(+1, 0, 12),// RA7
Loc(+1, 0, 20),// RA8
Loc(+1, 0, 27),// RA9
Loc(+1, 0, 31),// RA10
Loc(-1, 0, 3),// WA1
Loc(-1, 0, 11),// WA2
Loc(-1, 0, 19),// WA3
Loc(-1, 0, 23),// WA4
Loc(-1, 0, 28),// WA5
Loc(+1, 0, 3),// WA6
Loc(-1, 0, 0),// WE
Loc(-1, 0, 8),// WEA
};
Loc result = map.at(pos);
if (root.z == BEL_XRF_Z) {
// XRF1
result.x += root.x;
} else {
// RF1 or RF2
result.x = root.x + ((root.z == BEL_RF_Z) ? -1 : +1);
}
result.y = root.y;
return result;
}
bool NgUltraImpl::getChildPlacement(const BaseClusterInfo *cluster, Loc root_loc,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
Loc prev = root_loc;
for (auto child : cluster->constr_children) {
Loc child_loc = if_using_basecluster<Loc>(child, [&](const BaseClusterInfo *child) {
switch(child->constr_z) {
case PLACE_CY_CHAIN : { Loc l = getNextLocInCYChain(prev); prev = l; return l; }
case PLACE_CY_FE1: return getCYFE(root_loc,0);
case PLACE_CY_FE2: return getCYFE(root_loc,1);
case PLACE_CY_FE3: return getCYFE(root_loc,2);
case PLACE_CY_FE4: return getCYFE(root_loc,3);
case PLACE_XRF_I1 ... PLACE_XRF_WEA:
return getXRFFE(root_loc, child->constr_z - PLACE_XRF_I1 );
default:
Loc result;
result.x = root_loc.x + child->constr_x;
result.y = root_loc.y + child->constr_y;
result.z = child->constr_abs_z ? child->constr_z : (root_loc.z + child->constr_z);
return result;
}
});
BelId child_bel = ctx->getBelByLocation(child_loc);
if (child_bel == BelId() || !this->isValidBelForCellType(child->type, child_bel))
return false;
placement.emplace_back(child, child_bel);
bool val = if_using_basecluster<bool>(child, [&](const BaseClusterInfo *child_cluster) -> bool {
return getChildPlacement(child_cluster, child_loc, placement);
});
if (!val) return false;
}
return true;
}
bool NgUltraImpl::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
CellInfo *root_cell = get_cluster_root(ctx, cluster);
return if_using_basecluster<bool>(root_cell, [&](const BaseClusterInfo *cluster) -> bool {
placement.clear();
NPNR_ASSERT(root_bel != BelId());
Loc root_loc = ctx->getBelLocation(root_bel);
if (cluster->constr_abs_z) {
// Coerce root to absolute z constraint
root_loc.z = cluster->constr_z;
root_bel = ctx->getBelByLocation(root_loc);
if (root_bel == BelId() || !this->isValidBelForCellType(root_cell->type, root_bel))
return false;
}
placement.emplace_back(root_cell, root_bel);
return getChildPlacement(cluster, root_loc, placement);
});
}
BoundingBox NgUltraImpl::getRouteBoundingBox(WireId src, WireId dst) const
{
int x0, y0, x1, y1;
auto expand = [&](int x, int y) {
x0 = std::min(x0, x);
x1 = std::max(x1, x);
y0 = std::min(y0, y);
y1 = std::max(y1, y);
};
tile_xy(ctx->chip_info, src.tile, x0, y0);
x1 = x0;
y1 = y0;
int dx, dy;
tile_xy(ctx->chip_info, dst.tile, dx, dy);
expand(dx, dy);
// Two TILEs left and up, and one tile right and down
return {(x0 & 0xfffc) - 8,
(y0 & 0xfffc) - 8,
(x1 & 0xfffc) + 8,
(y1 & 0xfffc) + 8};
}
delay_t NgUltraImpl::estimateDelay(WireId src, WireId dst) const
{
int sx, sy, dx, dy;
tile_xy(ctx->chip_info, src.tile, sx, sy);
tile_xy(ctx->chip_info, dst.tile, dx, dy);
if (sx==dx && sy==dy) {
// Same sub tile
return 50;
} else if (((sx & 0xfffc) == (dx & 0xfffc)) && ((sy & 0xfffc) == (dy & 0xfffc))) {
// Same "TILE"
return 200;
}
return 500 + 100 * (std::abs(dy - sy)/4 + std::abs(dx - sx)/4);
}
delay_t NgUltraImpl::predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const
{
Loc src_loc = ctx->getBelLocation(src_bel), dst_loc = ctx->getBelLocation(dst_bel);
if (src_loc.x==dst_loc.x && src_loc.y==dst_loc.y) {
// Same sub tile
return 50;
} else if (((src_loc.x & 0xfffc) == (dst_loc.x & 0xfffc)) && ((src_loc.y & 0xfffc) == (dst_loc.y & 0xfffc))) {
// Same "TILE"
return 200;
}
return 500 + 100 * (std::abs(dst_loc.y - src_loc.y)/4 + std::abs(dst_loc.x - src_loc.x)/4);
}
struct NgUltraArch : HimbaechelArch
{
NgUltraArch() : HimbaechelArch("ng-ultra"){};
bool match_device(const std::string &device) override { return device == "NG-ULTRA"; }
std::unique_ptr<HimbaechelAPI> create(const std::string &device, const dict<std::string, std::string> &args)
{
return std::make_unique<NgUltraImpl>();
}
} ngUltraArch;
NEXTPNR_NAMESPACE_END