nextpnr/common/nextpnr.cc
gatecat 535723f414 Start making use of getBelPinsForCellPin API
This replaces getNetinfoSinkWire with 3 new functions for different use
cases.

At the moment all existing code has been moved to getNetinfoSinkWire
with phys_idx=0 so the build doesn't break; but this won't yet function
properly with more than one sink. But it provides a base on which to
work on refactoring the routers to support this case.

Signed-off-by: gatecat <gatecat@ds0.me>
2021-02-10 14:18:12 +00:00

977 lines
33 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "nextpnr.h"
#include <boost/algorithm/string.hpp>
#include "design_utils.h"
#include "log.h"
#include "util.h"
#if defined(__wasm)
extern "C" {
// FIXME: WASI does not currently support exceptions.
void *__cxa_allocate_exception(size_t thrown_size) throw() { return malloc(thrown_size); }
bool __cxa_uncaught_exception() throw();
void __cxa_throw(void *thrown_exception, struct std::type_info *tinfo, void (*dest)(void *)) { std::terminate(); }
}
namespace boost {
void throw_exception(std::exception const &e) { NEXTPNR_NAMESPACE::log_error("boost::exception(): %s\n", e.what()); }
} // namespace boost
#endif
NEXTPNR_NAMESPACE_BEGIN
assertion_failure::assertion_failure(std::string msg, std::string expr_str, std::string filename, int line)
: runtime_error("Assertion failure: " + msg + " (" + filename + ":" + std::to_string(line) + ")"), msg(msg),
expr_str(expr_str), filename(filename), line(line)
{
log_flush();
}
void IdString::set(const BaseCtx *ctx, const std::string &s)
{
auto it = ctx->idstring_str_to_idx->find(s);
if (it == ctx->idstring_str_to_idx->end()) {
index = ctx->idstring_idx_to_str->size();
auto insert_rc = ctx->idstring_str_to_idx->insert({s, index});
ctx->idstring_idx_to_str->push_back(&insert_rc.first->first);
} else {
index = it->second;
}
}
const std::string &IdString::str(const BaseCtx *ctx) const { return *ctx->idstring_idx_to_str->at(index); }
const char *IdString::c_str(const BaseCtx *ctx) const { return str(ctx).c_str(); }
void IdString::initialize_add(const BaseCtx *ctx, const char *s, int idx)
{
NPNR_ASSERT(ctx->idstring_str_to_idx->count(s) == 0);
NPNR_ASSERT(int(ctx->idstring_idx_to_str->size()) == idx);
auto insert_rc = ctx->idstring_str_to_idx->insert({s, idx});
ctx->idstring_idx_to_str->push_back(&insert_rc.first->first);
}
IdStringList IdStringList::parse(Context *ctx, const std::string &str)
{
char delim = ctx->getNameDelimiter();
size_t id_count = std::count(str.begin(), str.end(), delim) + 1;
IdStringList list(id_count);
size_t start = 0;
for (size_t i = 0; i < id_count; i++) {
size_t end = str.find(delim, start);
NPNR_ASSERT((i == (id_count - 1)) || (end != std::string::npos));
list.ids[i] = ctx->id(str.substr(start, end - start));
start = end + 1;
}
return list;
}
void IdStringList::build_str(const Context *ctx, std::string &str) const
{
char delim = ctx->getNameDelimiter();
bool first = true;
str.clear();
for (auto entry : ids) {
if (!first)
str += delim;
str += entry.str(ctx);
first = false;
}
}
std::string IdStringList::str(const Context *ctx) const
{
std::string s;
build_str(ctx, s);
return s;
}
TimingConstrObjectId BaseCtx::timingWildcardObject()
{
TimingConstrObjectId id;
id.index = 0;
return id;
}
std::string &StrRingBuffer::next()
{
std::string &s = buffer.at(index++);
if (index >= N)
index = 0;
return s;
}
TimingConstrObjectId BaseCtx::timingClockDomainObject(NetInfo *clockDomain)
{
NPNR_ASSERT(clockDomain->clkconstr != nullptr);
