nextpnr/frontend/frontend_base.h
David Shah 6aaa9f5a3d frontend/base: Functions for port import
Signed-off-by: David Shah <dave@ds0.me>
2019-12-27 10:44:29 +00:00

335 lines
14 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2019 David Shah <dave@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* Generic Frontend Framework
*
* This is designed to make it possible to build frontends for parsing any format isomorphic to Yosys JSON [1]
* with maximal inlining and minimal need for overhead such as runtime polymorphism or extra wrapper types.
*
* [1] http://www.clifford.at/yosys/cmd_write_json.html
*
* The frontend should implement a class referred to as FrontendType that defines the following type(def)s and
* functions:
*
* Types:
* ModuleDataType: corresponds to a single entry in "modules"
* ModulePortDataType: corresponds to a single entry in "ports" of a module
* CellDataType: corresponds to a single entry in "cells"
* NetnameDataType: corresponds to a single entry in "netnames"
* BitVectorDataType: corresponds to a signal/constant bit vector (e.g. a "connections" field)
*
* Functions:
*
* void foreach_module(Func);
* calls Func(const std::string &name, const ModuleDataType &mod);
* for each module in the netlist
*
* void foreach_port(const ModuleDataType &mod, Func);
* calls Func(const std::string &name, const ModulePortDataType &port);
* for each port of mod
*
* void foreach_cell(const ModuleDataType &mod, Func);
* calls Func(const std::string &name, const CellDataType &cell);
* for each cell of mod
*
* void foreach_netname(const ModuleDataType &mod, Func);
* calls Func(const std::string &name, const NetnameDataType &cell);
* for each netname entry of mod
*
* PortType get_port_dir(const ModulePortDataType &port);
* gets the PortType direction of a module port
*
* int get_port_offset(const ModulePortDataType &port);
* gets the start bit number of a port
*
* bool is_port_upto(const ModulePortDataType &port);
* returns true if a port is an "upto" type port
*
* const BitVectorDataType &get_port_bits(const ModulePortDataType &port);
* gets the bit vector of a module port
*
* const std::string& get_cell_type(const CellDataType &cell);
* gets the type of a cell
*
* void foreach_attr(const {ModuleDataType|CellDataType|ModulePortDataType|NetnameDataType} &obj, Func);
* calls Func(const std::string &name, const Property &value);
* for each attribute on a module, cell, module port or net
*
* void foreach_param(const CellDataType &obj, Func);
* calls Func(const std::string &name, const Property &value);
* for each parameter of a cell
*
* void foreach_port_dir(const CellDataType &cell, Func);
* calls Func(const std::string &name, PortType dir);
* for each port direction of a cell
*
* void foreach_port_conn(const CellDataType &cell, Func);
* calls Func(const std::string &name, const BitVectorDataType &conn);
* for each port connection of a cell
*
* const BitVectorDataType &get_net_bits(const NetnameDataType &net);
* gets the BitVector corresponding to the bits entry of a netname field
*
* int get_vector_length(const BitVectorDataType &bits);
* gets the length of a BitVector
*
* bool is_vector_bit_constant(const BitVectorDataType &bits, int i);
* returns true if bit <i> of bits is constant
*
* char get_vector_bit_constval(const BitVectorDataType &bits, int i);
* returns a char [01xz] corresponding to the constant value of bit <i>
*
* int get_vector_bit_signal(const BitVectorDataType &bits, int i);
* returns the signal number of vector bit <i>
*
*/
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
template <typename FrontendType> struct GenericFrontend
{
GenericFrontend(Context *ctx, const FrontendType &impl) : ctx(ctx), impl(impl) {}
Context *ctx;
const FrontendType &impl;
