1828 lines
78 KiB
C++
1828 lines
78 KiB
C++
/*
|
|
* nextpnr -- Next Generation Place and Route
|
|
*
|
|
* Copyright (C) 2018 gatecat <gatecat@ds0.me>
|
|
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "timing.h"
|
|
#include <algorithm>
|
|
#include <boost/range/adaptor/reversed.hpp>
|
|
#include <deque>
|
|
#include <map>
|
|
#include <utility>
|
|
#include "log.h"
|
|
#include "util.h"
|
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
namespace {
|
|
const char *edge_name(ClockEdge edge) { return (edge == FALLING_EDGE) ? "negedge" : "posedge"; }
|
|
} // namespace
|
|
|
|
void TimingAnalyser::setup()
|
|
{
|
|
init_ports();
|
|
get_cell_delays();
|
|
topo_sort();
|
|
setup_port_domains();
|
|
identify_related_domains();
|
|
run();
|
|
}
|
|
|
|
void TimingAnalyser::run(bool update_route_delays)
|
|
{
|
|
reset_times();
|
|
if (update_route_delays)
|
|
get_route_delays();
|
|
walk_forward();
|
|
walk_backward();
|
|
compute_slack();
|
|
compute_criticality();
|
|
}
|
|
|
|
void TimingAnalyser::init_ports()
|
|
{
|
|
// Per cell port structures
|
|
for (auto &cell : ctx->cells) {
|
|
CellInfo *ci = cell.second.get();
|
|
for (auto &port : ci->ports) {
|
|
auto &data = ports[CellPortKey(ci->name, port.first)];
|
|
data.type = port.second.type;
|
|
data.cell_port = CellPortKey(ci->name, port.first);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::get_cell_delays()
|
|
{
|
|
for (auto &port : ports) {
|
|
CellInfo *ci = cell_info(port.first);
|
|
auto &pi = port_info(port.first);
|
|
auto &pd = port.second;
|
|
|
|
IdString name = port.first.port;
|
|
// Ignore dangling ports altogether for timing purposes
|
|
if (!pi.net)
|
|
continue;
|
|
pd.cell_arcs.clear();
|
|
int clkInfoCount = 0;
|
|
TimingPortClass cls = ctx->getPortTimingClass(ci, name, clkInfoCount);
|
|
if (cls == TMG_STARTPOINT || cls == TMG_ENDPOINT || cls == TMG_CLOCK_INPUT || cls == TMG_GEN_CLOCK ||
|
|
cls == TMG_IGNORE)
|
|
continue;
|
|
if (pi.type == PORT_IN) {
|
|
// Input ports might have setup/hold relationships
|
|
if (cls == TMG_REGISTER_INPUT) {
|
|
for (int i = 0; i < clkInfoCount; i++) {
|
|
auto info = ctx->getPortClockingInfo(ci, name, i);
|
|
if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
|
|
continue;
|
|
pd.cell_arcs.emplace_back(CellArc::SETUP, info.clock_port, DelayQuad(info.setup, info.setup),
|
|
info.edge);
|
|
pd.cell_arcs.emplace_back(CellArc::HOLD, info.clock_port, DelayQuad(info.hold, info.hold),
|
|
info.edge);
|
|
}
|
|
}
|
|
// Combinational delays through cell
|
|
for (auto &other_port : ci->ports) {
|
|
auto &op = other_port.second;
|
|
// ignore dangling ports and non-outputs
|
|
if (op.net == nullptr || op.type != PORT_OUT)
|
|
continue;
|
|
DelayQuad delay;
|
|
bool is_path = ctx->getCellDelay(ci, name, other_port.first, delay);
|
|
if (is_path)
|
|
pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
|
|
}
|
|
} else if (pi.type == PORT_OUT) {
|
|
// Output ports might have clk-to-q relationships
|
|
if (cls == TMG_REGISTER_OUTPUT) {
|
|
for (int i = 0; i < clkInfoCount; i++) {
|
|
auto info = ctx->getPortClockingInfo(ci, name, i);
|
|
if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
|
|
continue;
|
|
pd.cell_arcs.emplace_back(CellArc::CLK_TO_Q, info.clock_port, info.clockToQ, info.edge);
|
|
}
|
|
}
|
|
// Combinational delays through cell
|
|
for (auto &other_port : ci->ports) {
|
|
auto &op = other_port.second;
|
|
// ignore dangling ports and non-inputs
|
|
if (op.net == nullptr || op.type != PORT_IN)
|
|
continue;
|
|
DelayQuad delay;
|
|
bool is_path = ctx->getCellDelay(ci, other_port.first, name, delay);
|
|
if (is_path)
|
|
pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::get_route_delays()
|
|
{
|
|
for (auto &net : ctx->nets) {
|
|
NetInfo *ni = net.second.get();
|
|
if (ni->driver.cell == nullptr || ni->driver.cell->bel == BelId())
|
|
continue;
|
|
for (auto &usr : ni->users) {
|
|
if (usr.cell->bel == BelId())
|
|
continue;
|
|
ports.at(CellPortKey(usr)).route_delay = DelayPair(ctx->getNetinfoRouteDelay(ni, usr));
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::set_route_delay(CellPortKey port, DelayPair value) { ports.at(port).route_delay = value; }
|
|
|
|
void TimingAnalyser::topo_sort()
|
|
{
|
|
TopoSort<CellPortKey> topo;
|
|
for (auto &port : ports) {
|
|
auto &pd = port.second;
|
|
// All ports are nodes
|
|
topo.node(port.first);
|
|
if (pd.type == PORT_IN) {
|
|
// inputs: combinational arcs through the cell are edges
|
|
for (auto &arc : pd.cell_arcs) {
|
|
if (arc.type != CellArc::COMBINATIONAL)
|
|
continue;
|
|
topo.edge(port.first, CellPortKey(port.first.cell, arc.other_port));
|
|
}
|
|
} else if (pd.type == PORT_OUT) {
|
|
// output: routing arcs are edges
|
|
const NetInfo *pn = port_info(port.first).net;
|
|
if (pn != nullptr) {
|
|
for (auto &usr : pn->users)
|
|
topo.edge(port.first, CellPortKey(usr));
|
|
}
|
|
}
|
|
}
|
|
bool no_loops = topo.sort();
|
|
if (!no_loops && verbose_mode) {
|
|
log_info("Found %d combinational loops:\n", int(topo.loops.size()));
|
|
int i = 0;
|
|
for (auto &loop : topo.loops) {
|
|
log_info(" loop %d:\n", ++i);
|
|
for (auto &port : loop) {
|
|
log_info(" %s.%s (%s)\n", ctx->nameOf(port.cell), ctx->nameOf(port.port),
|
|
ctx->nameOf(port_info(port).net));
|
|
}
|
|
}
|
|
}
|
|
have_loops = !no_loops;
|
|
std::swap(topological_order, topo.sorted);
|
|
}
|
|
|
|
void TimingAnalyser::setup_port_domains()
|
|
{
|
|
for (auto &d : domains) {
|
|
d.startpoints.clear();
|
|
d.endpoints.clear();
|
|
}
|
|
// Go forward through the topological order (domains from the PoV of arrival time)
|
|
bool first_iter = true;
|
|
do {
|
|
updated_domains = false;
|
|
for (auto port : topological_order) {
|
|
auto &pd = ports.at(port);
|
|
auto &pi = port_info(port);
|
|
if (pi.type == PORT_OUT) {
|
|
if (first_iter) {
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
if (fanin.type != CellArc::CLK_TO_Q)
|
|
continue;
|
|
// registered outputs are startpoints
|
|
auto dom = domain_id(port.cell, fanin.other_port, fanin.edge);
|
|
// create per-domain data
|
|
pd.arrival[dom];
|
|
domains.at(dom).startpoints.emplace_back(port, fanin.other_port);
|
|
}
|
|
}
|
|
// copy domains across routing
|
|
if (pi.net != nullptr)
|
|
for (auto &usr : pi.net->users)
|
|
copy_domains(port, CellPortKey(usr), false);
|
|
} else {
|
|
// copy domains from input to output
|
|
for (auto &fanout : pd.cell_arcs) {
|
|
if (fanout.type != CellArc::COMBINATIONAL)
|
|
continue;
|
|
copy_domains(port, CellPortKey(port.cell, fanout.other_port), false);
|
|
}
|
|
}
|
|
}
|
|
// Go backward through the topological order (domains from the PoV of required time)
|
|
for (auto port : reversed_range(topological_order)) {
|
|
auto &pd = ports.at(port);
|
|
auto &pi = port_info(port);
|
|
if (pi.type == PORT_OUT) {
|
|
// copy domains from output to input
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
if (fanin.type != CellArc::COMBINATIONAL)
|
|
continue;
|
|
copy_domains(port, CellPortKey(port.cell, fanin.other_port), true);
|
|
}
|
|
} else {
|
|
if (first_iter) {
|
|
for (auto &fanout : pd.cell_arcs) {
|
|
if (fanout.type != CellArc::SETUP)
|
|
continue;
|
|
// registered inputs are endpoints
|
|
auto dom = domain_id(port.cell, fanout.other_port, fanout.edge);
|
|
// create per-domain data
|
|
pd.required[dom];
|
|
domains.at(dom).endpoints.emplace_back(port, fanout.other_port);
|
|
}
|
|
}
|
|
// copy port to driver
|
|
if (pi.net != nullptr && pi.net->driver.cell != nullptr)
|
|
copy_domains(port, CellPortKey(pi.net->driver), true);
|
|
}
|
|
}
|
|
|
|
// Iterate over ports and find domain paris
|
|
for (auto port : topological_order) {
|
|
auto &pd = ports.at(port);
|
|
for (auto &arr : pd.arrival)
|
|
for (auto &req : pd.required) {
|
|
pd.domain_pairs[domain_pair_id(arr.first, req.first)];
|
|
}
|
|
}
|
|
first_iter = false;
|
|
// If there are loops, repeat the process until a fixed point is reached, as there might be unusual ways to
|
|
// visit points, which would result in a missing domain key and therefore crash later on
|
|
} while (have_loops && updated_domains);
|
|
for (auto &dp : domain_pairs) {
|
|
auto &launch_data = domains.at(dp.key.launch);
|
|
auto &capture_data = domains.at(dp.key.capture);
|
|
if (launch_data.key.clock != capture_data.key.clock)
|
|
continue;
|
|
IdString clk = launch_data.key.clock;
|
|
delay_t period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
|
|
if (ctx->nets.count(clk)) {
|
|
NetInfo *clk_net = ctx->nets.at(clk).get();
|
|
if (clk_net->clkconstr) {
|
|
period = clk_net->clkconstr->period.minDelay();
|
|
}
|
|
}
|
|
if (launch_data.key.edge != capture_data.key.edge)
|
|
period /= 2;
|
|
dp.period = DelayPair(period);
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::identify_related_domains() {
|
|
|
|
// Identify clock nets
|
|
pool<IdString> clock_nets;
|
|
for (const auto& domain : domains) {
|
|
clock_nets.insert(domain.key.clock);
|
|
}
|
|
|
|
// For each clock net identify all nets that can possibly drive it. Compute
|
|
// cumulative delays to each of them.