if (clockDomain->clkconstr->domain_tmg_id != TimingConstrObjectId()) {
return clockDomain->clkconstr->domain_tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::CLOCK_DOMAIN;
obj.entity = clockDomain->name;
clockDomain->clkconstr->domain_tmg_id = id;
constraintObjects.push_back(obj);
return id;
}
}
TimingConstrObjectId BaseCtx::timingNetObject(NetInfo *net)
{
if (net->tmg_id != TimingConstrObjectId()) {
return net->tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::NET;
obj.entity = net->name;
constraintObjects.push_back(obj);
net->tmg_id = id;
return id;
}
}
TimingConstrObjectId BaseCtx::timingCellObject(CellInfo *cell)
{
if (cell->tmg_id != TimingConstrObjectId()) {
return cell->tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::CELL;
obj.entity = cell->name;
constraintObjects.push_back(obj);
cell->tmg_id = id;
return id;
}
}
TimingConstrObjectId BaseCtx::timingPortObject(CellInfo *cell, IdString port)
{
if (cell->ports.at(port).tmg_id != TimingConstrObjectId()) {
return cell->ports.at(port).tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::CELL_PORT;
obj.entity = cell->name;
obj.port = port;
constraintObjects.push_back(obj);
cell->ports.at(port).tmg_id = id;
return id;
}
}
Property::Property() : is_string(false), str(""), intval(0) {}
Property::Property(int64_t intval, int width) : is_string(false), intval(intval)
{
str.reserve(width);
for (int i = 0; i < width; i++)
str.push_back((intval & (1ULL << i)) ? S1 : S0);
}
Property::Property(const std::string &strval) : is_string(true), str(strval), intval(0xDEADBEEF) {}
Property::Property(State bit) : is_string(false), str(std::string("") + char(bit)), intval(bit == S1) {}
void CellInfo::addInput(IdString name)
{
ports[name].name = name;
ports[name].type = PORT_IN;
}
void CellInfo::addOutput(IdString name)
{
ports[name].name = name;
ports[name].type = PORT_OUT;
}
void CellInfo::addInout(IdString name)
{
ports[name].name = name;
ports[name].type = PORT_INOUT;
}
void CellInfo::setParam(IdString name, Property value) { params[name] = value; }
void CellInfo::unsetParam(IdString name) { params.erase(name); }
void CellInfo::setAttr(IdString name, Property value) { attrs[name] = value; }
void CellInfo::unsetAttr(IdString name) { attrs.erase(name); }
std::string Property::to_string() const
{
if (is_string) {
std::string result = str;
int state = 0;
for (char c : str) {
if (state == 0) {
if (c == '0' || c == '1' || c == 'x' || c == 'z')
state = 0;
else if (c == ' ')
state = 1;
else
state = 2;
} else if (state == 1 && c != ' ')
state = 2;
}
if (state < 2)
result += " ";
return result;
} else {
return std::string(str.rbegin(), str.rend());
}
}
Property Property::from_string(const std::string &s)
{
Property p;
size_t cursor = s.find_first_not_of("01xz");
if (cursor == std::string::npos) {
p.str = std::string(s.rbegin(), s.rend());
p.is_string = false;
p.update_intval();
} else if (s.find_first_not_of(' ', cursor) == std::string::npos) {
p = Property(s.substr(0, s.size() - 1));
} else {
p = Property(s);
}
return p;
}
void BaseCtx::addConstraint(std::unique_ptr<TimingConstraint> constr)
{
for (auto fromObj : constr->from)
constrsFrom.emplace(fromObj, constr.get());
for (auto toObj : constr->to)
constrsTo.emplace(toObj, constr.get());
IdString name = constr->name;
constraints[name] = std::move(constr);
}
void BaseCtx::removeConstraint(IdString constrName)
{
TimingConstraint *constr = constraints[constrName].get();