using mod_dat_t = typename FrontendType::ModuleDataType;
using mod_port_dat_t = typename FrontendType::ModulePortDataType;
using cell_dat_t = typename FrontendType::CellDataType;
using netname_dat_t = typename FrontendType::NetnameDataType;
using bitvector_t = typename FrontendType::BitVectorDataType;
// Used for hierarchy resolution
struct ModuleInfo
{
const mod_dat_t *mod_data;
bool is_top = false, is_blackbox = false, is_whitebox = false;
inline bool is_box() const { return is_blackbox || is_whitebox; }
std::unordered_set<IdString> instantiated_celltypes;
};
std::unordered_map<IdString, ModuleInfo> mods;
IdString top;
// Process the list of modules and determine
// the top module
void find_top_module()
{
impl.foreach_module([&](const std::string &name, const mod_dat_t &mod) {
IdString mod_id = ctx->id(name);
auto &mi = mods[mod_id];
mi.mod_data = &mod;
impl.foreach_attr(mod, [&](const std::string &name, const Property &value) {
if (name == "top")
mi.is_top = (value.intval != 0);
else if (name == "blackbox")
mi.is_blackbox = (value.intval != 0);
else if (name == "whitebox")
mi.is_whitebox = (value.intval != 0);
});
impl.foreach_cell(mod, [&](const std::string &name, const cell_dat_t &cell) {
mi.instantiated_cells.insert(ctx->id(impl.get_cell_type(cell)));
});
});
// First of all, see if a top module has been manually specified
if (ctx->settings.count(ctx->id("frontend/top"))) {
IdString user_top = ctx->id(ctx->settings.at(ctx->id("frontend/top")).as_string());
if (!mods.count(user_top))
log_error("Top module '%s' not found!\n", ctx->nameOf(user_top));
top = user_top;
return;
}
// If not, look for a module with the top attribute set
IdString top_by_attr;
for (auto &mod : mods) {
if (mod.second.is_top && !mod.second.is_box()) {
if (top_by_attr != IdString())
log_error("Found multiple modules with (* top *) set (including %s and %s).\n",
ctx->nameOf(top_by_attr), ctx->nameOf(mod.first));
top_by_attr = mod.first;
}
}
if (top_by_attr != IdString()) {
top = top_by_attr;
return;
}
// Finally, attempt to autodetect the top module using hierarchy
// (a module that is not a box and is not used as a cell by any other module)
std::unordered_set<IdString> candidate_top;
for (auto &mod : mods)
if (!mod.second.is_box())
candidate_top.insert(mod.first);
for (auto &mod : mods)
for (auto &c : mod.second.instantiated_celltypes)
candidate_top.erase(c);
if (candidate_top.size() != 1)
log_error("Failed to autodetect top module, please specify using --top.\n");
top = *(candidate_top.begin());
}
// Create a unique name (guaranteed collision free) for a net or a cell; based on
// a base name and suffix. __unique__i will be be appended with increasing i
// if a collision is found until no collision
IdString unique_name(const std::string &base, const std::string &suffix, bool is_net)
{
IdString name;
int incr = 0;
do {
std::string comb = base + suffix;
if (incr > 0) {
comb += "__unique__";
comb += std::to_string(incr);
}
name = ctx->id(comb);
incr++;
} while (is_net ? ctx->nets.count(name) : ctx->cells.count(name));
return name;
}
// A flat index of map; designed to cope with renaming
// A net's udata points into this index
std::vector<NetInfo *> net_flatindex;
// This structure contains some structures specific to the import of a module at
// a certain point in the hierarchy
struct HierModuleState
{
bool is_toplevel;
std::string prefix;
// Map from index in module to "flat" index of nets
std::vector<NetInfo *> index_to_net_flatindex;
// Get a reference to index_to_net; resizing if
// appropriate
NetInfo *&net_by_idx(int idx)
{
NPNR_ASSERT(idx >= 0);
if (idx >= int(index_to_net_flatindex.size()))
index_to_net_flatindex.resize(idx + 1, nullptr);
return index_to_net_flatindex.at(idx);
}
