nextpnr/himbaechel/uarch/gowin/globals.cc
YRabbit 64271649b0 Gowin. Implement clock management primitives.
DQCE and DCS primitives are added.

DQCE allows the internal logic to enable or disable the clock network in
the quadrant. When clock network is disabled, all logic drivern by this
clock is no longer toggled, thus reducing the total power consumtion of
the device.

DCS allows you to select one of four sources for two clock wires (6 and 7).
Wires 6 and 7 have not been used up to this point.

Since "hardware" primitives operate strictly in their own quadrants,
user-specified primitives are converted into one or more "hardware"
primitives as needed.

Also:
  - minor edits to make the most of helper functions like connectPorts()
  - when creating bases, the corresponding constants are assigned to the
    VCC and GND wires, but for now huge nodes are used because, for an
    unknown reason, the constants mechanism makes large examples
    inoperable. So for now we remain on the nodes.

Compatible with older Apicula databases.

Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
2024-07-14 16:53:26 +10:00

569 lines
22 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <queue>
#define HIMBAECHEL_CONSTIDS "uarch/gowin/constids.inc"
#include "himbaechel_constids.h"
#include "himbaechel_helpers.h"
#include "globals.h"
#include "gowin.h"
#include "gowin_utils.h"
NEXTPNR_NAMESPACE_BEGIN
struct GowinGlobalRouter
{
Context *ctx;
GowinUtils gwu;
GowinGlobalRouter(Context *ctx) : ctx(ctx) { gwu.init(ctx); };
bool global_pip_available(PipId pip) const { return gwu.is_global_pip(pip) || ctx->checkPipAvail(pip); };
// allow io->global, global->global and global->tile clock
bool global_pip_filter(PipId pip) const
{
auto is_local = [&](IdString wire_type) {
return !wire_type.in(id_GLOBAL_CLK, id_IO_O, id_IO_I, id_PLL_O, id_PLL_I, id_TILE_CLK);
};
WireId src, dst;
src = ctx->getPipSrcWire(pip);
dst = ctx->getPipDstWire(pip);
IdString dst_name = ctx->getWireName(dst)[1];
bool not_dsc_pip = dst_name != id_CLKOUT;
IdString src_type = ctx->getWireType(src);
IdString dst_type = ctx->getWireType(dst);
bool src_valid = not_dsc_pip && src_type.in(id_GLOBAL_CLK, id_IO_O, id_PLL_O, id_HCLK);
bool dst_valid = not_dsc_pip && dst_type.in(id_GLOBAL_CLK, id_TILE_CLK, id_PLL_I, id_IO_I, id_HCLK);
bool res = (src_valid && dst_valid) || (src_valid && is_local(dst_type)) || (is_local(src_type) && dst_valid);
if (ctx->debug && false /*&& res*/) {
log_info("%s <- %s [%s <- %s]\n", ctx->getWireName(ctx->getPipDstWire(pip)).str(ctx).c_str(),
ctx->getWireName(ctx->getPipSrcWire(pip)).str(ctx).c_str(), dst_type.c_str(ctx),
src_type.c_str(ctx));
log_info("res:%d, src_valid:%d, dst_valid:%d, src local:%d, dst local:%d\n", res, src_valid, dst_valid,
is_local(src_type), is_local(dst_type));
}
return res;
}
bool global_DCS_pip_filter(PipId pip) const
{
auto is_local = [&](IdString wire_type) {
return !wire_type.in(id_GLOBAL_CLK, id_IO_O, id_IO_I, id_PLL_O, id_PLL_I, id_TILE_CLK);
};
WireId src = ctx->getPipSrcWire(pip);
IdString src_type = ctx->getWireType(src);
IdString src_name = ctx->getWireName(src)[1];
bool src_is_spine = src_name.str(ctx).rfind("SPINE", 0) == 0;
IdString dst_type = ctx->getWireType(ctx->getPipDstWire(pip));
bool src_valid = ((!src_is_spine) && src_type.in(id_GLOBAL_CLK, id_IO_O, id_PLL_O, id_HCLK)) ||
src_name.in(id_SPINE6, id_SPINE7, id_SPINE14, id_SPINE15, id_SPINE22, id_SPINE23, id_SPINE30,
id_SPINE31);