for (auto fromObj : constr->from) {
auto fromConstrs = constrsFrom.equal_range(fromObj);
constrsFrom.erase(std::find(fromConstrs.first, fromConstrs.second, std::make_pair(fromObj, constr)));
}
for (auto toObj : constr->to) {
auto toConstrs = constrsFrom.equal_range(toObj);
constrsFrom.erase(std::find(toConstrs.first, toConstrs.second, std::make_pair(toObj, constr)));
}
constraints.erase(constrName);
}
const char *BaseCtx::nameOfBel(BelId bel) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getBelName(bel).build_str(ctx, s);
return s.c_str();
}
const char *BaseCtx::nameOfWire(WireId wire) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getWireName(wire).build_str(ctx, s);
return s.c_str();
}
const char *BaseCtx::nameOfPip(PipId pip) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getPipName(pip).build_str(ctx, s);
return s.c_str();
}
const char *BaseCtx::nameOfGroup(GroupId group) const
{
const Context *ctx = getCtx();
std::string &s = ctx->log_strs.next();
ctx->getGroupName(group).build_str(ctx, s);
return s.c_str();
}
BelId BaseCtx::getBelByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getBelByName(IdStringList::parse(ctx, str));
}
WireId BaseCtx::getWireByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getWireByName(IdStringList::parse(ctx, str));
}
PipId BaseCtx::getPipByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getPipByName(IdStringList::parse(ctx, str));
}
GroupId BaseCtx::getGroupByNameStr(const std::string &str)
{
Context *ctx = getCtx();
return ctx->getGroupByName(IdStringList::parse(ctx, str));
}
WireId Context::getNetinfoSourceWire(const NetInfo *net_info) const
{
if (net_info->driver.cell == nullptr)
return WireId();
auto src_bel = net_info->driver.cell->bel;
if (src_bel == BelId())
return WireId();
auto bel_pins = getBelPinsForCellPin(net_info->driver.cell, net_info->driver.port);
auto iter = bel_pins.begin();
if (iter == bel_pins.end())
return WireId();
WireId driver = getBelPinWire(src_bel, *iter);
++iter;
NPNR_ASSERT(iter == bel_pins.end()); // assert there is only one driver bel pin;
return driver;
}
SSOArray<WireId, 2> Context::getNetinfoSinkWires(const NetInfo *net_info, const PortRef &user_info) const
{
auto dst_bel = user_info.cell->bel;
if (dst_bel == BelId())
return SSOArray<WireId, 2>(0, WireId());
size_t bel_pin_count = 0;
// We use an SSOArray here because it avoids any heap allocation for the 99.9% case of 1 or 2 sink wires
// but as SSOArray doesn't (currently) support resizing to keep things simple it does mean we have to do
// two loops
for (auto s : getBelPinsForCellPin(user_info.cell, user_info.port)) {
(void)s; // unused
++bel_pin_count;
}
SSOArray<WireId, 2> result(bel_pin_count, WireId());
bel_pin_count = 0;
for (auto pin : getBelPinsForCellPin(user_info.cell, user_info.port)) {
result[bel_pin_count++] = getBelPinWire(dst_bel, pin);
}
return result;
}
size_t Context::getNetinfoSinkWireCount(const NetInfo *net_info, const PortRef &sink) const
{
size_t count = 0;
for (auto s : getNetinfoSinkWires(net_info, sink)) {
(void)s; // unused
++count;
}
return count;
}
WireId Context::getNetinfoSinkWire(const NetInfo *net_info, const PortRef &sink, size_t phys_idx) const
{
size_t count = 0;
for (auto s : getNetinfoSinkWires(net_info, sink)) {
if (count == phys_idx)
return s;
++count;
}
/* TODO: This should be an assertion failure, but for the zero-wire case of unplaced sinks; legacy code currently
assumes WireId Remove once the refactoring process is complete.