std::unordered_map<IdString, std::vector<NetInfo *>> port_to_bus;
};
void import_module(HierModuleState &m, mod_dat_t *data)
{
std::vector<NetInfo *> index_to_net;
// Import port connections; for submodules only
if (!m.is_toplevel) {
import_port_connections(m, data);
}
}
// Add a constant-driving VCC or GND cell to make a net constant
// (constval can be [01xz], x and z or no-ops)
int const_autoidx = 0;
void add_constant_driver(HierModuleState &m, NetInfo *net, char constval)
{
if (constval == 'x' || constval == 'z')
return; // 'x' or 'z' is the same as undriven
NPNR_ASSERT(constval == '0' || constval == '1');
IdString cell_name = unique_name(
m.prefix, net->name.str(ctx) + (constval == '1' ? "$VCC$" : "$GND$") + std::to_string(const_autoidx++),
false);
CellInfo *cc = ctx->createCell(cell_name, ctx->id(constval == '1' ? "VCC" : "GND"));
cc->ports[ctx->id("Y")].name = ctx->id("Y");
cc->ports[ctx->id("Y")].type = PORT_OUT;
if (net->driver.cell != nullptr)
log_error("Net '%s' is multiply driven by port %s.%s and constant '%c'\n", ctx->nameOf(net),
ctx->nameOf(net->driver.cell), ctx->nameOf(net->driver.port), constval);
connect_port(ctx, net, cc, ctx->id("Y"));
}
// Merge two nets - e.g. if one net in a submodule bifurcates to two output bits and therefore two different
// parent nets
void merge_nets(NetInfo *base, NetInfo *mergee)
{
// Resolve drivers
if (mergee->driver.cell != nullptr) {
if (base->driver.cell != nullptr)
log_error("Attempting to merge nets '%s' and '%s' due to port connectivity; but this would result in a "
"multiply driven net\n",
ctx->nameOf(base), ctx->nameOf(mergee));
else {
mergee->driver.cell->ports[mergee->driver.port].net = base;
base->driver = mergee->driver;
}
}
// Combine users
for (auto &usr : mergee->users) {
usr.cell->ports[usr.port].net = base;
base->users.push_back(usr);
}
// Point aliases to the new net
for (IdString alias : mergee->aliases) {
ctx->net_aliases[alias] = base->name;
base->aliases.push_back(alias);
}
// Create a new alias from mergee's name to new base name
ctx->net_aliases[mergee->name] = base->name;
// Update flat index of nets
net_flatindex.at(mergee->udata) = base;
// Remove merged net from context
ctx->nets.erase(mergee->name);
}
// Import connections between a submodule and its parent
void import_port_connections(HierModuleState &m, const mod_dat_t &data)
{
impl.foreach_port(data, [&](const std::string &name, const mod_port_dat_t &port) {
// CHECK: should disconnected module inputs really just be skipped; or is it better
// to insert a ground driver?
if (!m.port_to_bus.count(ctx->id(name)))
return;
auto &p2b = m.port_to_bus.at(ctx->id(name));
// Get direction and vector of port bits
PortType dir = impl.get_port_dir(port);
const auto &bv = impl.get_port_bits(port);
int bv_size = impl.get_vector_length(bv);
// Iterate over bits of port; making connections
for (int i = 0; i < std::min<int>(bv_size, p2b.size()); i++) {
NetInfo *conn_net = p2b.at(i);
if (conn_net == nullptr)
continue;
if (impl.is_vector_bit_constant(bv, i)) {
// It is a constant, we might need to insert a constant driver here to drive the corresponding
// net in the parent
char constval = impl.get_vector_bit_constval(bv, i);
// Inputs cannot be driving a constant back to the parent
if (dir == PORT_IN)
log_error("Input port %s%s[%d] cannot be driving a constant '%c'.\n", m.prefix.c_str(),
port.c_str(), i, constval);
// Insert the constant driver
add_constant_driver(m, conn_net, constval);
} else {
// If not driving a constant; simply make the port bit net index in the submodule correspond
// to connected net in the parent module
}
}
});
}
};
} // namespace
template <typename FrontendType> void run_frontend(Context *ctx, const FrontendType &impl) {}
NEXTPNR_NAMESPACE_END