bool dst_valid = dst_type.in(id_GLOBAL_CLK, id_TILE_CLK, id_PLL_I, id_IO_I, id_HCLK);
bool res = (src_valid && dst_valid) || (src_valid && is_local(dst_type)) || (is_local(src_type) && dst_valid);
if (ctx->debug && false /*&& res*/) {
log_info("%s <- %s [%s <- %s]\n", ctx->getWireName(ctx->getPipDstWire(pip)).str(ctx).c_str(),
ctx->getWireName(ctx->getPipSrcWire(pip)).str(ctx).c_str(), dst_type.c_str(ctx),
src_type.c_str(ctx));
log_info("res:%d, src_valid:%d, dst_valid:%d, src local:%d, dst local:%d\n", res, src_valid, dst_valid,
is_local(src_type), is_local(dst_type));
}
return res;
}
bool is_relaxed_sink(const PortRef &sink) const { return false; }
// Dedicated backwards BFS routing for global networks
template <typename Tfilt>
bool backwards_bfs_route(NetInfo *net, WireId src, WireId dst, int iter_limit, bool strict, Tfilt pip_filter)
{
// Queue of wires to visit
std::queue<WireId> visit;
// Wire -> upstream pip
dict<WireId, PipId> backtrace;
if (src == dst) {
// Nothing more to do
return true;
}
visit.push(dst);
backtrace[dst] = PipId();
int iter = 0;
while (!visit.empty() && (iter++ < iter_limit)) {
WireId cursor = visit.front();
visit.pop();
// Search uphill pips
for (PipId pip : ctx->getPipsUphill(cursor)) {
// Skip pip if unavailable, and not because it's already used for this net
if (!global_pip_available(pip) && ctx->getBoundPipNet(pip) != net) {
continue;
}
WireId prev = ctx->getPipSrcWire(pip);
// Ditto for the upstream wire
if (!ctx->checkWireAvail(prev) && ctx->getBoundWireNet(prev) != net) {
continue;
}
// Skip already visited wires
if (backtrace.count(prev)) {
continue;
}
// Apply our custom pip filter
if (!pip_filter(pip)) {
continue;
}
// Add to the queue
visit.push(prev);
backtrace[prev] = pip;
// Check if we are done yet
if (prev == src) {
goto done;
}
}
if (false) {
done:
break;
}
}
if (backtrace.count(src)) {
WireId cursor = src;
std::vector<PipId> pips;
// Create a list of pips on the routed path
while (true) {
PipId pip = backtrace.at(cursor);
if (pip == PipId()) {
break;
}
pips.push_back(pip);
cursor = ctx->getPipDstWire(pip);
}
// Reverse that list
std::reverse(pips.begin(), pips.end());
// Bind pips until we hit already-bound routing
for (PipId pip : pips) {
WireId dst = ctx->getPipDstWire(pip);
if (ctx->getBoundWireNet(dst) == net) {
break;
}
ctx->bindPip(pip, net, STRENGTH_LOCKED);
}
return true;
} else {
if (strict) {
log_error("Failed to route net '%s' from %s to %s using dedicated routing.\n", ctx->nameOf(net),
ctx->nameOfWire(src), ctx->nameOfWire(dst));
} else {
log_warning("Failed to route net '%s' from %s to %s using dedicated routing.\n", ctx->nameOf(net),
ctx->nameOfWire(src), ctx->nameOfWire(dst));
return false;
}
}
}
bool driver_is_buf(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_BUFG, id_O); }
bool driver_is_dqce(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_DQCE, id_CLKOUT); }
bool driver_is_dcs(const PortRef &driver) { return CellTypePort(driver) == CellTypePort(id_DCS, id_CLKOUT); }
bool driver_is_clksrc(const PortRef &driver)
{
// dedicated pins
if (CellTypePort(driver) == CellTypePort(id_IBUF, id_O)) {
NPNR_ASSERT(driver.cell->bel != BelId());
IdStringList pin_func = gwu.get_pin_funcs(driver.cell->bel);
for (size_t i = 0; i < pin_func.size(); ++i) {
if (ctx->debug) {
log_info("bel:%s, pin func: %zu:%s\n", ctx->nameOfBel(driver.cell->bel), i,
pin_func[i].str(ctx).c_str());
}
if (pin_func[i].str(ctx).rfind("GCLKT", 0) == 0) {