*/
return WireId();
}
delay_t Context::getNetinfoRouteDelay(const NetInfo *net_info, const PortRef &user_info) const
{
#ifdef ARCH_ECP5
if (net_info->is_global)
return 0;
#endif
if (net_info->wires.empty())
return predictDelay(net_info, user_info);
WireId src_wire = getNetinfoSourceWire(net_info);
if (src_wire == WireId())
return 0;
delay_t max_delay = 0;
for (auto dst_wire : getNetinfoSinkWires(net_info, user_info)) {
WireId cursor = dst_wire;
delay_t delay = 0;
while (cursor != WireId() && cursor != src_wire) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end())
break;
PipId pip = it->second.pip;
if (pip == PipId())
break;
delay += getPipDelay(pip).maxDelay();
delay += getWireDelay(cursor).maxDelay();
cursor = getPipSrcWire(pip);
}
if (cursor == src_wire)
max_delay = std::max(max_delay, delay + getWireDelay(src_wire).maxDelay()); // routed
else
max_delay = std::max(max_delay, predictDelay(net_info, user_info)); // unrouted
}
return max_delay;
}
static uint32_t xorshift32(uint32_t x)
{
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return x;
}
uint32_t Context::checksum() const
{
uint32_t cksum = xorshift32(123456789);
uint32_t cksum_nets_sum = 0;
for (auto &it : nets) {
auto &ni = *it.second;
uint32_t x = 123456789;
x = xorshift32(x + xorshift32(it.first.index));
x = xorshift32(x + xorshift32(ni.name.index));
if (ni.driver.cell)
x = xorshift32(x + xorshift32(ni.driver.cell->name.index));
x = xorshift32(x + xorshift32(ni.driver.port.index));
x = xorshift32(x + xorshift32(getDelayChecksum(ni.driver.budget)));
for (auto &u : ni.users) {
if (u.cell)
x = xorshift32(x + xorshift32(u.cell->name.index));
x = xorshift32(x + xorshift32(u.port.index));
x = xorshift32(x + xorshift32(getDelayChecksum(u.budget)));
}
uint32_t attr_x_sum = 0;
for (auto &a : ni.attrs) {
uint32_t attr_x = 123456789;
attr_x = xorshift32(attr_x + xorshift32(a.first.index));
for (char ch : a.second.str)
attr_x = xorshift32(attr_x + xorshift32((int)ch));
attr_x_sum += attr_x;
}
x = xorshift32(x + xorshift32(attr_x_sum));
uint32_t wire_x_sum = 0;
for (auto &w : ni.wires) {
uint32_t wire_x = 123456789;
wire_x = xorshift32(wire_x + xorshift32(getWireChecksum(w.first)));
wire_x = xorshift32(wire_x + xorshift32(getPipChecksum(w.second.pip)));
wire_x = xorshift32(wire_x + xorshift32(int(w.second.strength)));
wire_x_sum += wire_x;
}
x = xorshift32(x + xorshift32(wire_x_sum));
cksum_nets_sum += x;
}
cksum = xorshift32(cksum + xorshift32(cksum_nets_sum));
uint32_t cksum_cells_sum = 0;
for (auto &it : cells) {
auto &ci = *it.second;
uint32_t x = 123456789;
x = xorshift32(x + xorshift32(it.first.index));
x = xorshift32(x + xorshift32(ci.name.index));
x = xorshift32(x + xorshift32(ci.type.index));
uint32_t port_x_sum = 0;
for (auto &p : ci.ports) {
uint32_t port_x = 123456789;
port_x = xorshift32(port_x + xorshift32(p.first.index));
port_x = xorshift32(port_x + xorshift32(p.second.name.index));
if (p.second.net)
port_x = xorshift32(port_x + xorshift32(p.second.net->name.index));
port_x = xorshift32(port_x + xorshift32(p.second.type));
port_x_sum += port_x;
}
x = xorshift32(x + xorshift32(port_x_sum));
uint32_t attr_x_sum = 0;
for (auto &a : ci.attrs) {
uint32_t attr_x = 123456789;
attr_x = xorshift32(attr_x + xorshift32(a.first.index));
for (char ch : a.second.str)
