nextpnr/common/nextpnr.h
gatecat 6bd3dba1e3 Remove the unused CellInfo::pins field
No arches ever actually used this to implement a Cell->Bel pin mapping,
and in practice if any did try they would inevitably hit bitrot.

This field had limited use in practice as it is necessary to also
support cases where one cell pin maps to more than one bel pin. Removing
this old field is the first step towards developing a new API for this.

Signed-off-by: gatecat <gatecat@ds0.me>
2021-02-10 10:42:26 +00:00

1546 lines
50 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 Serge Bazanski <q3k@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <assert.h>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <boost/functional/hash.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/range/adaptor/reversed.hpp>
#ifndef NPNR_DISABLE_THREADS
#include <boost/thread.hpp>
#endif
#ifndef NEXTPNR_H
#define NEXTPNR_H
#ifdef NEXTPNR_NAMESPACE
#define NEXTPNR_NAMESPACE_PREFIX NEXTPNR_NAMESPACE::
#define NEXTPNR_NAMESPACE_BEGIN namespace NEXTPNR_NAMESPACE {
#define NEXTPNR_NAMESPACE_END }
#define USING_NEXTPNR_NAMESPACE using namespace NEXTPNR_NAMESPACE;
#else
#define NEXTPNR_NAMESPACE_PREFIX
#define NEXTPNR_NAMESPACE_BEGIN
#define NEXTPNR_NAMESPACE_END
#define USING_NEXTPNR_NAMESPACE
#endif
#if defined(__GNUC__) || defined(__clang__)
#define NPNR_ATTRIBUTE(...) __attribute__((__VA_ARGS__))
#define NPNR_NORETURN __attribute__((noreturn))
#define NPNR_DEPRECATED __attribute__((deprecated))
#define NPNR_PACKED_STRUCT(...) __VA_ARGS__ __attribute__((packed))
#elif defined(_MSC_VER)
#define NPNR_ATTRIBUTE(...)
#define NPNR_NORETURN __declspec(noreturn)
#define NPNR_DEPRECATED __declspec(deprecated)
#define NPNR_PACKED_STRUCT(...) __pragma(pack(push, 1)) __VA_ARGS__ __pragma(pack(pop))
#else
#define NPNR_ATTRIBUTE(...)
#define NPNR_NORETURN
#define NPNR_DEPRECATED
#define NPNR_PACKED_STRUCT(...) __VA_ARGS__
#endif
NEXTPNR_NAMESPACE_BEGIN
class assertion_failure : public std::runtime_error
{
public:
assertion_failure(std::string msg, std::string expr_str, std::string filename, int line);
std::string msg;
std::string expr_str;
std::string filename;
int line;
};
NPNR_NORETURN
inline void assert_fail_impl(const char *message, const char *expr_str, const char *filename, int line)
{
throw assertion_failure(message, expr_str, filename, line);
}
NPNR_NORETURN
inline void assert_fail_impl_str(std::string message, const char *expr_str, const char *filename, int line)
{
throw assertion_failure(message, expr_str, filename, line);
}
#define NPNR_ASSERT(cond) (!(cond) ? assert_fail_impl(#cond, #cond, __FILE__, __LINE__) : (void)true)
#define NPNR_ASSERT_MSG(cond, msg) (!(cond) ? assert_fail_impl(msg, #cond, __FILE__, __LINE__) : (void)true)
#define NPNR_ASSERT_FALSE(msg) (assert_fail_impl(msg, "false", __FILE__, __LINE__))
#define NPNR_ASSERT_FALSE_STR(msg) (assert_fail_impl_str(msg, "false", __FILE__, __LINE__))
#define STRINGIFY(x) #x
struct BaseCtx;
struct Context;
struct IdString
{
int index;
static void initialize_arch(const BaseCtx *ctx);
static void initialize_add(const BaseCtx *ctx, const char *s, int idx);
constexpr IdString() : index(0) {}
explicit constexpr IdString(int index) : index(index) {}
void set(const BaseCtx *ctx, const std::string &s);
IdString(const BaseCtx *ctx, const std::string &s) { set(ctx, s); }
IdString(const BaseCtx *ctx, const char *s) { set(ctx, s); }
const std::string &str(const BaseCtx *ctx) const;
const char *c_str(const BaseCtx *ctx) const;
bool operator<(const IdString &other) const { return index < other.index; }
bool operator==(const IdString &other) const { return index == other.index; }
bool operator!=(const IdString &other) const { return index != other.index; }
bool empty() const { return index == 0; }
};
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX IdString>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX IdString &obj) const noexcept
{
return std::hash<int>()(obj.index);
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
// An small size optimised array that is statically allocated when the size is N or less; heap allocated otherwise
template <typename T, size_t N> class SSOArray
{
private:
union
{
T data_static[N];
T *data_heap;
};
size_t m_size;
inline bool is_heap() const { return (m_size > N); }
void alloc()
{
if (is_heap()) {
data_heap = new T[m_size];
}
}
public:
T *data() { return is_heap() ? data_heap : data_static; }
const T *data() const { return is_heap() ? data_heap : data_static; }
size_t size() const { return m_size; }
T *begin() { return data(); }
T *end() { return data() + m_size; }
const T *begin() const { return data(); }
const T *end() const { return data() + m_size; }
SSOArray() : m_size(0){};
SSOArray(size_t size, const T &init = T()) : m_size(size)
{
alloc();
std::fill(begin(), end(), init);
}
SSOArray(const SSOArray &other) : m_size(other.size())
{
alloc();
std::copy(other.begin(), other.end(), begin());
}
template <typename Tother> SSOArray(const Tother &other) : m_size(other.size())
{
alloc();
std::copy(other.begin(), other.end(), begin());
}
~SSOArray()
{
if (is_heap()) {
delete[] data_heap;
}
}
bool operator==(const SSOArray &other) const
{
if (size() != other.size())
return false;
return std::equal(begin(), end(), other.begin());
}
bool operator!=(const SSOArray &other) const
{
if (size() != other.size())
return true;
return !std::equal(begin(), end(), other.begin());
}
T &operator[](size_t idx)
{
NPNR_ASSERT(idx < m_size);
return data()[idx];
}
const T &operator[](size_t idx) const
{
NPNR_ASSERT(idx < m_size);
return data()[idx];
}
};
struct IdStringList
{
SSOArray<IdString, 4> ids;
IdStringList(){};
explicit IdStringList(size_t n) : ids(n, IdString()){};
explicit IdStringList(IdString id) : ids(1, id){};
template <typename Tlist> explicit IdStringList(const Tlist &list) : ids(list){};
static IdStringList parse(Context *ctx, const std::string &str);
void build_str(const Context *ctx, std::string &str) const;
std::string str(const Context *ctx) const;
size_t size() const { return ids.size(); }
const IdString *begin() const { return ids.begin(); }
const IdString *end() const { return ids.end(); }
const IdString &operator[](size_t idx) const { return ids[idx]; }
bool operator==(const IdStringList &other) const { return ids == other.ids; }
bool operator!=(const IdStringList &other) const { return ids != other.ids; }
bool operator<(const IdStringList &other) const
{
if (size() > other.size())
return false;
if (size() < other.size())
return true;
for (size_t i = 0; i < size(); i++) {
IdString a = ids[i], b = other[i];
if (a.index < b.index)
return true;
if (a.index > b.index)
return false;
}
return false;
}
};
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX IdStringList>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX IdStringList &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<size_t>()(obj.size()));
for (auto &id : obj)
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(id));
return seed;
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
// A ring buffer of strings, so we can return a simple const char * pointer for %s formatting - inspired by how logging
// in Yosys works Let's just hope noone tries to log more than 100 things in one call....