|
|
std::function<void(const NetInfo*, dict<IdString, delay_t>&, delay_t, int32_t)> find_net_drivers =
|
|
[&] (const NetInfo* ni, dict<IdString, delay_t>& drivers, delay_t delay_acc, int32_t level)
|
|
{
|
|
// Get driving cell and port
|
|
const CellInfo* cell = ni->driver.cell;
|
|
const IdString port = ni->driver.port;
|
|
|
|
bool didGoUpstream = false;
|
|
|
|
std::string indent (level, ' ');
|
|
|
|
log("%sout %s.%s\n", indent.c_str(), cell->name.str(ctx).c_str(), port.str(ctx).c_str());
|
|
|
|
// The cell has only one port
|
|
if (cell->ports.size() == 1) {
|
|
drivers[ni->name] = delay_acc;
|
|
return;
|
|
}
|
|
|
|
// Count cell port types
|
|
size_t num_inp = 0;
|
|
size_t num_out = 0;
|
|
for (const auto& it : cell->ports) {
|
|
const auto& pi = it.second;
|
|
if (pi.type != PORT_IN) {
|
|
num_inp++;
|
|
} else {
|
|
num_out++;
|
|
}
|
|
}
|
|
|
|
// Get the driver timing class
|
|
int info_count = 0;
|
|
auto timing_class = ctx->getPortTimingClass(cell, port, info_count);
|
|
|
|
// The driver must be a combinational output
|
|
if (timing_class != TMG_COMB_OUTPUT) {
|
|
drivers[ni->name] = delay_acc;
|
|
return;
|
|
}
|
|
|
|
// Recurse upstream through all input ports that have combinational
|
|
// paths to this driver
|
|
for (const auto& it : cell->ports) {
|
|
const auto& pi = it.second;
|
|
|
|
// Only connected inputs
|
|
if (pi.type != PORT_IN) {
|
|
continue;
|
|
}
|
|
if (pi.net == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
// The input must be a combinational input
|
|
timing_class = ctx->getPortTimingClass(cell, pi.name, info_count);
|
|
if (timing_class != TMG_COMB_INPUT) {
|
|
continue;
|
|
}
|
|
// There must be a combinational arc
|
|
DelayQuad delay;
|
|
if (!ctx->getCellDelay(cell, pi.name, port, delay)) {
|
|
continue;
|
|
}
|
|
|
|
log("%sinp %s.%s\n", indent.c_str(), cell->name.str(ctx).c_str(), pi.name.str(ctx).c_str());
|
|
|
|
// Recurse
|
|
find_net_drivers(pi.net, drivers, delay_acc + delay.maxDelay(), level+1);
|
|
didGoUpstream = true;
|
|
}
|
|
|
|
// Did not propagate upstream through the cell, mark the net as driver
|
|
if (!didGoUpstream) {
|
|
log("%send %s\n", indent.c_str(), ni->name.str(ctx).c_str());
|
|
drivers[ni->name] = delay_acc;
|
|
}
|
|
};
|
|
|
|
// Identify possible drivers for each clock domain
|
|
dict<IdString, dict<IdString, delay_t>> clock_drivers;
|
|
for (const auto& domain : domains) {
|
|
|
|
const NetInfo* ni = ctx->nets.at(domain.key.clock).get();
|
|
dict<IdString, delay_t> drivers;
|
|
find_net_drivers(ni, drivers, 0, 0);
|
|
|
|
clock_drivers[domain.key.clock] = drivers;
|
|
|
|
log("Clock '%s' can be driven by:\n", domain.key.clock.str(ctx).c_str());
|
|
for (const auto& it : drivers) {
|
|
log(" net '%s' delay %.3fns\n", it.first.str(ctx).c_str(), ctx->getDelayNS(it.second));
|
|
}
|
|
}
|
|
|
|
// Identify related clocks
|
|
for (const auto& c1 : clock_drivers) {
|
|
for (const auto& c2 : clock_drivers) {
|
|
|
|
// Evident?
|
|
if (c1 == c2) {
|
|
continue;
|
|
}
|
|
|
|
// Make an intersection of the two drivers sets
|
|
pool<IdString> common_drivers;
|
|
for (const auto& it : c1.second) {
|
|
common_drivers.insert(it.first);
|
|
}
|
|
for (const auto& it : c2.second) {
|
|
common_drivers.insert(it.first);
|
|
}
|
|
|
|
for (auto it=common_drivers.begin(); it!=common_drivers.end();) {
|
|
if (!c1.second.count(*it) || !c2.second.count(*it)) {
|
|
it = common_drivers.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
// DEBUG //
|
|
log("Clocks '%s' and '%s'\n", c1.first.str(ctx).c_str(), c2.first.str(ctx).c_str());
|
|
for (const auto& it : common_drivers) {
|
|
|
|
// TEST //
|
|
const NetInfo* ni = ctx->nets.at(it).get();
|
|
const CellInfo* cell = ni->driver.cell;
|
|
const IdString port = ni->driver.port;
|
|
|
|
int info_count;
|
|
auto timing_class = ctx->getPortTimingClass(cell, port, info_count);
|
|
// TEST //
|
|
|
|
log(" net '%s', cell %s (%s), port %s, class%d\n",
|
|
it.str(ctx).c_str(),
|
|
cell->name.str(ctx).c_str(),
|
|
cell->type.str(ctx).c_str(),
|
|
port.str(ctx).c_str(),
|
|
int(timing_class)
|
|
);
|
|
}
|
|
// DEBUG //
|
|
|
|
// If there is no single driver then consider the two clocks
|
|
// unrelated.