attr_x = xorshift32(attr_x + xorshift32((int)ch));
attr_x_sum += attr_x;
}
x = xorshift32(x + xorshift32(attr_x_sum));
uint32_t param_x_sum = 0;
for (auto &p : ci.params) {
uint32_t param_x = 123456789;
param_x = xorshift32(param_x + xorshift32(p.first.index));
for (char ch : p.second.str)
param_x = xorshift32(param_x + xorshift32((int)ch));
param_x_sum += param_x;
}
x = xorshift32(x + xorshift32(param_x_sum));
x = xorshift32(x + xorshift32(getBelChecksum(ci.bel)));
x = xorshift32(x + xorshift32(ci.belStrength));
cksum_cells_sum += x;
}
cksum = xorshift32(cksum + xorshift32(cksum_cells_sum));
return cksum;
}
void Context::check() const
{
bool check_failed = false;
#define CHECK_FAIL(...) \
do { \
log_nonfatal_error(__VA_ARGS__); \
check_failed = true; \
} while (false)
for (auto &n : nets) {
auto ni = n.second.get();
if (n.first != ni->name)
CHECK_FAIL("net key '%s' not equal to name '%s'\n", nameOf(n.first), nameOf(ni->name));
for (auto &w : ni->wires) {
if (ni != getBoundWireNet(w.first))
CHECK_FAIL("net '%s' not bound to wire '%s' in wires map\n", nameOf(n.first), nameOfWire(w.first));
if (w.second.pip != PipId()) {
if (w.first != getPipDstWire(w.second.pip))
CHECK_FAIL("net '%s' has dest mismatch '%s' vs '%s' in for pip '%s'\n", nameOf(n.first),
nameOfWire(w.first), nameOfWire(getPipDstWire(w.second.pip)), nameOfPip(w.second.pip));
if (ni != getBoundPipNet(w.second.pip))
CHECK_FAIL("net '%s' not bound to pip '%s' in wires map\n", nameOf(n.first),
nameOfPip(w.second.pip));
}
}
if (ni->driver.cell != nullptr) {
if (!ni->driver.cell->ports.count(ni->driver.port)) {
CHECK_FAIL("net '%s' driver port '%s' missing on cell '%s'\n", nameOf(n.first), nameOf(ni->driver.port),
nameOf(ni->driver.cell));
} else {
const NetInfo *p_net = ni->driver.cell->ports.at(ni->driver.port).net;
if (p_net != ni)
CHECK_FAIL("net '%s' driver port '%s.%s' connected to incorrect net '%s'\n", nameOf(n.first),
nameOf(ni->driver.cell), nameOf(ni->driver.port), p_net ? nameOf(p_net) : "<nullptr>");
}
}
for (auto user : ni->users) {
if (!user.cell->ports.count(user.port)) {
CHECK_FAIL("net '%s' user port '%s' missing on cell '%s'\n", nameOf(n.first), nameOf(user.port),
nameOf(user.cell));
} else {
const NetInfo *p_net = user.cell->ports.at(user.port).net;
if (p_net != ni)
CHECK_FAIL("net '%s' user port '%s.%s' connected to incorrect net '%s'\n", nameOf(n.first),
nameOf(user.cell), nameOf(user.port), p_net ? nameOf(p_net) : "<nullptr>");
}
}
}
#ifdef CHECK_WIRES
for (auto w : getWires()) {
auto ni = getBoundWireNet(w);
if (ni != nullptr) {
if (!ni->wires.count(w))
CHECK_FAIL("wire '%s' missing in wires map of bound net '%s'\n", nameOfWire(w), nameOf(ni));
}
}
#endif
for (auto &c : cells) {
auto ci = c.second.get();
if (c.first != ci->name)
CHECK_FAIL("cell key '%s' not equal to name '%s'\n", nameOf(c.first), nameOf(ci->name));
if (ci->bel != BelId()) {
if (getBoundBelCell(c.second->bel) != ci)
CHECK_FAIL("cell '%s' not bound to bel '%s' in bel field\n", nameOf(c.first), nameOfBel(ci->bel));
}
for (auto &port : c.second->ports) {
NetInfo *net = port.second.net;
if (net != nullptr) {
if (nets.find(net->name) == nets.end()) {
CHECK_FAIL("cell port '%s.%s' connected to non-existent net '%s'\n", nameOf(c.first),
nameOf(port.first), nameOf(net->name));