class StrRingBuffer
{
private:
static const size_t N = 100;
std::array<std::string, N> buffer;
size_t index = 0;
public:
std::string &next();
};
struct GraphicElement
{
enum type_t
{
TYPE_NONE,
TYPE_LINE,
TYPE_ARROW,
TYPE_BOX,
TYPE_CIRCLE,
TYPE_LABEL,
TYPE_MAX
} type = TYPE_NONE;
enum style_t
{
STYLE_GRID,
STYLE_FRAME, // Static "frame". Contrast between STYLE_INACTIVE and STYLE_ACTIVE
STYLE_HIDDEN, // Only display when object is selected or highlighted
STYLE_INACTIVE, // Render using low-contrast color
STYLE_ACTIVE, // Render using high-contast color
// UI highlight groups
STYLE_HIGHLIGHTED0,
STYLE_HIGHLIGHTED1,
STYLE_HIGHLIGHTED2,
STYLE_HIGHLIGHTED3,
STYLE_HIGHLIGHTED4,
STYLE_HIGHLIGHTED5,
STYLE_HIGHLIGHTED6,
STYLE_HIGHLIGHTED7,
STYLE_SELECTED,
STYLE_HOVER,
STYLE_MAX
} style = STYLE_FRAME;
float x1 = 0, y1 = 0, x2 = 0, y2 = 0, z = 0;
std::string text;
GraphicElement(){};
GraphicElement(type_t type, style_t style, float x1, float y1, float x2, float y2, float z)
: type(type), style(style), x1(x1), y1(y1), x2(x2), y2(y2), z(z){};
};
struct Loc
{
int x = -1, y = -1, z = -1;
Loc() {}
Loc(int x, int y, int z) : x(x), y(y), z(z) {}
bool operator==(const Loc &other) const { return (x == other.x) && (y == other.y) && (z == other.z); }
bool operator!=(const Loc &other) const { return (x != other.x) || (y != other.y) || (z != other.z); }
};
struct ArcBounds
{
int x0 = -1, y0 = -1, x1 = -1, y1 = -1;
ArcBounds() {}
ArcBounds(int x0, int y0, int x1, int y1) : x0(x0), y0(y0), x1(x1), y1(y1){};
int distance(Loc loc) const
{
int dist = 0;
if (loc.x < x0)
dist += x0 - loc.x;
if (loc.x > x1)
dist += loc.x - x1;
if (loc.y < y0)
dist += y0 - loc.y;
if (loc.y > y1)
dist += loc.y - y1;
return dist;
};
};
struct TimingConstrObjectId
{
int32_t index = -1;
bool operator==(const TimingConstrObjectId &other) const { return index == other.index; }
bool operator!=(const TimingConstrObjectId &other) const { return index != other.index; }
};
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX Loc>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX Loc &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<int>()(obj.x));
boost::hash_combine(seed, hash<int>()(obj.y));
boost::hash_combine(seed, hash<int>()(obj.z));
return seed;
}
};
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX TimingConstrObjectId>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX TimingConstrObjectId &obj) const noexcept
{
return hash<int>()(obj.index);
}
};
} // namespace std
#include "archdefs.h"
NEXTPNR_NAMESPACE_BEGIN
struct DecalXY
{
DecalId decal;
float x = 0, y = 0;
bool operator==(const DecalXY &other) const { return (decal == other.decal && x == other.x && y == other.y); }
};
struct BelPin
{
BelId bel;
IdString pin;
};
struct CellInfo;
struct Region
{
IdString name;
bool constr_bels = false;
bool constr_wires = false;
bool constr_pips = false;
std::unordered_set<BelId> bels;
std::unordered_set<WireId> wires;
std::unordered_set<Loc> piplocs;
};
enum PlaceStrength
{
STRENGTH_NONE = 0,
STRENGTH_WEAK = 1,
STRENGTH_STRONG = 2,
STRENGTH_FIXED = 3,
STRENGTH_LOCKED = 4,
STRENGTH_USER = 5
};
struct PortRef
{
CellInfo *cell = nullptr;
IdString port;
delay_t budget = 0;
};
struct PipMap
{
PipId pip = PipId();
PlaceStrength strength = STRENGTH_NONE;
};
struct Property
{
enum State : char
{
S0 = '0',
S1 = '1',
Sx = 'x',
Sz = 'z'
};
Property();
Property(int64_t intval, int width = 32);
Property(const std::string &strval);
Property(State bit);
Property &operator=(const Property &other) = default;
bool is_string;
// The string literal (for string values), or a string of [01xz] (for numeric values)
std::string str;
// The lower 64 bits (for numeric values), unused for string values
int64_t intval;
void update_intval()
{
intval = 0;
for (int i = 0; i < int(str.size()); i++) {
NPNR_ASSERT(str[i] == S0 || str[i] == S1 || str[i] == Sx || str[i] == Sz);
if ((str[i] == S1) && i < 64)
intval |= (1ULL << i);
}
}
int64_t as_int64() const
{
NPNR_ASSERT(!is_string);
return intval;
}
std::vector<bool> as_bits() const
{
std::vector<bool> result;
result.reserve(str.size());
NPNR_ASSERT(!is_string);
for (auto c : str)
result.push_back(c == S1);
return result;
}
std::string as_string() const
{
NPNR_ASSERT(is_string);
return str;
}
const char *c_str() const
{
NPNR_ASSERT(is_string);
return str.c_str();
}
size_t size() const { return is_string ? 8 * str.size() : str.size(); }
double as_double() const