|
|
if (common_drivers.size() != 1) {
|
|
continue;
|
|
}
|
|
|
|
// Compute delay from c1 to c2 and store it
|
|
auto driver = *common_drivers.begin();
|
|
auto delay = c2.second.at(driver) - c1.second.at(driver);
|
|
clock_delays[std::make_pair(c1.first, c2.first)] = delay;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::reset_times()
|
|
{
|
|
for (auto &port : ports) {
|
|
auto do_reset = [&](dict<domain_id_t, ArrivReqTime> ×) {
|
|
for (auto &t : times) {
|
|
t.second.value = init_delay;
|
|
t.second.path_length = 0;
|
|
t.second.bwd_min = CellPortKey();
|
|
t.second.bwd_max = CellPortKey();
|
|
}
|
|
};
|
|
do_reset(port.second.arrival);
|
|
do_reset(port.second.required);
|
|
for (auto &dp : port.second.domain_pairs) {
|
|
dp.second.setup_slack = std::numeric_limits<delay_t>::max();
|
|
dp.second.hold_slack = std::numeric_limits<delay_t>::max();
|
|
dp.second.max_path_length = 0;
|
|
dp.second.criticality = 0;
|
|
dp.second.budget = 0;
|
|
}
|
|
port.second.worst_crit = 0;
|
|
port.second.worst_setup_slack = std::numeric_limits<delay_t>::max();
|
|
port.second.worst_hold_slack = std::numeric_limits<delay_t>::max();
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::set_arrival_time(CellPortKey target, domain_id_t domain, DelayPair arrival, int path_length,
|
|
CellPortKey prev)
|
|
{
|
|
auto &arr = ports.at(target).arrival.at(domain);
|
|
if (arrival.max_delay > arr.value.max_delay) {
|
|
arr.value.max_delay = arrival.max_delay;
|
|
arr.bwd_max = prev;
|
|
}
|
|
if (!setup_only && (arrival.min_delay < arr.value.min_delay)) {
|
|
arr.value.min_delay = arrival.min_delay;
|
|
arr.bwd_min = prev;
|
|
}
|
|
arr.path_length = std::max(arr.path_length, path_length);
|
|
}
|
|
|
|
void TimingAnalyser::set_required_time(CellPortKey target, domain_id_t domain, DelayPair required, int path_length,
|
|
CellPortKey prev)
|
|
{
|
|
auto &req = ports.at(target).required.at(domain);
|
|
if (required.min_delay < req.value.min_delay) {
|
|
req.value.min_delay = required.min_delay;
|
|
req.bwd_min = prev;
|
|
}
|
|
if (!setup_only && (required.max_delay > req.value.max_delay)) {
|
|
req.value.max_delay = required.max_delay;
|
|
req.bwd_max = prev;
|
|
}
|
|
req.path_length = std::max(req.path_length, path_length);
|
|
}
|
|
|
|
void TimingAnalyser::walk_forward()
|
|
{
|
|
// Assign initial arrival time to domain startpoints
|
|
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
|
|
auto &dom = domains.at(dom_id);
|
|
for (auto &sp : dom.startpoints) {
|
|
auto &pd = ports.at(sp.first);
|
|
DelayPair init_arrival(0);
|
|
CellPortKey clock_key;
|
|
// TODO: clock routing delay, if analysis of that is enabled
|
|
if (sp.second != IdString()) {
|
|
// clocked startpoints have a clock-to-out time
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
if (fanin.type == CellArc::CLK_TO_Q && fanin.other_port == sp.second) {
|
|
init_arrival = init_arrival + fanin.value.delayPair();
|
|
break;
|
|
}
|
|
}
|
|
clock_key = CellPortKey(sp.first.cell, sp.second);
|
|
}
|
|
set_arrival_time(sp.first, dom_id, init_arrival, 1, clock_key);
|
|
}
|
|
}
|
|
// Walk forward in topological order
|
|
for (auto p : topological_order) {
|
|
auto &pd = ports.at(p);
|
|
for (auto &arr : pd.arrival) {
|
|
if (pd.type == PORT_OUT) {
|
|
// Output port: propagate delay through net, adding route delay
|
|
NetInfo *net = port_info(p).net;
|
|
if (net != nullptr)
|
|
for (auto &usr : net->users) {
|
|
CellPortKey usr_key(usr);
|
|
auto &usr_pd = ports.at(usr_key);
|
|
set_arrival_time(usr_key, arr.first, arr.second.value + usr_pd.route_delay,
|
|
arr.second.path_length, p);
|
|
}
|
|
} else if (pd.type == PORT_IN) {
|
|
// Input port; propagate delay through cell, adding combinational delay
|
|
for (auto &fanout : pd.cell_arcs) {
|
|
if (fanout.type != CellArc::COMBINATIONAL)
|
|
continue;
|
|
set_arrival_time(CellPortKey(p.cell, fanout.other_port), arr.first,
|
|
arr.second.value + fanout.value.delayPair(), arr.second.path_length + 1, p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::walk_backward()
|
|
{
|
|
// Assign initial required time to domain endpoints
|
|
// Note that clock frequency will be considered later in the analysis for, for now all required times are normalised
|
|
// to 0ns
|
|
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
|
|
auto &dom = domains.at(dom_id);
|
|
for (auto &ep : dom.endpoints) {
|
|
auto &pd = ports.at(ep.first);
|
|
DelayPair init_setuphold(0);
|
|
CellPortKey clock_key;
|
|
// TODO: clock routing delay, if analysis of that is enabled
|
|
if (ep.second != IdString()) {
|
|
// Add setup/hold time, if this endpoint is clocked
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
if (fanin.type == CellArc::SETUP && fanin.other_port == ep.second)
|
|
init_setuphold.min_delay -= fanin.value.maxDelay();
|
|
if (fanin.type == CellArc::HOLD && fanin.other_port == ep.second)
|
|
init_setuphold.max_delay -= fanin.value.maxDelay();
|
|
}
|
|
clock_key = CellPortKey(ep.first.cell, ep.second);
|
|
}
|
|
set_required_time(ep.first, dom_id, init_setuphold, 1, clock_key);
|
|
}
|
|
}
|
|
// Walk backwards in topological order
|
|
for (auto p : reversed_range(topological_order)) {
|
|
auto &pd = ports.at(p);
|
|
for (auto &req : pd.required) {
|
|
if (pd.type == PORT_IN) {
|
|
// Input port: propagate delay back through net, subtracting route delay
|
|
NetInfo *net = port_info(p).net;
|
|
if (net != nullptr && net->driver.cell != nullptr)
|
|
set_required_time(CellPortKey(net->driver), req.first,
|
|
req.second.value - DelayPair(pd.route_delay.maxDelay()), req.second.path_length,
|
|
p);
|
|
} else if (pd.type == PORT_OUT) {
|
|
// Output port : propagate delay back through cell, subtracting combinational delay
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
if (fanin.type != CellArc::COMBINATIONAL)
|
|
continue;
|
|
set_required_time(CellPortKey(p.cell, fanin.other_port), req.first,
|
|
req.second.value - DelayPair(fanin.value.maxDelay()), req.second.path_length + 1,
|
|
p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::print_fmax()
|
|
{
|
|
// Temporary testing code for comparison only
|
|
dict<int, double> domain_fmax;
|
|
for (auto p : topological_order) {
|
|
auto &pd = ports.at(p);
|
|
for (auto &req : pd.required) {
|
|
if (pd.arrival.count(req.first)) {
|
|
auto &arr = pd.arrival.at(req.first);
|
|
double fmax = 1000.0 / ctx->getDelayNS(arr.value.maxDelay() - req.second.value.minDelay());
|
|
if (!domain_fmax.count(req.first) || domain_fmax.at(req.first) > fmax)
|
|
domain_fmax[req.first] = fmax;
|
|
}
|
|
}
|
|
}
|
|
for (auto &fm : domain_fmax) {
|
|
log_info("Domain %s Worst Fmax %.02f\n", ctx->nameOf(domains.at(fm.first).key.clock), fm.second);
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::compute_slack()
|
|
{
|
|
for (auto &dp : domain_pairs) {
|
|
dp.worst_setup_slack = std::numeric_limits<delay_t>::max();
|
|
dp.worst_hold_slack = std::numeric_limits<delay_t>::max();
|
|
}
|
|
for (auto p : topological_order) {
|
|
auto &pd = ports.at(p);
|
|
for (auto &pdp : pd.domain_pairs) {
|
|
auto &dp = domain_pairs.at(pdp.first);
|
|
|
|
// Get clock names
|
|
const auto& launch_clock = domains.at(dp.key.launch).key.clock;
|
|
const auto& capture_clock = domains.at(dp.key.capture).key.clock;
|
|
|
|
// Get clock-to-clock delay if any
|
|
delay_t clock_to_clock = 0;
|
|
auto clocks = std::make_pair(launch_clock, capture_clock);
|
|
if (clock_delays.count(clocks)) {
|
|
clock_to_clock = clock_delays.at(clocks);
|
|
}
|
|
|
|
auto &arr = pd.arrival.at(dp.key.launch);
|
|
auto &req = pd.required.at(dp.key.capture);
|
|
pdp.second.setup_slack = 0 - (arr.value.maxDelay() - req.value.minDelay() + clock_to_clock);
|
|
if (!setup_only)
|
|
pdp.second.hold_slack = arr.value.minDelay() - req.value.maxDelay() + clock_to_clock;
|
|
pdp.second.max_path_length = arr.path_length + req.path_length;
|
|
if (dp.key.launch == dp.key.capture)
|
|
pd.worst_setup_slack = std::min(pd.worst_setup_slack, dp.period.minDelay() + pdp.second.setup_slack);
|
|