if (ctx->debug) {
log_info("Clock pin:%s:%s\n", ctx->getBelName(driver.cell->bel).str(ctx).c_str(),
pin_func[i].c_str(ctx));
}
return true;
}
}
}
// PLL outputs
if (driver.cell->type.in(id_rPLL, id_PLLVR)) {
if (driver.port.in(id_CLKOUT, id_CLKOUTD, id_CLKOUTD3, id_CLKOUTP)) {
if (ctx->debug) {
log_info("PLL out:%s:%s\n", ctx->getBelName(driver.cell->bel).str(ctx).c_str(),
driver.port.c_str(ctx));
}
return true;
}
}
return false;
}
enum RouteResult
{
NOT_ROUTED = 0,
ROUTED_PARTIALLY,
ROUTED_ALL
};
RouteResult route_direct_net(NetInfo *net, WireId aux_src = WireId(), bool DCS_pip_only = false)
{
WireId src;
src = aux_src == WireId() ? ctx->getNetinfoSourceWire(net) : aux_src;
if (src == WireId()) {
log_error("Net '%s' has an invalid source port %s.%s\n", ctx->nameOf(net), ctx->nameOf(net->driver.cell),
ctx->nameOf(net->driver.port));
}
if (aux_src == WireId() && ctx->getBoundWireNet(src) != net) {
ctx->bindWire(src, net, STRENGTH_LOCKED);
}
RouteResult routed = NOT_ROUTED;
for (auto usr : net->users) {
WireId dst = ctx->getNetinfoSinkWire(net, usr, 0);
if (dst == WireId()) {
log_error("Net '%s' has an invalid sink port %s.%s\n", ctx->nameOf(net), ctx->nameOf(usr.cell),
ctx->nameOf(usr.port));
}
bool bfs_res;
if (DCS_pip_only) {
bfs_res = backwards_bfs_route(net, src, dst, 1000000, false, [&](PipId pip) {
return (is_relaxed_sink(usr) || global_DCS_pip_filter(pip));
});
} else {
bfs_res = backwards_bfs_route(net, src, dst, 1000000, false, [&](PipId pip) {
return (is_relaxed_sink(usr) || global_pip_filter(pip));
});
}
if (bfs_res) {
routed = routed == ROUTED_PARTIALLY ? routed : ROUTED_ALL;
} else {
routed = routed == NOT_ROUTED ? routed : ROUTED_PARTIALLY;
}
}
if (routed == NOT_ROUTED) {
if (aux_src == WireId()) {
ctx->unbindWire(src);
}
}
return routed;
}
void route_dqce_net(NetInfo *net)
{
// route net after dqce using source of CLKIN net
CellInfo *dqce_ci = net->driver.cell;
NetInfo *net_before_dqce = dqce_ci->getPort(id_CLKIN);
NPNR_ASSERT(net_before_dqce != nullptr);
PortRef driver = net_before_dqce->driver;
NPNR_ASSERT_MSG(driver_is_buf(driver) || driver_is_clksrc(driver),
stringf("The input source for %s is not a clock.", ctx->nameOf(dqce_ci)).c_str());
WireId src;
// use BUF input if there is one
if (driver_is_buf(driver)) {
src = ctx->getBelPinWire(driver.cell->bel, id_I);
} else {
src = ctx->getBelPinWire(driver.cell->bel, driver.port);
}
RouteResult route_result = route_direct_net(net, src);
if (route_result == NOT_ROUTED) {
log_error("Can't route the %s network.\n", ctx->nameOf(net));
}
if (route_result == ROUTED_PARTIALLY) {
log_error("It was not possible to completely route the %s net using only global resources. This is not "
"allowed for DQCE managed networks.\n",
ctx->nameOf(net));
}
// In networks controlled by DQCE, the source can only connect to the
// "spine" wires. Here we not only check this fact, but also find out
// how many and what kind of "spine" wires were used for network
// roaming.
for (PipId pip : ctx->getPipsDownhill(src)) {
if (ctx->getBoundPipNet(pip) == nullptr) {
continue;
}
WireId dst = ctx->getPipDstWire(pip);
BelId dqce_bel = gwu.get_dqce_bel(ctx->getWireName(dst)[1]);
NPNR_ASSERT(dqce_bel != BelId());
// One pseudo DQCE (either logical or custom, whatever you like)
// can be implemented as several hardware dqce - this is because
// each hardware dqce can control only one "spine", that is, a bus
// within one quadrant. Here we find suitable hardware dqces.