{
NPNR_ASSERT(is_string);
return std::stod(str);
}
bool as_bool() const
{
if (int(str.size()) <= 64)
return intval != 0;
else
return std::any_of(str.begin(), str.end(), [](char c) { return c == S1; });
}
bool is_fully_def() const
{
return !is_string && std::all_of(str.begin(), str.end(), [](char c) { return c == S0 || c == S1; });
}
Property extract(int offset, int len, State padding = State::S0) const
{
Property ret;
ret.is_string = false;
ret.str.reserve(len);
for (int i = offset; i < offset + len; i++)
ret.str.push_back(i < int(str.size()) ? str[i] : padding);
ret.update_intval();
return ret;
}
// Convert to a string representation, escaping literal strings matching /^[01xz]* *$/ by adding a space at the end,
// to disambiguate from binary strings
std::string to_string() const;
// Convert a string of four-value binary [01xz], or a literal string escaped according to the above rule
// to a Property
static Property from_string(const std::string &s);
};
inline bool operator==(const Property &a, const Property &b) { return a.is_string == b.is_string && a.str == b.str; }
inline bool operator!=(const Property &a, const Property &b) { return a.is_string != b.is_string || a.str != b.str; }
struct ClockConstraint;
struct NetInfo : ArchNetInfo
{
IdString name, hierpath;
int32_t udata = 0;
PortRef driver;
std::vector<PortRef> users;
std::unordered_map<IdString, Property> attrs;
// wire -> uphill_pip
std::unordered_map<WireId, PipMap> wires;
std::vector<IdString> aliases; // entries in net_aliases that point to this net
std::unique_ptr<ClockConstraint> clkconstr;
TimingConstrObjectId tmg_id;
Region *region = nullptr;
};
enum PortType
{
PORT_IN = 0,
PORT_OUT = 1,
PORT_INOUT = 2
};
struct PortInfo
{
IdString name;
NetInfo *net;
PortType type;
TimingConstrObjectId tmg_id;
};
struct CellInfo : ArchCellInfo
{
IdString name, type, hierpath;
int32_t udata;
std::unordered_map<IdString, PortInfo> ports;
std::unordered_map<IdString, Property> attrs, params;
BelId bel;
PlaceStrength belStrength = STRENGTH_NONE;
// placement constraints
CellInfo *constr_parent = nullptr;
std::vector<CellInfo *> constr_children;
const int UNCONSTR = INT_MIN;
int constr_x = UNCONSTR; // this.x - parent.x
int constr_y = UNCONSTR; // this.y - parent.y
int constr_z = UNCONSTR; // this.z - parent.z
bool constr_abs_z = false; // parent.z := 0
// parent.[xyz] := 0 when (constr_parent == nullptr)
Region *region = nullptr;
TimingConstrObjectId tmg_id;
void addInput(IdString name);
void addOutput(IdString name);
void addInout(IdString name);
void setParam(IdString name, Property value);
void unsetParam(IdString name);
void setAttr(IdString name, Property value);
void unsetAttr(IdString name);
};
enum TimingPortClass
{
TMG_CLOCK_INPUT, // Clock input to a sequential cell
TMG_GEN_CLOCK, // Generated clock output (PLL, DCC, etc)
TMG_REGISTER_INPUT, // Input to a register, with an associated clock (may also have comb. fanout too)
TMG_REGISTER_OUTPUT, // Output from a register
TMG_COMB_INPUT, // Combinational input, no paths end here
TMG_COMB_OUTPUT, // Combinational output, no paths start here
TMG_STARTPOINT, // Unclocked primary startpoint, such as an IO cell output
TMG_ENDPOINT, // Unclocked primary endpoint, such as an IO cell input
TMG_IGNORE, // Asynchronous to all clocks, "don't care", and should be ignored (false path) for analysis
};
enum ClockEdge
{
RISING_EDGE,
FALLING_EDGE
};
struct TimingClockingInfo
{
IdString clock_port; // Port name of clock domain
ClockEdge edge;
DelayInfo setup, hold; // Input timing checks
DelayInfo clockToQ; // Output clock-to-Q time
};
struct ClockConstraint
{
DelayInfo high;
DelayInfo low;
DelayInfo period;
TimingConstrObjectId domain_tmg_id;
};
struct TimingConstraintObject
{
TimingConstrObjectId id;
enum
{
ANYTHING,
CLOCK_DOMAIN,
NET,
CELL,
CELL_PORT
} type;
IdString entity; // Name of clock net; net or cell
IdString port; // Name of port on a cell
};
struct TimingConstraint
{
IdString name;
enum
{
FALSE_PATH,
MIN_DELAY,
MAX_DELAY,
MULTICYCLE,
} type;
delay_t value;
std::unordered_set<TimingConstrObjectId> from;
std::unordered_set<TimingConstrObjectId> to;
};
// Represents the contents of a non-leaf cell in a design
// with hierarchy
struct HierarchicalPort
{
IdString name;
PortType dir;
std::vector<IdString> nets;
int offset;
bool upto;
};
struct HierarchicalCell
{
IdString name, type, parent, fullpath;