dp.worst_setup_slack = std::min(dp.worst_setup_slack, pdp.second.setup_slack);
|
|
if (!setup_only) {
|
|
pd.worst_hold_slack = std::min(pd.worst_hold_slack, pdp.second.hold_slack);
|
|
dp.worst_hold_slack = std::min(dp.worst_hold_slack, pdp.second.hold_slack);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::compute_criticality()
|
|
{
|
|
for (auto p : topological_order) {
|
|
auto &pd = ports.at(p);
|
|
for (auto &pdp : pd.domain_pairs) {
|
|
auto &dp = domain_pairs.at(pdp.first);
|
|
float crit =
|
|
1.0f - (float(pdp.second.setup_slack) - float(dp.worst_setup_slack)) / float(-dp.worst_setup_slack);
|
|
crit = std::min(crit, 1.0f);
|
|
crit = std::max(crit, 0.0f);
|
|
pdp.second.criticality = crit;
|
|
pd.worst_crit = std::max(pd.worst_crit, crit);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair, int count)
|
|
{
|
|
std::vector<CellPortKey> failing_eps;
|
|
delay_t last_slack = std::numeric_limits<delay_t>::min();
|
|
auto &dp = domain_pairs.at(domain_pair);
|
|
auto &cap_d = domains.at(dp.key.capture);
|
|
while (int(failing_eps.size()) < count) {
|
|
CellPortKey next;
|
|
delay_t next_slack = std::numeric_limits<delay_t>::max();
|
|
for (auto ep : cap_d.endpoints) {
|
|
auto &pd = ports.at(ep.first);
|
|
if (!pd.domain_pairs.count(domain_pair))
|
|
continue;
|
|
delay_t ep_slack = pd.domain_pairs.at(domain_pair).setup_slack;
|
|
if (ep_slack < next_slack && ep_slack > last_slack) {
|
|
next = ep.first;
|
|
next_slack = ep_slack;
|
|
}
|
|
}
|
|
if (next == CellPortKey())
|
|
break;
|
|
failing_eps.push_back(next);
|
|
last_slack = next_slack;
|
|
}
|
|
return failing_eps;
|
|
}
|
|
|
|
void TimingAnalyser::print_critical_path(CellPortKey endpoint, domain_id_t domain_pair)
|
|
{
|
|
CellPortKey cursor = endpoint;
|
|
auto &dp = domain_pairs.at(domain_pair);
|
|
log(" endpoint %s.%s (slack %.02fns):\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
|
|
ctx->getDelayNS(ports.at(cursor).domain_pairs.at(domain_pair).setup_slack));
|
|
while (cursor != CellPortKey()) {
|
|
log(" %s.%s (net %s)\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
|
|
ctx->nameOf(get_net_or_empty(ctx->cells.at(cursor.cell).get(), cursor.port)));
|
|
if (!ports.at(cursor).arrival.count(dp.key.launch))
|
|
break;
|
|
cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max;
|
|
}
|
|
}
|
|
|
|
void TimingAnalyser::print_report()
|
|
{
|
|
for (int i = 0; i < int(domain_pairs.size()); i++) {
|
|
auto &dp = domain_pairs.at(i);
|
|
auto &launch = domains.at(dp.key.launch);
|
|
auto &capture = domains.at(dp.key.capture);
|
|
log("Worst endpoints for %s %s -> %s %s\n", edge_name(launch.key.edge), ctx->nameOf(launch.key.clock),
|
|
edge_name(capture.key.edge), ctx->nameOf(capture.key.clock));
|
|
auto failing_eps = get_failing_eps(i, 5);
|
|
for (auto &ep : failing_eps)
|
|
print_critical_path(ep, i);
|
|
log_break();
|
|
}
|
|
|
|
print_fmax();
|
|
|
|
for (const auto& it : clock_delays) {
|
|
log_info("Clock-to-clock %s -> %s: %0.02f ns\n",
|
|
it.first.first.str(ctx).c_str(),
|
|
it.first.second.str(ctx).c_str(),
|
|
ctx->getDelayNS(it.second)
|
|
);
|
|
}
|
|
}
|
|
|
|
domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockEdge edge)
|
|
{
|
|
return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge);
|
|
}
|
|
domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
|
|
{
|
|
NPNR_ASSERT(net != nullptr);
|
|
ClockDomainKey key{net->name, edge};
|
|
auto inserted = domain_to_id.emplace(key, domains.size());
|
|
if (inserted.second) {
|
|
domains.emplace_back(key);
|
|
}
|
|
return inserted.first->second;
|
|
}
|
|
domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture)
|
|
{
|
|
ClockDomainPairKey key{launch, capture};
|
|
auto inserted = pair_to_id.emplace(key, domain_pairs.size());
|
|
if (inserted.second) {
|
|
domain_pairs.emplace_back(key);
|
|
}
|
|
return inserted.first->second;
|
|
}
|
|
|
|
void TimingAnalyser::copy_domains(const CellPortKey &from, const CellPortKey &to, bool backward)
|
|
{
|
|
auto &f = ports.at(from), &t = ports.at(to);
|
|
for (auto &dom : (backward ? f.required : f.arrival)) {
|
|
updated_domains |= (backward ? t.required : t.arrival).emplace(dom.first, ArrivReqTime{}).second;
|
|
}
|
|
}
|
|
|
|
CellInfo *TimingAnalyser::cell_info(const CellPortKey &key) { return ctx->cells.at(key.cell).get(); }
|
|
|
|
PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.at(key.cell)->ports.at(key.port); }
|
|
|
|
/** LEGACY CODE BEGIN **/
|
|
|
|
typedef std::vector<const PortRef *> PortRefVector;
|
|
typedef std::map<int, unsigned> DelayFrequency;
|
|
|
|
struct CriticalPathData
|
|
{
|
|
PortRefVector ports;
|
|
delay_t path_delay;
|
|
delay_t path_period;
|
|
};
|
|
|
|
typedef dict<ClockPair, CriticalPathData> CriticalPathDataMap;
|
|
|
|
typedef dict<IdString, std::vector<NetSinkTiming>> DetailedNetTimings;
|
|
|
|
struct Timing
|
|
{
|
|
Context *ctx;
|
|
bool net_delays;
|
|
bool update;
|
|
delay_t min_slack;
|
|
CriticalPathDataMap *crit_path;
|
|
DelayFrequency *slack_histogram;
|
|
DetailedNetTimings *detailed_net_timings;
|
|
IdString async_clock;
|
|
|
|
struct TimingData
|
|
{
|
|
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
|
|
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
|
|
delay_t max_arrival;
|
|
unsigned max_path_length = 0;
|
|
delay_t min_remaining_budget;
|
|
bool false_startpoint = false;
|
|
std::vector<delay_t> min_required;
|
|
dict<ClockEvent, delay_t> arrival_time;
|
|
};
|
|
|
|
Timing(Context *ctx, bool net_delays, bool update, CriticalPathDataMap *crit_path = nullptr,
|
|
DelayFrequency *slack_histogram = nullptr, DetailedNetTimings *detailed_net_timings = nullptr)
|
|
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")),
|
|
crit_path(crit_path), slack_histogram(slack_histogram), detailed_net_timings(detailed_net_timings),
|
|
async_clock(ctx->id("$async$"))
|
|
{
|
|
}
|
|
|
|
delay_t walk_paths()
|
|
{
|
|
const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
|
|
|
|
// First, compute the topological order of nets to walk through the circuit, assuming it is a _acyclic_ graph
|
|
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
|
|
std::vector<NetInfo *> topological_order;
|
|
dict<const NetInfo *, dict<ClockEvent, TimingData>, hash_ptr_ops> net_data;
|
|
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
|
|
dict<const PortInfo *, unsigned, hash_ptr_ops> port_fanin;
|
|
|
|
std::vector<IdString> input_ports;
|
|
std::vector<const PortInfo *> output_ports;
|
|
|
|
pool<IdString> ooc_port_nets;
|
|
|
|
// In out-of-context mode, top-level inputs look floating but aren't
|
|
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
|
|
for (auto &p : ctx->ports) {
|
|
if (p.second.type != PORT_IN || p.second.net == nullptr)
|
|
continue;
|
|
ooc_port_nets.insert(p.second.net->name);
|
|
}
|
|
}
|
|
|
|
for (auto &cell : ctx->cells) {
|
|
input_ports.clear();
|
|
output_ports.clear();
|
|
for (auto &port : cell.second->ports) {
|
|
if (!port.second.net)
|
|
continue;
|
|
if (port.second.type == PORT_OUT)
|
|
output_ports.push_back(&port.second);
|
|
else
|
|
input_ports.push_back(port.first);
|
|
}
|
|
|
|
for (auto o : output_ports) {
|
|
int clocks = 0;
|
|
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
|
|
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
|
|
// start-point
|
|
if (portClass == TMG_REGISTER_OUTPUT) {
|
|
topological_order.emplace_back(o->net);
|
|
for (int i = 0; i < clocks; i++) {
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
|
|
const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port);
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
|
net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
|
|
TimingData{clkInfo.clockToQ.maxDelay()};
|
|
}
|
|
|
|
} else {
|
|
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
|
|
topological_order.emplace_back(o->net);
|
|
TimingData td;
|
|
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
|
|
td.max_arrival = 0;
|
|
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
|
|
}
|
|
|
|