} else if (port.second.type == PORT_OUT) {
if (net->driver.cell != c.second.get() || net->driver.port != port.first) {
CHECK_FAIL("output cell port '%s.%s' not in driver field of net '%s'\n", nameOf(c.first),
nameOf(port.first), nameOf(net));
}
} else if (port.second.type == PORT_IN) {
int usr_count = std::count_if(net->users.begin(), net->users.end(), [&](const PortRef &pr) {
return pr.cell == c.second.get() && pr.port == port.first;
});
if (usr_count != 1)
CHECK_FAIL("input cell port '%s.%s' appears %d rather than expected 1 times in users vector of "
"net '%s'\n",
nameOf(c.first), nameOf(port.first), usr_count, nameOf(net));
}
}
}
}
#undef CHECK_FAIL
if (check_failed)
log_error("INTERNAL CHECK FAILED: please report this error with the design and full log output. Failure "
"details are above this message.\n");
}
void BaseCtx::addClock(IdString net, float freq)
{
std::unique_ptr<ClockConstraint> cc(new ClockConstraint());
cc->period = getCtx()->getDelayFromNS(1000 / freq);
cc->high = getCtx()->getDelayFromNS(500 / freq);
cc->low = getCtx()->getDelayFromNS(500 / freq);
if (!net_aliases.count(net)) {
log_warning("net '%s' does not exist in design, ignoring clock constraint\n", net.c_str(this));
} else {
getNetByAlias(net)->clkconstr = std::move(cc);
log_info("constraining clock net '%s' to %.02f MHz\n", net.c_str(this), freq);
}
}
void BaseCtx::createRectangularRegion(IdString name, int x0, int y0, int x1, int y1)
{
std::unique_ptr<Region> new_region(new Region());
new_region->name = name;
new_region->constr_bels = true;
new_region->constr_pips = false;
new_region->constr_wires = false;
for (int x = x0; x <= x1; x++) {
for (int y = y0; y <= y1; y++) {
for (auto bel : getCtx()->getBelsByTile(x, y))
new_region->bels.insert(bel);
}
}
region[name] = std::move(new_region);
}
void BaseCtx::addBelToRegion(IdString name, BelId bel) { region[name]->bels.insert(bel); }
void BaseCtx::constrainCellToRegion(IdString cell, IdString region_name)
{
// Support hierarchical cells as well as leaf ones
bool matched = false;
if (hierarchy.count(cell)) {
auto &hc = hierarchy.at(cell);
for (auto &lc : hc.leaf_cells)
constrainCellToRegion(lc.second, region_name);
for (auto &hsc : hc.hier_cells)
constrainCellToRegion(hsc.second, region_name);
matched = true;
}
if (cells.count(cell)) {
cells.at(cell)->region = region[region_name].get();
matched = true;
}
if (!matched)
log_warning("No cell matched '%s' when constraining to region '%s'\n", nameOf(cell), nameOf(region_name));
}
DecalXY BaseCtx::constructDecalXY(DecalId decal, float x, float y)
{
DecalXY dxy;
dxy.decal = decal;
dxy.x = x;
dxy.y = y;
return dxy;
}
void BaseCtx::archInfoToAttributes()
{
for (auto &cell : cells) {
auto ci = cell.second.get();
if (ci->bel != BelId()) {
if (ci->attrs.find(id("BEL")) != ci->attrs.end()) {
ci->attrs.erase(ci->attrs.find(id("BEL")));
}
ci->attrs[id("NEXTPNR_BEL")] = getCtx()->getBelName(ci->bel).str(getCtx());
ci->attrs[id("BEL_STRENGTH")] = (int)ci->belStrength;
}
if (ci->constr_x != ci->UNCONSTR)
ci->attrs[id("CONSTR_X")] = ci->constr_x;
if (ci->constr_y != ci->UNCONSTR)
ci->attrs[id("CONSTR_Y")] = ci->constr_y;
if (ci->constr_z != ci->UNCONSTR) {
ci->attrs[id("CONSTR_Z")] = ci->constr_z;
ci->attrs[id("CONSTR_ABS_Z")] = ci->constr_abs_z ? 1 : 0;