CellInfo *hw_dqce = ctx->getBoundBelCell(dqce_bel);
if (ctx->debug) {
log_info(" use %s spine and %s bel for '%s' hw cell.\n", ctx->nameOfWire(dst),
ctx->nameOfBel(dqce_bel), ctx->nameOf(hw_dqce));
}
hw_dqce->setAttr(id_DQCE_PIP, Property(ctx->getPipName(pip).str(ctx)));
ctx->unbindPip(pip);
ctx->bindWire(dst, net, STRENGTH_LOCKED);
// The control network must connect the CE inputs of all hardware dqces.
dqce_ci->copyPortTo(id_CE, hw_dqce, id_CE);
}
net->driver.cell->disconnectPort(net->driver.port);
// remove the virtual DQCE
dqce_ci->disconnectPort(id_CLKIN);
dqce_ci->disconnectPort(id_CE);
ctx->cells.erase(dqce_ci->name);
}
void route_dcs_net(NetInfo *net)
{
// Since CLKOUT is responsible for only one quadrant, we will do
// routing not from it, but from any CLK0-3 input actually connected to
// the clock source.
CellInfo *dcs_ci = net->driver.cell;
NetInfo *net_before_dcs;
PortRef driver;
for (int i = 0; i < 4; ++i) {
net_before_dcs = dcs_ci->getPort(ctx->idf("CLK%d", i));
if (net_before_dcs == nullptr) {
continue;
}
driver = net_before_dcs->driver;
if (driver_is_buf(driver) || driver_is_clksrc(driver)) {
break;
}
net_before_dcs = nullptr;
}
NPNR_ASSERT_MSG(net_before_dcs != nullptr, stringf("No clock inputs for %s.", ctx->nameOf(dcs_ci)).c_str());
WireId src;
// use BUF input if there is one
if (driver_is_buf(driver)) {
src = ctx->getBelPinWire(driver.cell->bel, id_I);
} else {
src = ctx->getBelPinWire(driver.cell->bel, driver.port);
}
RouteResult route_result = route_direct_net(net, src, true);
if (route_result == NOT_ROUTED) {
log_error("Can't route the %s network.\n", ctx->nameOf(net));
}
if (route_result == ROUTED_PARTIALLY) {
log_error("It was not possible to completely route the %s net using only global resources. This is not "
"allowed for DCS managed networks.\n",
ctx->nameOf(net));
}
// In networks controlled by DCS, the source can only connect to the
// "spine" wires. Here we not only check this fact, but also find out
// how many and what kind of "spine" wires were used for network
// roaming.
for (PipId pip : ctx->getPipsDownhill(src)) {
if (ctx->getBoundPipNet(pip) == nullptr) {
continue;
}
WireId dst = ctx->getPipDstWire(pip);
BelId dcs_bel = gwu.get_dcs_bel(ctx->getWireName(dst)[1]);
NPNR_ASSERT(dcs_bel != BelId());
// One pseudo DCS (either logical or custom, whatever you like)
// can be implemented as several hardware dcs - this is because
// each hardware dcs can control only one "spine", that is, a bus
// within one quadrant. Here we find suitable hardware dcses.
CellInfo *hw_dcs = ctx->getBoundBelCell(dcs_bel);
if (ctx->debug) {
log_info(" use %s spine and %s bel for '%s' hw cell.\n", ctx->nameOfWire(dst), ctx->nameOfBel(dcs_bel),
ctx->nameOf(hw_dcs));
}
if (dcs_ci->attrs.count(id_DCS_MODE) != 0) {
hw_dcs->setAttr(id_DCS_MODE, dcs_ci->attrs.at(id_DCS_MODE));
} else {
hw_dcs->setAttr(id_DCS_MODE, Property("RISING"));
}
// Need to release the fake internal DCS PIP which is the only
// downhill pip for DCS inputs
PipId fake_pip = *ctx->getPipsDownhill(dst).begin();
WireId clkout_wire = ctx->getPipDstWire(fake_pip);
if (ctx->debug) {
log_info("fake pip:%s, CLKOUT src:%s\n", ctx->nameOfPip(fake_pip), ctx->nameOfWire(clkout_wire));
}
ctx->unbindPip(fake_pip);
ctx->bindWire(clkout_wire, net, STRENGTH_LOCKED);
ctx->unbindWire(dst);
// The input networks must bs same for all hardware dcs.