// Don't analyse paths from a clock input to other pins - they will be considered by the
|
|
// special-case handling register input/output class ports
|
|
if (portClass == TMG_CLOCK_INPUT)
|
|
continue;
|
|
|
|
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
|
|
// the current output port, increment fanin counter
|
|
for (auto i : input_ports) {
|
|
DelayQuad comb_delay;
|
|
NetInfo *i_net = cell.second->ports[i].net;
|
|
if (i_net->driver.cell == nullptr && !ooc_port_nets.count(i_net->name))
|
|
continue;
|
|
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
|
|
if (is_path)
|
|
port_fanin[o]++;
|
|
}
|
|
// If there is no fanin, add the port as a false startpoint
|
|
if (!port_fanin.count(o) && !net_data.count(o->net)) {
|
|
topological_order.emplace_back(o->net);
|
|
TimingData td;
|
|
td.false_startpoint = true;
|
|
td.max_arrival = 0;
|
|
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// In out-of-context mode, handle top-level ports correctly
|
|
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
|
|
for (auto &p : ctx->ports) {
|
|
if (p.second.type != PORT_IN || p.second.net == nullptr)
|
|
continue;
|
|
topological_order.emplace_back(p.second.net);
|
|
}
|
|
}
|
|
|
|
std::deque<NetInfo *> queue(topological_order.begin(), topological_order.end());
|
|
// Now walk the design, from the start points identified previously, building up a topological order
|
|
while (!queue.empty()) {
|
|
const auto net = queue.front();
|
|
queue.pop_front();
|
|
|
|
for (auto &usr : net->users) {
|
|
int user_clocks;
|
|
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
|
|
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
|
|
continue;
|
|
for (auto &port : usr.cell->ports) {
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
continue;
|
|
int port_clocks;
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);
|
|
|
|
// Skip if this is a clocked output (but allow non-clocked ones)
|
|
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
|
|
portClass == TMG_GEN_CLOCK)
|
|
continue;
|
|
DelayQuad comb_delay;
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
if (!is_path)
|
|
continue;
|
|
// Decrement the fanin count, and only add to topological order if all its fanins have already
|
|
// been visited
|
|
auto it = port_fanin.find(&port.second);
|
|
if (it == port_fanin.end())
|
|
log_error("Timing counted negative fanin count for port %s.%s (net %s), please report this "
|
|
"error.\n",
|
|
ctx->nameOf(usr.cell), ctx->nameOf(port.first), ctx->nameOf(port.second.net));
|
|
if (--it->second == 0) {
|
|
topological_order.emplace_back(port.second.net);
|
|
queue.emplace_back(port.second.net);
|
|
port_fanin.erase(it);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
|
|
if (!port_fanin.empty() && !bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false)) {
|
|
for (auto fanin : port_fanin) {
|
|
NetInfo *net = fanin.first->net;
|
|
if (net != nullptr) {
|
|
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
|
|
net->name.c_str(ctx));
|
|
if (net->driver.cell != nullptr)
|
|
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
|
|
net->driver.port.c_str(ctx));
|
|
for (auto net_user : net->users)
|
|
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
|
|
} else {
|
|
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
|
|
}
|
|
}
|
|
if (ctx->force)
|
|
log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
|
|
"of timing ports, etc.\n");
|
|
else
|
|
log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
|
|
"timing ports, etc.\n");
|
|
}
|
|
|
|
// Go forwards topologically to find the maximum arrival time and max path length for each net
|
|
std::vector<ClockEvent> startdomains;
|
|
for (auto net : topological_order) {
|
|
if (!net_data.count(net))
|
|
continue;
|
|
// Updates later on might invalidate a reference taken here to net_data, so iterate over a list of domains
|
|
// instead
|
|
startdomains.clear();
|
|
{
|
|
auto &nd_map = net_data.at(net);
|
|
for (auto &startdomain : nd_map)
|
|
startdomains.push_back(startdomain.first);
|
|
}
|
|
for (auto &start_clk : startdomains) {
|
|
auto &nd = net_data.at(net).at(start_clk);
|
|
if (nd.false_startpoint)
|
|
continue;
|
|
const auto net_arrival = nd.max_arrival;
|
|
const auto net_length_plus_one = nd.max_path_length + 1;
|
|
nd.min_remaining_budget = clk_period;
|
|
for (auto &usr : net->users) {
|
|
int port_clocks;
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
|
|
auto usr_arrival = net_arrival + net_delay;
|
|
|
|
if (portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || portClass == TMG_CLOCK_INPUT) {
|
|
// Skip
|
|
} else {
|
|
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
|
|
// Iterate over all output ports on the same cell as the sink
|
|
for (auto port : usr.cell->ports) {
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
continue;
|
|
DelayQuad comb_delay;
|
|
// Look up delay through this path
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
if (!is_path)
|
|
continue;
|
|
auto &data = net_data[port.second.net][start_clk];
|
|
auto &arrival = data.max_arrival;
|
|
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
|
|
if (!budget_override) { // Do not increment path length if budget overridden since it
|
|
// doesn't
|
|
// require a share of the slack
|
|
auto &path_length = data.max_path_length;
|
|
path_length = std::max(path_length, net_length_plus_one);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dict<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
|
|
|
|
// Now go backwards topologically to determine the minimum path slack, and to distribute all path slack evenly
|
|
// between all nets on the path
|
|
for (auto net : boost::adaptors::reverse(topological_order)) {
|
|
if (!net_data.count(net))
|
|
continue;
|
|
auto &nd_map = net_data.at(net);
|
|
for (auto &startdomain : nd_map) {
|
|
auto &nd = startdomain.second;
|
|
// Ignore false startpoints
|
|
if (nd.false_startpoint)
|
|
continue;
|
|
const delay_t net_length_plus_one = nd.max_path_length + 1;
|
|
auto &net_min_remaining_budget = nd.min_remaining_budget;
|
|
for (auto &usr : net->users) {
|
|
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
|
|
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
|
|
int port_clocks;
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
|
|
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
|
|
const auto net_arrival = nd.max_arrival;
|
|
const auto endpoint_arrival = net_arrival + net_delay + setup;
|
|
delay_t period;
|
|
// Set default period
|
|
if (edge == startdomain.first.edge) {
|
|
period = clk_period;
|
|
} else {
|
|
period = clk_period / 2;
|
|
}
|
|
if (clksig != async_clock) {
|
|
if (ctx->nets.at(clksig)->clkconstr) {
|
|
if (edge == startdomain.first.edge) {
|
|
// same edge
|
|
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
|
|
} else if (edge == RISING_EDGE) {
|
|
// falling -> rising
|
|
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
|
|
} else if (edge == FALLING_EDGE) {
|
|
// rising -> falling
|
|
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
|
|
}
|
|
}
|
|
}
|
|
auto path_budget = period - endpoint_arrival;
|
|
|
|
if (update) {
|
|
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
|
|
usr.budget = std::min(usr.budget, net_delay + budget_share);
|
|
net_min_remaining_budget =
|
|
std::min(net_min_remaining_budget, path_budget - budget_share);
|
|
}
|
|
|
|
if (path_budget < min_slack)
|
|
min_slack = path_budget;
|
|
|
|
if (slack_histogram) {
|
|
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
|
|
(*slack_histogram)[slack_ps]++;
|
|
}
|
|
ClockEvent dest_ev{clksig, edge};
|
|
ClockPair clockPair{startdomain.first, dest_ev};
|
|
nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);
|
|
|
|
// Store the detailed timing for each net and user (a.k.a. sink)
|
|
if (detailed_net_timings) {
|
|
NetSinkTiming sink_timing;
|
|
sink_timing.clock_pair = clockPair;
|
|
sink_timing.cell_port = std::make_pair(usr.cell->name, usr.port);
|
|
sink_timing.delay = endpoint_arrival;
|
|