}
if (ci->constr_parent != nullptr)
ci->attrs[id("CONSTR_PARENT")] = ci->constr_parent->name.str(this);
if (!ci->constr_children.empty()) {
std::string constr = "";
for (auto &item : ci->constr_children) {
if (!constr.empty())
constr += std::string(";");
constr += item->name.c_str(this);
}
ci->attrs[id("CONSTR_CHILDREN")] = constr;
}
}
for (auto &net : getCtx()->nets) {
auto ni = net.second.get();
std::string routing;
bool first = true;
for (auto &item : ni->wires) {
if (!first)
routing += ";";
routing += getCtx()->getWireName(item.first).str(getCtx());
routing += ";";
if (item.second.pip != PipId())
routing += getCtx()->getPipName(item.second.pip).str(getCtx());
routing += ";" + std::to_string(item.second.strength);
first = false;
}
ni->attrs[id("ROUTING")] = routing;
}
}
void BaseCtx::attributesToArchInfo()
{
for (auto &cell : cells) {
auto ci = cell.second.get();
auto val = ci->attrs.find(id("NEXTPNR_BEL"));
if (val != ci->attrs.end()) {
auto str = ci->attrs.find(id("BEL_STRENGTH"));
PlaceStrength strength = PlaceStrength::STRENGTH_USER;
if (str != ci->attrs.end())
strength = (PlaceStrength)str->second.as_int64();
BelId b = getCtx()->getBelByNameStr(val->second.as_string());
getCtx()->bindBel(b, ci, strength);
}
val = ci->attrs.find(id("CONSTR_PARENT"));
if (val != ci->attrs.end()) {
auto parent = cells.find(id(val->second.str));
if (parent != cells.end())
ci->constr_parent = parent->second.get();
else
continue;
}
val = ci->attrs.find(id("CONSTR_X"));
if (val != ci->attrs.end())
ci->constr_x = val->second.as_int64();
val = ci->attrs.find(id("CONSTR_Y"));
if (val != ci->attrs.end())
ci->constr_y = val->second.as_int64();
val = ci->attrs.find(id("CONSTR_Z"));
if (val != ci->attrs.end())
ci->constr_z = val->second.as_int64();
val = ci->attrs.find(id("CONSTR_ABS_Z"));
if (val != ci->attrs.end())
ci->constr_abs_z = val->second.as_int64() == 1;
val = ci->attrs.find(id("CONSTR_PARENT"));
if (val != ci->attrs.end()) {
auto parent = cells.find(id(val->second.as_string()));
if (parent != cells.end())
ci->constr_parent = parent->second.get();
}
val = ci->attrs.find(id("CONSTR_CHILDREN"));
if (val != ci->attrs.end()) {
std::vector<std::string> strs;
auto children = val->second.as_string();
boost::split(strs, children, boost::is_any_of(";"));
for (auto val : strs) {
if (cells.count(id(val.c_str())))
ci->constr_children.push_back(cells.find(id(val.c_str()))->second.get());
}
}
}
for (auto &net : getCtx()->nets) {
auto ni = net.second.get();
auto val = ni->attrs.find(id("ROUTING"));
if (val != ni->attrs.end()) {
std::vector<std::string> strs;
auto routing = val->second.as_string();
boost::split(strs, routing, boost::is_any_of(";"));
for (size_t i = 0; i < strs.size() / 3; i++) {
std::string wire = strs[i * 3];
std::string pip = strs[i * 3 + 1];
PlaceStrength strength = (PlaceStrength)std::stoi(strs[i * 3 + 2]);
if (pip.empty())
getCtx()->bindWire(getCtx()->getWireByName(IdStringList::parse(getCtx(), wire)), ni, strength);
else
getCtx()->bindPip(getCtx()->getPipByName(IdStringList::parse(getCtx(), pip)), ni, strength);
}
}
}
getCtx()->assignArchInfo();
}
NetInfo *BaseCtx::createNet(IdString name)
{
NPNR_ASSERT(!nets.count(name));
NPNR_ASSERT(!net_aliases.count(name));
std::unique_ptr<NetInfo> net{new NetInfo};
net->name = name;