// Name inside cell instance -> global name
std::unordered_map<IdString, IdString> leaf_cells, nets;
// Global name -> name inside cell instance
std::unordered_map<IdString, IdString> leaf_cells_by_gname, nets_by_gname;
// Cell port to net
std::unordered_map<IdString, HierarchicalPort> ports;
// Name inside cell instance -> global name
std::unordered_map<IdString, IdString> hier_cells;
};
inline bool operator==(const std::pair<const TimingConstrObjectId, TimingConstraint *> &a,
const std::pair<TimingConstrObjectId, TimingConstraint *> &b)
{
return a.first == b.first && a.second == b.second;
}
struct DeterministicRNG
{
uint64_t rngstate;
DeterministicRNG() : rngstate(0x3141592653589793) {}
uint64_t rng64()
{
// xorshift64star
// https://arxiv.org/abs/1402.6246
uint64_t retval = rngstate * 0x2545F4914F6CDD1D;
rngstate ^= rngstate >> 12;
rngstate ^= rngstate << 25;
rngstate ^= rngstate >> 27;
return retval;
}
int rng() { return rng64() & 0x3fffffff; }
int rng(int n)
{
assert(n > 0);
// round up to power of 2
int m = n - 1;
m |= (m >> 1);
m |= (m >> 2);
m |= (m >> 4);
m |= (m >> 8);
m |= (m >> 16);
m += 1;
while (1) {
int x = rng64() & (m - 1);
if (x < n)
return x;
}
}
void rngseed(uint64_t seed)
{
rngstate = seed ? seed : 0x3141592653589793;
for (int i = 0; i < 5; i++)
rng64();
}
template <typename Iter> void shuffle(const Iter &begin, const Iter &end)
{
size_t size = end - begin;
for (size_t i = 0; i != size; i++) {
size_t j = i + rng(size - i);
if (j > i)
std::swap(*(begin + i), *(begin + j));
}
}
template <typename T> void shuffle(std::vector<T> &a) { shuffle(a.begin(), a.end()); }
template <typename T> void sorted_shuffle(std::vector<T> &a)
{
std::sort(a.begin(), a.end());
shuffle(a);
}
};
struct BaseCtx
{
#ifndef NPNR_DISABLE_THREADS
// Lock to perform mutating actions on the Context.
std::mutex mutex;
boost::thread::id mutex_owner;
// Lock to be taken by UI when wanting to access context - the yield()
// method will lock/unlock it when its' released the main mutex to make
// sure the UI is not starved.
std::mutex ui_mutex;
#endif
// ID String database.
mutable std::unordered_map<std::string, int> *idstring_str_to_idx;
mutable std::vector<const std::string *> *idstring_idx_to_str;
// Temporary string backing store for logging
mutable StrRingBuffer log_strs;
// Project settings and config switches
std::unordered_map<IdString, Property> settings;
// Placed nets and cells.
std::unordered_map<IdString, std::unique_ptr<NetInfo>> nets;
std::unordered_map<IdString, std::unique_ptr<CellInfo>> cells;
// Hierarchical (non-leaf) cells by full path
std::unordered_map<IdString, HierarchicalCell> hierarchy;
// This is the root of the above structure
IdString top_module;
// Aliases for nets, which may have more than one name due to assignments and hierarchy
std::unordered_map<IdString, IdString> net_aliases;
// Top-level ports
std::unordered_map<IdString, PortInfo> ports;
// Floorplanning regions
std::unordered_map<IdString, std::unique_ptr<Region>> region;
// Context meta data
std::unordered_map<IdString, Property> attrs;
Context *as_ctx = nullptr;
BaseCtx()
{
idstring_str_to_idx = new std::unordered_map<std::string, int>;
idstring_idx_to_str = new std::vector<const std::string *>;
IdString::initialize_add(this, "", 0);
IdString::initialize_arch(this);
TimingConstraintObject wildcard;
wildcard.id.index = 0;
wildcard.type = TimingConstraintObject::ANYTHING;
constraintObjects.push_back(wildcard);
}
virtual ~BaseCtx()
{
delete idstring_str_to_idx;
delete idstring_idx_to_str;
}
// Must be called before performing any mutating changes on the Ctx/Arch.
void lock(void)
{
#ifndef NPNR_DISABLE_THREADS
mutex.lock();
mutex_owner = boost::this_thread::get_id();
#endif
}
void unlock(void)
{
#ifndef NPNR_DISABLE_THREADS
NPNR_ASSERT(boost::this_thread::get_id() == mutex_owner);
mutex.unlock();
#endif
}
// Must be called by the UI before rendering data. This lock will be
// prioritized when processing code calls yield().
void lock_ui(void)
{
#ifndef NPNR_DISABLE_THREADS
ui_mutex.lock();
mutex.lock();
#endif
}
void unlock_ui(void)
{
#ifndef NPNR_DISABLE_THREADS
mutex.unlock();
ui_mutex.unlock();
#endif
}
// Yield to UI by unlocking the main mutex, flashing the UI mutex and
// relocking the main mutex. Call this when you're performing a
// long-standing action while holding a lock to let the UI show
// visualization updates.
// Must be called with the main lock taken.