sink_timing.budget = period;
|
|
|
|
(*detailed_net_timings)[net->name].push_back(sink_timing);
|
|
}
|
|
|
|
if (crit_path) {
|
|
if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
|
|
crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
|
|
(*crit_path)[clockPair].path_delay = endpoint_arrival;
|
|
(*crit_path)[clockPair].path_period = period;
|
|
(*crit_path)[clockPair].ports.clear();
|
|
(*crit_path)[clockPair].ports.push_back(&usr);
|
|
}
|
|
}
|
|
};
|
|
if (portClass == TMG_REGISTER_INPUT) {
|
|
for (int i = 0; i < port_clocks; i++) {
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
|
|
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
|
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
|
|
}
|
|
} else {
|
|
process_endpoint(async_clock, RISING_EDGE, 0);
|
|
}
|
|
|
|
} else if (update) {
|
|
|
|
// Iterate over all output ports on the same cell as the sink
|
|
for (const auto &port : usr.cell->ports) {
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
continue;
|
|
DelayQuad comb_delay;
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
if (!is_path)
|
|
continue;
|
|
if (net_data.count(port.second.net) &&
|
|
net_data.at(port.second.net).count(startdomain.first)) {
|
|
auto path_budget =
|
|
net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
|
|
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
|
|
usr.budget = std::min(usr.budget, net_delay + budget_share);
|
|
net_min_remaining_budget =
|
|
std::min(net_min_remaining_budget, path_budget - budget_share);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (crit_path) {
|
|
// Walk backwards from the most critical net
|
|
for (auto crit_pair : crit_nets) {
|
|
NetInfo *crit_net = crit_pair.second.second;
|
|
auto &cp_ports = (*crit_path)[crit_pair.first].ports;
|
|
while (crit_net) {
|
|
const PortInfo *crit_ipin = nullptr;
|
|
delay_t max_arrival = std::numeric_limits<delay_t>::min();
|
|
// Look at all input ports on its driving cell
|
|
for (const auto &port : crit_net->driver.cell->ports) {
|
|
if (port.second.type != PORT_IN || !port.second.net)
|
|
continue;
|
|
DelayQuad comb_delay;
|
|
bool is_path =
|
|
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
|
|
if (!is_path)
|
|
continue;
|
|
// If input port is influenced by a clock, skip
|
|
int port_clocks;
|
|
TimingPortClass portClass =
|
|
ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
|
|
if (portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE)
|
|
continue;
|
|
// And find the fanin net with the latest arrival time
|
|
if (net_data.count(port.second.net) &&
|
|
net_data.at(port.second.net).count(crit_pair.first.start)) {
|
|
auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
|
|
if (net_delays) {
|
|
for (auto &user : port.second.net->users)
|
|
if (user.port == port.first && user.cell == crit_net->driver.cell) {
|
|
net_arrival += ctx->getNetinfoRouteDelay(port.second.net, user);
|
|
break;
|
|
}
|
|
}
|
|
net_arrival += comb_delay.maxDelay();
|
|
if (net_arrival > max_arrival) {
|
|
max_arrival = net_arrival;
|
|
crit_ipin = &port.second;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!crit_ipin)
|
|
break;
|
|
// Now convert PortInfo* into a PortRef*
|
|
for (auto &usr : crit_ipin->net->users) {
|
|
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
|
|
cp_ports.push_back(&usr);
|
|
break;
|
|
}
|
|
}
|
|
crit_net = crit_ipin->net;
|
|
}
|
|
std::reverse(cp_ports.begin(), cp_ports.end());
|
|
}
|
|
}
|
|
return min_slack;
|
|
}
|
|
|
|
void assign_budget()
|
|
{
|
|
// Clear delays to a very high value first
|
|
for (auto &net : ctx->nets) {
|
|
for (auto &usr : net.second->users) {
|
|
usr.budget = std::numeric_limits<delay_t>::max();
|
|
}
|
|
}
|
|
|
|
walk_paths();
|
|
}
|
|
};
|
|
|
|
void assign_budget(Context *ctx, bool quiet)
|
|
{
|
|
if (!quiet) {
|
|
log_break();
|
|
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n",
|
|
ctx->setting<float>("target_freq") / 1e6);
|
|
}
|
|
|
|
Timing timing(ctx, ctx->setting<int>("slack_redist_iter") > 0 /* net_delays */, true /* update */);
|
|
timing.assign_budget();
|
|
|
|
if (!quiet || ctx->verbose) {
|
|
for (auto &net : ctx->nets) {
|
|
for (auto &user : net.second->users) {
|
|
// Post-update check
|
|
if (!ctx->setting<bool>("auto_freq") && user.budget < 0)
|
|
log_info("port %s.%s, connected to net '%s', has negative "
|
|
"timing budget of %fns\n",
|
|
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
|
|
ctx->getDelayNS(user.budget));
|
|
else if (ctx->debug)
|
|
log_info("port %s.%s, connected to net '%s', has "
|
|
"timing budget of %fns\n",
|
|
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
|
|
ctx->getDelayNS(user.budget));
|
|
}
|
|
}
|
|
}
|
|
|
|
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
|
|
// currently achieved maximum
|
|
if (ctx->setting<bool>("auto_freq") && ctx->setting<int>("slack_redist_iter") > 0) {
|
|
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->setting<float>("target_freq"));
|
|
ctx->settings[ctx->id("target_freq")] =
|
|
std::to_string(1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack));
|
|
if (ctx->verbose)
|
|
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
|
|
"update = %.2f MHz\n",
|
|
ctx->getDelayNS(timing.min_slack), ctx->setting<float>("target_freq") / 1e6);
|
|
}
|
|
|
|
if (!quiet)
|
|
log_info("Checksum: 0x%08x\n", ctx->checksum());
|
|
}
|
|
|
|
CriticalPath build_critical_path_report(Context *ctx, ClockPair &clocks, const PortRefVector &crit_path)
|
|
{
|
|
|
|
CriticalPath report;
|
|
report.clock_pair = clocks;
|
|
|
|
auto &front = crit_path.front();
|
|
auto &front_port = front->cell->ports.at(front->port);
|
|
auto &front_driver = front_port.net->driver;
|
|
|
|
int port_clocks;
|
|
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
|
|
|
|
const CellInfo *last_cell = front->cell;
|
|
IdString last_port = front_driver.port;
|
|
|
|
int clock_start = -1;
|
|
if (portClass == TMG_REGISTER_OUTPUT) {
|
|
for (int i = 0; i < port_clocks; i++) {
|
|
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
|
|
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
|
|
if (clknet != nullptr && clknet->name == clocks.start.clock && clockInfo.edge == clocks.start.edge) {
|
|
last_port = clockInfo.clock_port;
|
|
clock_start = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto sink : crit_path) {
|
|
auto sink_cell = sink->cell;
|
|
auto &port = sink_cell->ports.at(sink->port);
|
|
auto net = port.net;
|
|
auto &driver = net->driver;
|
|
auto driver_cell = driver.cell;
|
|
|
|
CriticalPath::Segment seg_logic;
|
|
|
|
DelayQuad comb_delay;
|
|
if (clock_start != -1) {
|
|
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
|
|
comb_delay = clockInfo.clockToQ;
|
|
clock_start = -1;
|
|
seg_logic.type = CriticalPath::Segment::Type::CLK_TO_Q;
|
|
} else if (last_port == driver.port) {
|
|
// Case where we start with a STARTPOINT etc
|
|
comb_delay = DelayQuad(0);
|
|
seg_logic.type = CriticalPath::Segment::Type::SOURCE;
|
|
} else {
|
|
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
|
|
seg_logic.type = CriticalPath::Segment::Type::LOGIC;
|
|
}
|
|
|
|
seg_logic.delay = comb_delay.maxDelay();
|
|
seg_logic.budget = 0;
|
|
seg_logic.from = std::make_pair(last_cell->name, last_port);
|
|
seg_logic.to = std::make_pair(driver_cell->name, driver.port);
|
|
seg_logic.net = IdString();
|
|
report.segments.push_back(seg_logic);
|
|
|
|
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
|
|
|
|
CriticalPath::Segment seg_route;
|
|
seg_route.type = CriticalPath::Segment::Type::ROUTING;
|
|
seg_route.delay = net_delay;
|
|
seg_route.budget = sink->budget;
|
|
seg_route.from = std::make_pair(driver_cell->name, driver.port);
|
|
seg_route.to = std::make_pair(sink_cell->name, sink->port);
|
|
seg_route.net = net->name;
|
|
report.segments.push_back(seg_route);
|
|
|
|
last_cell = sink_cell;
|
|
last_port = sink->port;
|
|
}
|
|
|
|
int clockCount = 0;
|
|
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
|
|
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