net_aliases[name] = name;
NetInfo *ptr = net.get();
nets[name] = std::move(net);
refreshUi();
return ptr;
}
void BaseCtx::connectPort(IdString net, IdString cell, IdString port)
{
NetInfo *net_info = getNetByAlias(net);
CellInfo *cell_info = cells.at(cell).get();
connect_port(getCtx(), net_info, cell_info, port);
}
void BaseCtx::disconnectPort(IdString cell, IdString port)
{
CellInfo *cell_info = cells.at(cell).get();
disconnect_port(getCtx(), cell_info, port);
}
void BaseCtx::ripupNet(IdString name)
{
NetInfo *net_info = getNetByAlias(name);
std::vector<WireId> to_unbind;
for (auto &wire : net_info->wires)
to_unbind.push_back(wire.first);
for (auto &unbind : to_unbind)
getCtx()->unbindWire(unbind);
}
void BaseCtx::lockNetRouting(IdString name)
{
NetInfo *net_info = getNetByAlias(name);
for (auto &wire : net_info->wires)
wire.second.strength = STRENGTH_USER;
}
CellInfo *BaseCtx::createCell(IdString name, IdString type)
{
NPNR_ASSERT(!cells.count(name));
std::unique_ptr<CellInfo> cell{new CellInfo};
cell->name = name;
cell->type = type;
CellInfo *ptr = cell.get();
cells[name] = std::move(cell);
refreshUi();
return ptr;
}
void BaseCtx::copyBelPorts(IdString cell, BelId bel)
{
CellInfo *cell_info = cells.at(cell).get();
for (auto pin : getCtx()->getBelPins(bel)) {
cell_info->ports[pin].name = pin;
cell_info->ports[pin].type = getCtx()->getBelPinType(bel, pin);
}
}
namespace {
struct FixupHierarchyWorker
{
FixupHierarchyWorker(Context *ctx) : ctx(ctx){};
Context *ctx;
void run()
{
trim_hierarchy(ctx->top_module);
rebuild_hierarchy();
};
// Remove cells and nets that no longer exist in the netlist
std::vector<IdString> todelete_cells, todelete_nets;
void trim_hierarchy(IdString path)
{
auto &h = ctx->hierarchy.at(path);
todelete_cells.clear();
todelete_nets.clear();
for (auto &lc : h.leaf_cells) {
if (!ctx->cells.count(lc.second))
todelete_cells.push_back(lc.first);
}
for (auto &n : h.nets)
if (!ctx->nets.count(n.second))
todelete_nets.push_back(n.first);
for (auto tdc : todelete_cells) {
h.leaf_cells_by_gname.erase(h.leaf_cells.at(tdc));
h.leaf_cells.erase(tdc);
}
for (auto tdn : todelete_nets) {
h.nets_by_gname.erase(h.nets.at(tdn));
h.nets.erase(tdn);
}
for (auto &sc : h.hier_cells)
trim_hierarchy(sc.second);
}
IdString construct_local_name(HierarchicalCell &hc, IdString global_name, bool is_cell)
{
std::string gn = global_name.str(ctx);
auto dp = gn.find_last_of('.');
if (dp != std::string::npos)
gn = gn.substr(dp + 1);
IdString name = ctx->id(gn);
// Make sure name is unique
int adder = 0;
while (is_cell ? hc.leaf_cells.count(name) : hc.nets.count(name)) {
++adder;
name = ctx->id(gn + "$" + std::to_string(adder));
}
return name;
}
// Update hierarchy structure for nets and cells that have hiercell set
void rebuild_hierarchy()
{
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (ci->hierpath == IdString())
ci->hierpath = ctx->top_module;
auto &hc = ctx->hierarchy.at(ci->hierpath);
if (hc.leaf_cells_by_gname.count(ci->name))
continue; // already known
IdString local_name = construct_local_name(hc, ci->name, true);
hc.leaf_cells_by_gname[ci->name] = local_name;
hc.leaf_cells[local_name] = ci->name;
}
}
};
} // namespace
void Context::fixupHierarchy() { FixupHierarchyWorker(this).run(); }
NEXTPNR_NAMESPACE_END