void yield(void)
{
#ifndef NPNR_DISABLE_THREADS
unlock();
ui_mutex.lock();
ui_mutex.unlock();
lock();
#endif
}
IdString id(const std::string &s) const { return IdString(this, s); }
IdString id(const char *s) const { return IdString(this, s); }
Context *getCtx() { return as_ctx; }
const Context *getCtx() const { return as_ctx; }
const char *nameOf(IdString name) const { return name.c_str(this); }
template <typename T> const char *nameOf(const T *obj) const
{
if (obj == nullptr)
return "";
return obj->name.c_str(this);
}
const char *nameOfBel(BelId bel) const;
const char *nameOfWire(WireId wire) const;
const char *nameOfPip(PipId pip) const;
const char *nameOfGroup(GroupId group) const;
// Wrappers of arch functions that take a string and handle IdStringList parsing
BelId getBelByNameStr(const std::string &str);
WireId getWireByNameStr(const std::string &str);
PipId getPipByNameStr(const std::string &str);
GroupId getGroupByNameStr(const std::string &str);
// --------------------------------------------------------------
bool allUiReload = true;
bool frameUiReload = false;
std::unordered_set<BelId> belUiReload;
std::unordered_set<WireId> wireUiReload;
std::unordered_set<PipId> pipUiReload;
std::unordered_set<GroupId> groupUiReload;
void refreshUi() { allUiReload = true; }
void refreshUiFrame() { frameUiReload = true; }
void refreshUiBel(BelId bel) { belUiReload.insert(bel); }
void refreshUiWire(WireId wire) { wireUiReload.insert(wire); }
void refreshUiPip(PipId pip) { pipUiReload.insert(pip); }
void refreshUiGroup(GroupId group) { groupUiReload.insert(group); }
// --------------------------------------------------------------
// Timing Constraint API
// constraint name -> constraint
std::unordered_map<IdString, std::unique_ptr<TimingConstraint>> constraints;
// object ID -> object
std::vector<TimingConstraintObject> constraintObjects;
// object ID -> constraint
std::unordered_multimap<TimingConstrObjectId, TimingConstraint *> constrsFrom;
std::unordered_multimap<TimingConstrObjectId, TimingConstraint *> constrsTo;
TimingConstrObjectId timingWildcardObject();
TimingConstrObjectId timingClockDomainObject(NetInfo *clockDomain);
TimingConstrObjectId timingNetObject(NetInfo *net);
TimingConstrObjectId timingCellObject(CellInfo *cell);
TimingConstrObjectId timingPortObject(CellInfo *cell, IdString port);
NetInfo *getNetByAlias(IdString alias) const
{
return nets.count(alias) ? nets.at(alias).get() : nets.at(net_aliases.at(alias)).get();
}
void addConstraint(std::unique_ptr<TimingConstraint> constr);
void removeConstraint(IdString constrName);
// Intended to simplify Python API
void addClock(IdString net, float freq);
void createRectangularRegion(IdString name, int x0, int y0, int x1, int y1);
void addBelToRegion(IdString name, BelId bel);
void constrainCellToRegion(IdString cell, IdString region_name);
// Helper functions for Python bindings
NetInfo *createNet(IdString name);
void connectPort(IdString net, IdString cell, IdString port);
void disconnectPort(IdString cell, IdString port);
void ripupNet(IdString name);
void lockNetRouting(IdString name);
CellInfo *createCell(IdString name, IdString type);
void copyBelPorts(IdString cell, BelId bel);
// Workaround for lack of wrappable constructors
DecalXY constructDecalXY(DecalId decal, float x, float y);
void archInfoToAttributes();
void attributesToArchInfo();
};
namespace {
// For several functions; such as bel/wire/pip attributes; the trivial implementation is to return an empty vector
// But an arch might want to do something fancy with a custom range type that doesn't provide a constructor
// So some cursed C++ is needed to return an empty object if possible; or error out if not; is needed
template <typename Tc> typename std::enable_if<std::is_constructible<Tc>::value, Tc>::type empty_if_possible()
{
return Tc();
}
template <typename Tc> typename std::enable_if<!std::is_constructible<Tc>::value, Tc>::type empty_if_possible()
{
NPNR_ASSERT_FALSE("attempting to use default implementation of range-returning function with range type lacking "
"default constructor!");
}
// Provide a default implementation of bel bucket name if typedef'd to IdString
template <typename Tbbid>
typename std::enable_if<std::is_same<Tbbid, IdString>::value, IdString>::type bbid_to_name(Tbbid id)
{
return id;
}
template <typename Tbbid>
typename std::enable_if<!std::is_same<Tbbid, IdString>::value, IdString>::type bbid_to_name(Tbbid id)
{
NPNR_ASSERT_FALSE("getBelBucketName must be implemented when BelBucketId is a type other than IdString!");
}
template <typename Tbbid>
typename std::enable_if<std::is_same<Tbbid, IdString>::value, BelBucketId>::type bbid_from_name(IdString name)
{
return name;
}
template <typename Tbbid>
typename std::enable_if<!std::is_same<Tbbid, IdString>::value, BelBucketId>::type bbid_from_name(IdString name)
{
NPNR_ASSERT_FALSE("getBelBucketByName must be implemented when BelBucketId is a type other than IdString!");
}
// For the cell type and bel type ranges; we want to return our stored vectors only if the type matches
template <typename Tret, typename Tc>
typename std::enable_if<std::is_same<Tret, Tc>::value, Tret>::type return_if_match(Tret r)
{
return r;
}
template <typename Tret, typename Tc>
typename std::enable_if<!std::is_same<Tret, Tc>::value, Tret>::type return_if_match(Tret r)
{
NPNR_ASSERT_FALSE("default implementations of cell type and bel bucket range functions only available when the "
"respective range types are 'const std::vector&'");
}
} // namespace
// The specification of the Arch API (pure virtual)
template <typename R> struct ArchAPI : BaseCtx
{
// Basic config
virtual IdString archId() const = 0;
virtual std::string getChipName() const = 0;
virtual typename R::ArchArgsT archArgs() const = 0;
virtual IdString archArgsToId(typename R::ArchArgsT args) const = 0;
virtual int getGridDimX() const = 0;
virtual int getGridDimY() const = 0;
virtual int getTileBelDimZ(int x, int y) const = 0;