|
|
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
|
|
delay_t setup = sinkClockInfo.setup.maxDelay();
|
|
|
|
CriticalPath::Segment seg_logic;
|
|
seg_logic.type = CriticalPath::Segment::Type::SETUP;
|
|
seg_logic.delay = setup;
|
|
seg_logic.budget = 0;
|
|
seg_logic.from = std::make_pair(last_cell->name, last_port);
|
|
seg_logic.to = seg_logic.from;
|
|
seg_logic.net = IdString();
|
|
report.segments.push_back(seg_logic);
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure,
|
|
bool update_results)
|
|
{
|
|
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
|
|
std::string value;
|
|
if (e.clock == ctx->id("$async$"))
|
|
value = std::string("<async>");
|
|
else
|
|
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
|
|
if (int(value.length()) < field_width)
|
|
value.insert(value.length(), field_width - int(value.length()), ' ');
|
|
return value;
|
|
};
|
|
|
|
CriticalPathDataMap crit_paths;
|
|
DelayFrequency slack_histogram;
|
|
DetailedNetTimings detailed_net_timings;
|
|
|
|
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
|
|
print_histogram ? &slack_histogram : nullptr,
|
|
(update_results && ctx->detailed_timing_report) ? &detailed_net_timings : nullptr);
|
|
timing.walk_paths();
|
|
|
|
// Use TimingAnalyser to determine clock-to-clock relations
|
|
TimingAnalyser timingAnalyser (ctx);
|
|
timingAnalyser.setup();
|
|
|
|
bool report_critical_paths = print_path || print_fmax || update_results;
|
|
|
|
dict<IdString, CriticalPath> clock_reports;
|
|
std::vector<CriticalPath> xclock_reports;
|
|
dict<IdString, ClockFmax> clock_fmax;
|
|
dict<std::pair<IdString, IdString>, ClockFmax> xclock_fmax;
|
|
std::set<IdString> empty_clocks; // set of clocks with no interior paths
|
|
|
|
if (report_critical_paths) {
|
|
|
|
for (auto path : crit_paths) {
|
|
const ClockEvent &a = path.first.start;
|
|
const ClockEvent &b = path.first.end;
|
|
empty_clocks.insert(a.clock);
|
|
empty_clocks.insert(b.clock);
|
|
}
|
|
for (auto path : crit_paths) {
|
|
const ClockEvent &a = path.first.start;
|
|
const ClockEvent &b = path.first.end;
|
|
if (a.clock != b.clock || a.clock == ctx->id("$async$"))
|
|
continue;
|
|
double Fmax;
|
|
empty_clocks.erase(a.clock);
|
|
if (a.edge == b.edge)
|
|
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
|
|
else
|
|
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
|
|
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock).achieved) {
|
|
clock_fmax[a.clock].achieved = Fmax;
|
|
clock_fmax[a.clock].constraint = 0.0f; // Will be filled later
|
|
clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports);
|
|
clock_reports[a.clock].period = path.second.path_period;
|
|
}
|
|
}
|
|
|
|
for (auto &path : crit_paths) {
|
|
const ClockEvent &a = path.first.start;
|
|
const ClockEvent &b = path.first.end;
|
|
if (a.clock == b.clock && a.clock != ctx->id("$async$"))
|
|
continue;
|
|
|
|
double Fmax;
|
|
if (a.edge == b.edge)
|
|
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
|
|
else
|
|
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
|
|
|
|
auto key = std::make_pair(a.clock, b.clock);
|
|
if (!xclock_fmax.count(key) || Fmax < xclock_fmax.at(key).achieved) {
|
|
xclock_fmax[key].achieved = Fmax;
|
|
xclock_fmax[key].constraint = 0.0f; // Will be filled later
|
|
}
|
|
|
|
auto &crit_path = crit_paths.at(path.first).ports;
|
|
xclock_reports.push_back(build_critical_path_report(ctx, path.first, crit_path));
|
|
xclock_reports.back().period = path.second.path_period;
|
|
}
|
|
|
|
if (clock_reports.empty() && xclock_reports.empty()) {
|
|
log_info("No Fmax available; no interior timing paths found in design.\n");
|
|
}
|
|
|
|
std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPath &ra, const CriticalPath &rb) {
|
|
const auto &a = ra.clock_pair;
|
|
const auto &b = rb.clock_pair;
|
|
|
|
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
|
|
return true;
|
|
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
|
|
return false;
|
|
if (a.start.edge < b.start.edge)
|
|
return true;
|
|
if (a.start.edge > b.start.edge)
|
|
return false;
|
|
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
|
|
return true;
|
|
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
|
|
return false;
|
|
if (a.end.edge < b.end.edge)
|
|
return true;
|
|
return false;
|
|
});
|
|
|
|
for (auto &clock : clock_reports) {
|
|
float target = ctx->setting<float>("target_freq") / 1e6;
|
|
if (ctx->nets.at(clock.first)->clkconstr)
|
|
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
|
|
clock_fmax[clock.first].constraint = target;
|
|
}
|
|
}
|
|
|
|
// Print critical paths
|
|
if (print_path) {
|
|
|
|
static auto print_net_source = [ctx](const NetInfo *net) {
|
|
// Check if this net is annotated with a source list
|
|
auto sources = net->attrs.find(ctx->id("src"));
|
|
if (sources == net->attrs.end()) {
|
|
// No sources for this net, can't print anything
|
|
return;
|
|
}
|
|
|
|
// Sources are separated by pipe characters.
|
|
// There is no guaranteed ordering on sources, so we just print all
|
|
auto sourcelist = sources->second.as_string();
|
|
std::vector<std::string> source_entries;
|
|
size_t current = 0, prev = 0;
|
|
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
|
|
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
|
|
prev = current + 1;
|
|
}
|
|
// Ensure we emplace the final entry
|
|
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
|
|
|
|
// Iterate and print our source list at the correct indentation level
|
|
log_info(" Defined in:\n");
|
|
for (auto entry : source_entries) {
|
|
log_info(" %s\n", entry.c_str());
|
|
}
|
|
};
|
|
|
|
// A helper function for reporting one critical path
|
|
auto print_path_report = [ctx](const CriticalPath &path) {
|
|
delay_t total = 0, logic_total = 0, route_total = 0;
|
|
|
|
log_info("curr total\n");
|
|
for (const auto &segment : path.segments) {
|
|
|
|
total += segment.delay;
|
|
|
|
if (segment.type == CriticalPath::Segment::Type::CLK_TO_Q ||
|
|
segment.type == CriticalPath::Segment::Type::SOURCE ||
|
|
segment.type == CriticalPath::Segment::Type::LOGIC ||
|
|
segment.type == CriticalPath::Segment::Type::SETUP) {
|
|
logic_total += segment.delay;
|
|
|
|
const std::string type_name =
|
|
(segment.type == CriticalPath::Segment::Type::SETUP) ? "Setup" : "Source";
|
|
|
|
log_info("%4.1f %4.1f %s %s.%s\n", ctx->getDelayNS(segment.delay), ctx->getDelayNS(total),
|
|
type_name.c_str(), segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
|
|
} else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
|
|
route_total += segment.delay;
|
|
|
|
const auto &driver = ctx->cells.at(segment.from.first);
|
|
const auto &sink = ctx->cells.at(segment.to.first);
|
|
|
|
auto driver_loc = ctx->getBelLocation(driver->bel);
|
|
auto sink_loc = ctx->getBelLocation(sink->bel);
|
|
|
|
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(segment.delay),
|
|
ctx->getDelayNS(total), segment.net.c_str(ctx), ctx->getDelayNS(segment.budget),
|
|
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y);
|
|
log_info(" Sink %s.%s\n", segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
|
|
|
|
const NetInfo *net = ctx->nets.at(segment.net).get();
|
|
|
|
if (ctx->verbose) {
|
|
|
|
PortRef sink_ref;
|
|
sink_ref.cell = sink.get();
|
|
sink_ref.port = segment.to.second;
|
|
sink_ref.budget = segment.budget;
|
|
|
|
auto driver_wire = ctx->getNetinfoSourceWire(net);
|
|
auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
|
|
log_info(" prediction: %f ns estimate: %f ns\n",
|
|
ctx->getDelayNS(ctx->predictArcDelay(net, sink_ref)),
|
|
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
|
|
auto cursor = sink_wire;
|
|
delay_t delay;
|
|
while (driver_wire != cursor) {
|
|
#ifdef ARCH_ECP5
|
|
if (net->is_global)
|
|
break;
|
|
#endif
|
|
auto it = net->wires.find(cursor);
|
|
assert(it != net->wires.end());
|
|
auto pip = it->second.pip;
|
|
NPNR_ASSERT(pip != PipId());
|
|
delay = ctx->getPipDelay(pip).maxDelay();
|
|
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