dcs_ci->copyPortTo(id_SELFORCE, hw_dcs, id_SELFORCE);
dcs_ci->copyPortBusTo(id_CLK, 0, false, hw_dcs, id_CLK, 0, false, 4);
dcs_ci->copyPortBusTo(id_CLKSEL, 0, true, hw_dcs, id_CLKSEL, 0, false, 4);
}
// remove the virtual DCS
dcs_ci->disconnectPort(id_SELFORCE);
dcs_ci->disconnectPort(id_CLKOUT);
for (int i = 0; i < 4; ++i) {
dcs_ci->disconnectPort(ctx->idf("CLKSEL[%d]", i));
dcs_ci->disconnectPort(ctx->idf("CLK%d", i));
}
log_info(" '%s' net was routed.\n", ctx->nameOf(net));
ctx->cells.erase(dcs_ci->name);
}
void route_buffered_net(NetInfo *net)
{
// a) route net after buf using the buf input as source
CellInfo *buf_ci = net->driver.cell;
WireId src = ctx->getBelPinWire(buf_ci->bel, id_I);
NetInfo *net_before_buf = buf_ci->getPort(id_I);
NPNR_ASSERT(net_before_buf != nullptr);
RouteResult route_result = route_direct_net(net, src);
if (route_result == NOT_ROUTED || route_result == ROUTED_PARTIALLY) {
log_error("Can't route the %s net. It might be worth removing the BUFG buffer flag.\n", ctx->nameOf(net));
}
// b) route net before buf from whatever to the buf input
WireId dst = src;
CellInfo *true_src_ci = net_before_buf->driver.cell;
src = ctx->getBelPinWire(true_src_ci->bel, net_before_buf->driver.port);
ctx->bindWire(src, net, STRENGTH_LOCKED);
backwards_bfs_route(net, src, dst, 1000000, false, [&](PipId pip) { return true; });
// remove net
buf_ci->movePortTo(id_O, true_src_ci, net_before_buf->driver.port);
net_before_buf->driver.cell = nullptr;
log_info(" '%s' net was routed.\n", ctx->nameOf(net));
}
void route_clk_net(NetInfo *net)
{
RouteResult route_result = route_direct_net(net);
if (route_result != NOT_ROUTED) {
log_info(" '%s' net was routed using global resources %s.\n", ctx->nameOf(net),
route_result == ROUTED_ALL ? "only" : "partially");
}
}
void run(void)
{
log_info("Routing globals...\n");
std::vector<IdString> dqce_nets, dcs_nets, buf_nets, clk_nets;
// Determining the priority of network routing
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
CellInfo *drv = ni->driver.cell;
if (drv == nullptr || ni->users.empty()) {
if (ctx->debug) {
log_info("skip empty or driverless net:%s\n", ctx->nameOf(ni));
}
continue;
}
if (driver_is_buf(ni->driver)) {
buf_nets.push_back(net.first);
} else {
if (driver_is_clksrc(ni->driver)) {
clk_nets.push_back(net.first);
} else {
if (driver_is_dqce(ni->driver)) {
dqce_nets.push_back(net.first);
} else {
if (driver_is_dcs(ni->driver)) {
dcs_nets.push_back(net.first);
}
}
}
}
}
// nets with DQCE
for (IdString net_name : dqce_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
if (ctx->verbose) {
log_info("route dqce net '%s'\n", ctx->nameOf(ni));
}
route_dqce_net(ni);
}
// nets with DCS
for (IdString net_name : dcs_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
if (ctx->verbose) {
log_info("route dcs net '%s'\n", ctx->nameOf(ni));
}
route_dcs_net(ni);
}
// buffered nets
for (IdString net_name : buf_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
CellInfo *drv = ni->driver.cell;
if (drv == nullptr || ni->users.empty()) {
if (ctx->debug) {
log_info("skip empty or driverless net:%s\n", ctx->nameOf(ni));
}
continue;
}
if (ctx->verbose) {
log_info("route buffered net '%s'\n", ctx->nameOf(ni));
}
route_buffered_net(ni);
}
// clock nets
for (IdString net_name : clk_nets) {
NetInfo *ni = ctx->nets.at(net_name).get();
CellInfo *drv = ni->driver.cell;
if (drv == nullptr || ni->users.empty()) {
if (ctx->debug) {
log_info("skip empty or driverless net:%s\n", ctx->nameOf(ni));
}
continue;
}
if (ctx->verbose) {
log_info("route clock net '%s'\n", ctx->nameOf(ni));
}
route_clk_net(ni);
}
}
};
void gowin_route_globals(Context *ctx)
{
GowinGlobalRouter router(ctx);
router.run();
}
NEXTPNR_NAMESPACE_END