virtual int getTilePipDimZ(int x, int y) const = 0;
virtual char getNameDelimiter() const = 0;
// Bel methods
virtual typename R::AllBelsRangeT getBels() const = 0;
virtual IdStringList getBelName(BelId bel) const = 0;
virtual BelId getBelByName(IdStringList name) const = 0;
virtual uint32_t getBelChecksum(BelId bel) const = 0;
virtual void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) = 0;
virtual void unbindBel(BelId bel) = 0;
virtual Loc getBelLocation(BelId bel) const = 0;
virtual BelId getBelByLocation(Loc loc) const = 0;
virtual typename R::TileBelsRangeT getBelsByTile(int x, int y) const = 0;
virtual bool getBelGlobalBuf(BelId bel) const = 0;
virtual bool checkBelAvail(BelId bel) const = 0;
virtual CellInfo *getBoundBelCell(BelId bel) const = 0;
virtual CellInfo *getConflictingBelCell(BelId bel) const = 0;
virtual IdString getBelType(BelId bel) const = 0;
virtual typename R::BelAttrsRangeT getBelAttrs(BelId bel) const = 0;
virtual WireId getBelPinWire(BelId bel, IdString pin) const = 0;
virtual PortType getBelPinType(BelId bel, IdString pin) const = 0;
virtual typename R::BelPinsRangeT getBelPins(BelId bel) const = 0;
// Wire methods
virtual typename R::AllWiresRangeT getWires() const = 0;
virtual WireId getWireByName(IdStringList name) const = 0;
virtual IdStringList getWireName(WireId wire) const = 0;
virtual IdString getWireType(WireId wire) const = 0;
virtual typename R::WireAttrsRangeT getWireAttrs(WireId) const = 0;
virtual typename R::DownhillPipRangeT getPipsDownhill(WireId wire) const = 0;
virtual typename R::UphillPipRangeT getPipsUphill(WireId wire) const = 0;
virtual typename R::WireBelPinRangeT getWireBelPins(WireId wire) const = 0;
virtual uint32_t getWireChecksum(WireId wire) const = 0;
virtual void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) = 0;
virtual void unbindWire(WireId wire) = 0;
virtual bool checkWireAvail(WireId wire) const = 0;
virtual NetInfo *getBoundWireNet(WireId wire) const = 0;
virtual WireId getConflictingWireWire(WireId wire) const = 0;
virtual NetInfo *getConflictingWireNet(WireId wire) const = 0;
virtual DelayInfo getWireDelay(WireId wire) const = 0;
// Pip methods
virtual typename R::AllPipsRangeT getPips() const = 0;
virtual PipId getPipByName(IdStringList name) const = 0;
virtual IdStringList getPipName(PipId pip) const = 0;
virtual IdString getPipType(PipId pip) const = 0;
virtual typename R::PipAttrsRangeT getPipAttrs(PipId) const = 0;
virtual uint32_t getPipChecksum(PipId pip) const = 0;
virtual void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) = 0;
virtual void unbindPip(PipId pip) = 0;
virtual bool checkPipAvail(PipId pip) const = 0;
virtual NetInfo *getBoundPipNet(PipId pip) const = 0;
virtual WireId getConflictingPipWire(PipId pip) const = 0;
virtual NetInfo *getConflictingPipNet(PipId pip) const = 0;
virtual WireId getPipSrcWire(PipId pip) const = 0;
virtual WireId getPipDstWire(PipId pip) const = 0;
virtual DelayInfo getPipDelay(PipId pip) const = 0;
virtual Loc getPipLocation(PipId pip) const = 0;
// Group methods
virtual GroupId getGroupByName(IdStringList name) const = 0;
virtual IdStringList getGroupName(GroupId group) const = 0;
virtual typename R::AllGroupsRangeT getGroups() const = 0;
virtual typename R::GroupBelsRangeT getGroupBels(GroupId group) const = 0;
virtual typename R::GroupWiresRangeT getGroupWires(GroupId group) const = 0;
virtual typename R::GroupPipsRangeT getGroupPips(GroupId group) const = 0;
virtual typename R::GroupGroupsRangeT getGroupGroups(GroupId group) const = 0;
// Delay Methods
virtual delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const = 0;
virtual delay_t getDelayEpsilon() const = 0;
virtual delay_t getRipupDelayPenalty() const = 0;
virtual float getDelayNS(delay_t v) const = 0;
virtual DelayInfo getDelayFromNS(float ns) const = 0;
virtual uint32_t getDelayChecksum(delay_t v) const = 0;
virtual bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const = 0;
virtual delay_t estimateDelay(WireId src, WireId dst) const = 0;
virtual ArcBounds getRouteBoundingBox(WireId src, WireId dst) const = 0;
// Decal methods
virtual typename R::DecalGfxRangeT getDecalGraphics(DecalId decal) const = 0;
virtual DecalXY getBelDecal(BelId bel) const = 0;
virtual DecalXY getWireDecal(WireId wire) const = 0;
virtual DecalXY getPipDecal(PipId pip) const = 0;
virtual DecalXY getGroupDecal(GroupId group) const = 0;
// Cell timing methods
virtual bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const = 0;
virtual TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const = 0;
virtual TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const = 0;
// Placement validity checks
virtual bool isValidBelForCellType(IdString cell_type, BelId bel) const = 0;
virtual IdString getBelBucketName(BelBucketId bucket) const = 0;
virtual BelBucketId getBelBucketByName(IdString name) const = 0;
virtual BelBucketId getBelBucketForBel(BelId bel) const = 0;
virtual BelBucketId getBelBucketForCellType(IdString cell_type) const = 0;
virtual bool isValidBelForCell(CellInfo *cell, BelId bel) const = 0;
virtual bool isBelLocationValid(BelId bel) const = 0;
virtual typename R::CellTypeRangeT getCellTypes() const = 0;
virtual typename R::BelBucketRangeT getBelBuckets() const = 0;
virtual typename R::BucketBelRangeT getBelsInBucket(BelBucketId bucket) const = 0;
// Flow methods
virtual bool pack() = 0;
virtual bool place() = 0;
virtual bool route() = 0;
virtual void assignArchInfo() = 0;
};
// This contains the relevant range types for the default implementations of Arch functions
struct BaseArchRanges
{
// Attributes
using BelAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
using WireAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
using PipAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
// Groups
using AllGroupsRangeT = std::vector<GroupId>;
using GroupBelsRangeT = std::vector<BelId>;
using GroupWiresRangeT = std::vector<WireId>;
using GroupPipsRangeT = std::vector<PipId>;