|
|
cursor = ctx->getPipSrcWire(pip);
|
|
}
|
|
}
|
|
|
|
if (!ctx->disable_critical_path_source_print) {
|
|
print_net_source(net);
|
|
}
|
|
}
|
|
}
|
|
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
|
|
};
|
|
|
|
// Single domain paths
|
|
for (auto &clock : clock_reports) {
|
|
log_break();
|
|
std::string start = clock.second.clock_pair.start.edge == FALLING_EDGE ? std::string("negedge")
|
|
: std::string("posedge");
|
|
std::string end =
|
|
clock.second.clock_pair.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
|
|
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
|
|
end.c_str());
|
|
auto &report = clock.second;
|
|
print_path_report(report);
|
|
}
|
|
|
|
// Cross-domain paths
|
|
for (auto &report : xclock_reports) {
|
|
log_break();
|
|
std::string start = format_event(report.clock_pair.start);
|
|
std::string end = format_event(report.clock_pair.end);
|
|
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
|
|
print_path_report(report);
|
|
}
|
|
}
|
|
|
|
if (print_fmax) {
|
|
log_break();
|
|
|
|
unsigned max_width = 0;
|
|
for (auto &clock : clock_reports)
|
|
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
|
|
|
|
for (auto &clock : clock_reports) {
|
|
const auto &clock_name = clock.first.str(ctx);
|
|
const int width = max_width - clock_name.size();
|
|
|
|
float fmax = clock_fmax[clock.first].achieved;
|
|
float target = clock_fmax[clock.first].constraint;
|
|
bool passed = target < fmax;
|
|
|
|
if (!warn_on_failure || passed)
|
|
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
|
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
|
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
|
|
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
|
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
|
else
|
|
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
|
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
|
}
|
|
log_break();
|
|
|
|
// All clock to clock delays
|
|
const auto& clock_delays = timingAnalyser.get_clock_delays();
|
|
|
|
// Clock to clock delays for xpaths
|
|
dict<ClockPair, delay_t> xclock_delays;
|
|
for (auto &report : xclock_reports) {
|
|
const auto& clock1_name = report.clock_pair.start.clock;
|
|
const auto& clock2_name = report.clock_pair.end.clock;
|
|
|
|
const auto key = std::make_pair(clock1_name, clock2_name);
|
|
if (clock_delays.count(key)) {
|
|
xclock_delays[report.clock_pair] = clock_delays.at(key);
|
|
}
|
|
}
|
|
|
|
unsigned max_width_xca = 0;
|
|
unsigned max_width_xcb = 0;
|
|
for (auto &report : xclock_reports) {
|
|
max_width_xca = std::max((unsigned)format_event(report.clock_pair.start).length(), max_width_xca);
|
|
max_width_xcb = std::max((unsigned)format_event(report.clock_pair.end).length(), max_width_xcb);
|
|
}
|
|
|
|
// Check and report xpath delays for related clocks
|
|
if (!xclock_reports.empty()) {
|
|
for (auto &report : xclock_reports) {
|
|
const auto& clock_a = report.clock_pair.start.clock;
|
|
const auto& clock_b = report.clock_pair.end.clock;
|
|
|
|
const auto key = std::make_pair(clock_a, clock_b);
|
|
if (!clock_delays.count(key)) {
|
|
continue;
|
|
}
|
|
|
|
delay_t path_delay = 0;
|
|
for (const auto &segment : report.segments) {
|
|
path_delay += segment.delay;
|
|
}
|
|
|
|
// Compensate path delay for clock-to-clock delay. If the
|
|
// result is negative then only the latter matters. Otherwise
|
|
// the compensated path delay is taken.
|
|
auto clock_delay = clock_delays.at(key);
|
|
path_delay -= clock_delay;
|
|
|
|
float fmax = std::numeric_limits<float>::infinity();
|
|
if (path_delay < 0) {
|
|
fmax = 1e3f / ctx->getDelayNS(clock_delay);
|
|
} else if (path_delay > 0) {
|
|
fmax = 1e3f / ctx->getDelayNS(path_delay);
|
|
}
|
|
|
|
// Both clocks are related so they should have the same
|
|
// frequency. However, they may get different constraints from
|
|
// user input. In case of only one constraint preset take it,
|
|
// otherwise get the worst case (min.)
|
|
float target;
|
|
if (clock_fmax.count(clock_a) && !clock_fmax.count(clock_b)) {
|
|
target = clock_fmax.at(clock_a).constraint;
|
|
}
|
|
else if (!clock_fmax.count(clock_a) && clock_fmax.count(clock_b)) {
|
|
target = clock_fmax.at(clock_b).constraint;
|
|
}
|
|
else {
|
|
target = std::min(clock_fmax.at(clock_a).constraint, clock_fmax.at(clock_b).constraint);
|
|
}
|
|
|
|
bool passed = target < fmax;
|
|
|
|
auto ev_a = format_event(report.clock_pair.start, max_width_xca);
|
|
auto ev_b = format_event(report.clock_pair.end, max_width_xcb);
|
|
|
|
if (!warn_on_failure || passed)
|
|
log_info("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n",
|
|
ev_a.c_str(), ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
|
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
|
|
log_warning("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n",
|
|
ev_a.c_str(), ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
|
else
|
|
log_nonfatal_error("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n",
|
|
ev_a.c_str(), ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
|
}
|
|
log_break();
|
|
}
|
|
|
|
// Report clock delays for xpaths
|
|
if (!clock_delays.empty()) {
|
|
for (auto &pair : xclock_delays) {
|
|
auto ev_a = format_event(pair.first.start, max_width_xca);
|
|
auto ev_b = format_event(pair.first.end, max_width_xcb);
|
|
|
|
delay_t delay = pair.second;
|
|
if (pair.first.start.edge != pair.first.end.edge) {
|
|
delay /= 2;
|
|
}
|
|
|
|
log_info("Clock to clock delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(delay));
|
|
}
|
|
|
|
log_break();
|
|
}
|
|
|
|
for (auto &eclock : empty_clocks) {
|
|
if (eclock != ctx->id("$async$"))
|
|
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
|
|
}
|
|
log_break();
|
|
|
|
int start_field_width = 0, end_field_width = 0;
|
|
for (auto &report : xclock_reports) {
|
|
start_field_width = std::max((int)format_event(report.clock_pair.start).length(), start_field_width);
|
|
end_field_width = std::max((int)format_event(report.clock_pair.end).length(), end_field_width);
|
|
}
|
|
|
|
for (auto &report : xclock_reports) {
|
|
const ClockEvent &a = report.clock_pair.start;
|
|
const ClockEvent &b = report.clock_pair.end;
|
|
delay_t path_delay = 0;
|
|
for (const auto &segment : report.segments) {
|
|
path_delay += segment.delay;
|
|
}
|
|
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
|
|
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path_delay));
|
|
}
|
|
log_break();
|
|
}
|
|
|
|
if (print_histogram && slack_histogram.size() > 0) {
|
|
unsigned num_bins = 20;
|
|
unsigned bar_width = 60;
|
|
auto min_slack = slack_histogram.begin()->first;
|
|
auto max_slack = slack_histogram.rbegin()->first;
|
|
auto bin_size = std::max<unsigned>(1, ceil((max_slack - min_slack + 1) / float(num_bins)));
|
|
std::vector<unsigned> bins(num_bins);
|
|
unsigned max_freq = 0;
|
|
for (const auto &i : slack_histogram) {
|
|
int bin_idx = int((i.first - min_slack) / bin_size);
|
|
if (bin_idx < 0)
|
|
bin_idx = 0;
|
|
else if (bin_idx >= int(num_bins))
|
|
bin_idx = num_bins - 1;
|
|
auto &bin = bins.at(bin_idx);
|
|
bin += i.second;
|
|
max_freq = std::max(max_freq, bin);
|
|
}
|
|
bar_width = std::min(bar_width, max_freq);
|
|
|
|
log_break();
|
|
log_info("Slack histogram:\n");
|
|
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
|
|
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
|
|
for (unsigned i = 0; i < num_bins; ++i)
|
|
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
|
|
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
|
|
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
|
|
}
|
|
|
|
// Update timing results in the context
|
|
if (update_results) {
|
|
auto &results = ctx->timing_result;
|
|
|
|
results.clock_fmax = std::move(clock_fmax);
|
|
results.clock_paths = std::move(clock_reports);
|
|
results.xclock_paths = std::move(xclock_reports);
|
|
|
|
results.detailed_net_timings = std::move(detailed_net_timings);
|
|
}
|
|
}
|
|
|
|
NEXTPNR_NAMESPACE_END
|