using GroupGroupsRangeT = std::vector<GroupId>;
// Decals
using DecalGfxRangeT = std::vector<GraphicElement>;
// Placement validity
using CellTypeRangeT = const std::vector<IdString> &;
using BelBucketRangeT = const std::vector<BelBucketId> &;
using BucketBelRangeT = const std::vector<BelId> &;
};
template <typename R> struct BaseArch : ArchAPI<R>
{
// --------------------------------------------------------------
// Default, trivial, implementations of Arch API functions for arches that don't need complex behaviours
// Basic config
virtual IdString archId() const override { return this->id(STRINGIFY(ARCHNAME)); }
virtual IdString archArgsToId(typename R::ArchArgsT args) const { return IdString(); }
virtual int getTilePipDimZ(int x, int y) const override { return 1; }
virtual char getNameDelimiter() const override { return ' '; }
// Bel methods
virtual uint32_t getBelChecksum(BelId bel) const override { return uint32_t(std::hash<BelId>()(bel)); }
virtual void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) override
{
NPNR_ASSERT(bel != BelId());
auto &entry = base_bel2cell[bel];
NPNR_ASSERT(entry == nullptr);
cell->bel = bel;
cell->belStrength = strength;
entry = cell;
this->refreshUiBel(bel);
}
virtual void unbindBel(BelId bel) override
{
NPNR_ASSERT(bel != BelId());
auto &entry = base_bel2cell[bel];
NPNR_ASSERT(entry != nullptr);
entry->bel = BelId();
entry->belStrength = STRENGTH_NONE;
entry = nullptr;
this->refreshUiBel(bel);
}
virtual bool getBelGlobalBuf(BelId bel) const override { return false; }
virtual bool checkBelAvail(BelId bel) const override { return getBoundBelCell(bel) == nullptr; };
virtual CellInfo *getBoundBelCell(BelId bel) const override
{
auto fnd = base_bel2cell.find(bel);
return fnd == base_bel2cell.end() ? nullptr : fnd->second;
}
virtual CellInfo *getConflictingBelCell(BelId bel) const override { return getBoundBelCell(bel); }
virtual typename R::BelAttrsRangeT getBelAttrs(BelId bel) const override
{
return empty_if_possible<typename R::BelAttrsRangeT>();
}
// Wire methods
virtual IdString getWireType(WireId wire) const override { return IdString(); }
virtual typename R::WireAttrsRangeT getWireAttrs(WireId) const override
{
return empty_if_possible<typename R::WireAttrsRangeT>();
}
virtual uint32_t getWireChecksum(WireId wire) const override { return uint32_t(std::hash<WireId>()(wire)); }
virtual void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) override
{
NPNR_ASSERT(wire != WireId());
auto &w2n_entry = base_wire2net[wire];
NPNR_ASSERT(w2n_entry == nullptr);
net->wires[wire].pip = PipId();
net->wires[wire].strength = strength;
w2n_entry = net;
this->refreshUiWire(wire);
}
virtual void unbindWire(WireId wire) override
{
NPNR_ASSERT(wire != WireId());
auto &w2n_entry = base_wire2net[wire];
NPNR_ASSERT(w2n_entry != nullptr);
auto &net_wires = w2n_entry->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
base_pip2net[pip] = nullptr;
}
net_wires.erase(it);
base_wire2net[wire] = nullptr;
w2n_entry = nullptr;
this->refreshUiWire(wire);
}
virtual bool checkWireAvail(WireId wire) const override { return getBoundWireNet(wire) == nullptr; }
virtual NetInfo *getBoundWireNet(WireId wire) const override
{
auto fnd = base_wire2net.find(wire);
return fnd == base_wire2net.end() ? nullptr : fnd->second;
}
virtual WireId getConflictingWireWire(WireId wire) const override { return wire; };
virtual NetInfo *getConflictingWireNet(WireId wire) const override { return getBoundWireNet(wire); }
// Pip methods
virtual IdString getPipType(PipId pip) const { return IdString(); }
virtual typename R::PipAttrsRangeT getPipAttrs(PipId) const override
{
return empty_if_possible<typename R::PipAttrsRangeT>();
}
virtual uint32_t getPipChecksum(PipId pip) const override { return uint32_t(std::hash<PipId>()(pip)); }
virtual void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) override
{
NPNR_ASSERT(pip != PipId());
auto &p2n_entry = base_pip2net[pip];
NPNR_ASSERT(p2n_entry == nullptr);
p2n_entry = net;
WireId dst = this->getPipDstWire(pip);
auto &w2n_entry = base_wire2net[dst];
NPNR_ASSERT(w2n_entry == nullptr);
w2n_entry = net;
net->wires[dst].pip = pip;
net->wires[dst].strength = strength;
}
virtual void unbindPip(PipId pip) override
{
NPNR_ASSERT(pip != PipId());
auto &p2n_entry = base_pip2net[pip];
NPNR_ASSERT(p2n_entry != nullptr);
WireId dst = this->getPipDstWire(pip);
auto &w2n_entry = base_wire2net[dst];
NPNR_ASSERT(w2n_entry != nullptr);
w2n_entry = nullptr;
p2n_entry->wires.erase(dst);
p2n_entry = nullptr;
}
virtual bool checkPipAvail(PipId pip) const override { return getBoundPipNet(pip) == nullptr; }
virtual NetInfo *getBoundPipNet(PipId pip) const override
{
auto fnd = base_pip2net.find(pip);
return fnd == base_pip2net.end() ? nullptr : fnd->second;
}
virtual WireId getConflictingPipWire(PipId pip) const override { return WireId(); }
virtual NetInfo *getConflictingPipNet(PipId pip) const override { return getBoundPipNet(pip); }
// Group methods
virtual GroupId getGroupByName(IdStringList name) const override { return GroupId(); };
virtual IdStringList getGroupName(GroupId group) const override { return IdStringList(); };
virtual typename R::AllGroupsRangeT getGroups() const override
{
return empty_if_possible<typename R::AllGroupsRangeT>();
}
// Default implementation of these assumes no groups so never called
virtual typename R::GroupBelsRangeT getGroupBels(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual typename R::GroupWiresRangeT getGroupWires(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual typename R::GroupPipsRangeT getGroupPips(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual typename R::GroupGroupsRangeT getGroupGroups(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
// Delay methods
virtual bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const override
{
return false;
}
// Decal methods
virtual typename R::DecalGfxRangeT getDecalGraphics(DecalId decal) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual DecalXY getBelDecal(BelId bel) const override { return DecalXY(); }
virtual DecalXY getWireDecal(WireId wire) const override { return DecalXY(); }
virtual DecalXY getPipDecal(PipId pip) const override { return DecalXY(); }
virtual DecalXY getGroupDecal(GroupId group) const override { return DecalXY(); }
// Cell timing methods
virtual bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const override
{
return false;
}
virtual TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const override
{
return TMG_IGNORE;
}
virtual TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const override
{
NPNR_ASSERT_FALSE("unreachable");
}
// Placement validity checks
virtual bool isValidBelForCellType(IdString cell_type, BelId bel) const override
{
return cell_type == this->getBelType(bel);
}
virtual IdString getBelBucketName(BelBucketId bucket) const override { return bbid_to_name<BelBucketId>(bucket); }
virtual BelBucketId getBelBucketByName(IdString name) const override { return bbid_from_name<BelBucketId>(name); }
virtual BelBucketId getBelBucketForBel(BelId bel) const override
{
return getBelBucketForCellType(this->getBelType(bel));
};
virtual BelBucketId getBelBucketForCellType(IdString cell_type) const override
{
return getBelBucketByName(cell_type);
};
virtual bool isValidBelForCell(CellInfo *cell, BelId bel) const override { return true; }
virtual bool isBelLocationValid(BelId bel) const override { return true; }
virtual typename R::CellTypeRangeT getCellTypes() const override
{
NPNR_ASSERT(cell_types_initialised);
return return_if_match<const std::vector<IdString> &, typename R::CellTypeRangeT>(cell_types);
}
virtual typename R::BelBucketRangeT getBelBuckets() const override
{
NPNR_ASSERT(bel_buckets_initialised);
return return_if_match<const std::vector<BelBucketId> &, typename R::BelBucketRangeT>(bel_buckets);
}
virtual typename R::BucketBelRangeT getBelsInBucket(BelBucketId bucket) const override
{
NPNR_ASSERT(bel_buckets_initialised);
return return_if_match<const std::vector<BelId> &, typename R::BucketBelRangeT>(bucket_bels.at(bucket));
}
// Flow methods
virtual void assignArchInfo() override{};
// --------------------------------------------------------------
// These structures are used to provide default implementations of bel/wire/pip binding. Arches might want to
// replace them with their own, for example to use faster access structures than unordered_map. Arches might also
// want to add extra checks around these functions
std::unordered_map<BelId, CellInfo *> base_bel2cell;
std::unordered_map<WireId, NetInfo *> base_wire2net;
std::unordered_map<PipId, NetInfo *> base_pip2net;
// For the default cell/bel bucket implementations
std::vector<IdString> cell_types;
std::vector<BelBucketId> bel_buckets;
std::unordered_map<BelBucketId, std::vector<BelId>> bucket_bels;
// Arches that want to use the default cell types and bel buckets *must* call these functions in their constructor
bool cell_types_initialised = false;
bool bel_buckets_initialised = false;
void init_cell_types()
{
std::unordered_set<IdString> bel_types;
for (auto bel : this->getBels())
bel_types.insert(this->getBelType(bel));
std::copy(bel_types.begin(), bel_types.end(), std::back_inserter(cell_types));
std::sort(cell_types.begin(), cell_types.end());
cell_types_initialised = true;
}
void init_bel_buckets()
{
for (auto cell_type : this->getCellTypes()) {
auto bucket = this->getBelBucketForCellType(cell_type);
bucket_bels[bucket]; // create empty bucket
}
for (auto bel : this->getBels()) {
auto bucket = this->getBelBucketForBel(bel);
bucket_bels[bucket].push_back(bel);
}
for (auto &b : bucket_bels)
bel_buckets.push_back(b.first);
std::sort(bel_buckets.begin(), bel_buckets.end());
bel_buckets_initialised = true;
}
};
NEXTPNR_NAMESPACE_END
#include "arch.h"
NEXTPNR_NAMESPACE_BEGIN
struct Context : Arch, DeterministicRNG
{
bool verbose = false;
bool debug = false;
bool force = false;
// Should we disable printing of the location of nets in the critical path?
bool disable_critical_path_source_print = false;
Context(ArchArgs args) : Arch(args) { BaseCtx::as_ctx = this; }
// --------------------------------------------------------------
WireId getNetinfoSourceWire(const NetInfo *net_info) const;
WireId getNetinfoSinkWire(const NetInfo *net_info, const PortRef &sink) const;
delay_t getNetinfoRouteDelay(const NetInfo *net_info, const PortRef &sink) const;
// provided by router1.cc
bool checkRoutedDesign() const;
bool getActualRouteDelay(WireId src_wire, WireId dst_wire, delay_t *delay = nullptr,
std::unordered_map<WireId, PipId> *route = nullptr, bool useEstimate = true);
// --------------------------------------------------------------
// call after changing hierpath or adding/removing nets and cells
void fixupHierarchy();
// --------------------------------------------------------------
// provided by sdf.cc
void writeSDF(std::ostream &out, bool cvc_mode = false) const;
// --------------------------------------------------------------
// provided by svg.cc
void writeSVG(const std::string &filename, const std::string &flags = "") const;
// --------------------------------------------------------------
uint32_t checksum() const;
void check() const;
void archcheck() const;
template <typename T> T setting(const char *name, T defaultValue)
{
IdString new_id = id(name);
auto found = settings.find(new_id);
if (found != settings.end())
return boost::lexical_cast<T>(found->second.is_string ? found->second.as_string()
: std::to_string(found->second.as_int64()));
else
settings[id(name)] = std::to_string(defaultValue);
return defaultValue;
}
template <typename T> T setting(const char *name) const
{
IdString new_id = id(name);
auto found = settings.find(new_id);
if (found != settings.end())
return boost::lexical_cast<T>(found->second.is_string ? found->second.as_string()
: std::to_string(found->second.as_int64()));
else
throw std::runtime_error("settings does not exists");
}
};
NEXTPNR_NAMESPACE_END
#endif