nextpnr/gui/fpgaviewwidget.cc
2018-07-13 20:53:52 +01:00

426 lines
14 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Serge Bazanski <q3k@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <cstdio>
#include <math.h>
#include <QApplication>
#include <QCoreApplication>
#include <QMouseEvent>
#include <QTimer>
#include <QWidget>
#include "fpgaviewwidget.h"
#include "log.h"
#include "mainwindow.h"
NEXTPNR_NAMESPACE_BEGIN
void PolyLine::buildPoint(LineShaderData *building, const QVector2D *prev, const QVector2D *cur,
const QVector2D *next) const
{
// buildPoint emits two vertices per line point, along with normals to move
// them the right directio when rendering and miter to compensate for
// bends.
if (cur == nullptr) {
// BUG
return;
}
if (prev == nullptr && next == nullptr) {
// BUG
return;
}
// TODO(q3k): fast path for vertical/horizontal lines?
// TODO(q3k): consider moving some of the linear algebra to the GPU,
// they're better at this than poor old CPUs.
// Build two unit vectors pointing in the direction of the two segments
// defined by (prev, cur) and (cur, next)
QVector2D dprev, dnext;
if (prev == nullptr) {
dnext = *next - *cur;
dprev = dnext;
} else if (next == nullptr) {
dprev = *cur - *prev;
dnext = dprev;
} else {
dprev = *cur - *prev;
dnext = *next - *cur;
}
dprev.normalize();
dnext.normalize();
// Calculate tangent unit vector.
QVector2D tangent(dprev + dnext);
tangent.normalize();
// Calculate normal to tangent - this is the line on which the vectors need
// to be pushed to build a thickened line.
const QVector2D tangent_normal = QVector2D(-tangent.y(), tangent.x());
// Calculate normal to one of the lines.
const QVector2D dprev_normal = QVector2D(-dprev.y(), dprev.x());
// https://people.eecs.berkeley.edu/~sequin/CS184/IMGS/Sweep_PolyLine.jpg
// (the ^-1 is performed in the shader)
const float miter = QVector2D::dotProduct(tangent_normal, dprev_normal);
const float x = cur->x();
const float y = cur->y();
const float mx = tangent_normal.x();
const float my = tangent_normal.y();
// Push back 'left' vertex.
building->vertices.push_back(Vertex2DPOD(x, y));
building->normals.push_back(Vertex2DPOD(mx, my));
building->miters.push_back(miter);
// Push back 'right' vertex.
building->vertices.push_back(Vertex2DPOD(x, y));
building->normals.push_back(Vertex2DPOD(mx, my));
building->miters.push_back(-miter);
}
void PolyLine::build(LineShaderData &target) const
{
if (points_.size() < 2) {
return;
}
const QVector2D *first = &points_.front();
const QVector2D *last = &points_.back();
// Index number of vertices, used to build the index buffer.
unsigned int startIndex = target.vertices.size();
unsigned int index = startIndex;
// For every point on the line, call buildPoint with (prev, point, next).
// If we're building a closed line, prev/next wrap around. Otherwise
// they are passed as nullptr and buildPoint interprets that accordinglu.
const QVector2D *prev = nullptr;
// Loop iterator used to ensure next is valid.
unsigned int i = 0;
for (const QVector2D &point : points_) {
const QVector2D *next = nullptr;
if (++i < points_.size()) {
next = (&point + 1);
}
// If the line is closed, wrap around. Otherwise, pass nullptr.
if (prev == nullptr && closed_) {
buildPoint(&target, last, &point, next);
} else if (next == nullptr && closed_) {
buildPoint(&target, prev, &point, first);
} else {
buildPoint(&target, prev, &point, next);
}
// If we have a prev point relative to cur, build a pair of triangles
// to render vertices into lines.
if (prev != nullptr) {
target.indices.push_back(index);
target.indices.push_back(index + 1);
target.indices.push_back(index + 2);
target.indices.push_back(index + 2);
target.indices.push_back(index + 1);
target.indices.push_back(index + 3);
index += 2;
}
prev = &point;
}
// If we're closed, build two more vertices that loop the line around.
if (closed_) {
target.indices.push_back(index);
target.indices.push_back(index + 1);
target.indices.push_back(startIndex);
target.indices.push_back(startIndex);
target.indices.push_back(index + 1);
target.indices.push_back(startIndex + 1);
}
}
bool LineShader::compile(void)
{
program_ = new QOpenGLShaderProgram(parent_);
program_->addShaderFromSourceCode(QOpenGLShader::Vertex, vertexShaderSource_);
program_->addShaderFromSourceCode(QOpenGLShader::Fragment, fragmentShaderSource_);
if (!program_->link()) {
printf("could not link program: %s\n", program_->log().toStdString().c_str());
return false;
}
if (!vao_.create())
log_abort();
vao_.bind();
if (!buffers_.position.create())
log_abort();
if (!buffers_.normal.create())
log_abort();
if (!buffers_.miter.create())
log_abort();
if (!buffers_.index.create())
log_abort();
attributes_.position = program_->attributeLocation("position");
attributes_.normal = program_->attributeLocation("normal");
attributes_.miter = program_->attributeLocation("miter");
uniforms_.thickness = program_->uniformLocation("thickness");
uniforms_.projection = program_->uniformLocation("projection");
uniforms_.color = program_->uniformLocation("color");
vao_.release();
return true;
}
void LineShader::draw(const LineShaderData &line, const QColor &color, const float thickness, const QMatrix4x4 &projection)
{
auto gl = QOpenGLContext::currentContext()->functions();
vao_.bind();
program_->bind();
buffers_.position.bind();
buffers_.position.allocate(&line.vertices[0], sizeof(Vertex2DPOD) * line.vertices.size());
buffers_.normal.bind();
buffers_.normal.allocate(&line.normals[0], sizeof(Vertex2DPOD) * line.normals.size());
buffers_.miter.bind();
buffers_.miter.allocate(&line.miters[0], sizeof(GLfloat) * line.miters.size());
buffers_.index.bind();
buffers_.index.allocate(&line.indices[0], sizeof(GLuint) * line.indices.size());
program_->setUniformValue(uniforms_.projection, projection);
program_->setUniformValue(uniforms_.thickness, thickness);
program_->setUniformValue(uniforms_.color, color.redF(), color.greenF(), color.blueF(), color.alphaF());
buffers_.position.bind();
program_->enableAttributeArray("position");
gl->glVertexAttribPointer(attributes_.position, 2, GL_FLOAT, GL_FALSE, 0, (void *)0);
buffers_.normal.bind();
program_->enableAttributeArray("normal");
gl->glVertexAttribPointer(attributes_.normal, 2, GL_FLOAT, GL_FALSE, 0, (void *)0);
buffers_.miter.bind();
program_->enableAttributeArray("miter");
gl->glVertexAttribPointer(attributes_.miter, 1, GL_FLOAT, GL_FALSE, 0, (void *)0);
buffers_.index.bind();
gl->glDrawElements(GL_TRIANGLES, line.indices.size(), GL_UNSIGNED_INT, (void *)0);
program_->disableAttributeArray("miter");
program_->disableAttributeArray("normal");
program_->disableAttributeArray("position");
program_->release();
vao_.release();
}
FPGAViewWidget::FPGAViewWidget(QWidget *parent) : QOpenGLWidget(parent), lineShader_(this), zoom_(500.f), ctx_(nullptr)
{
backgroundColor_ = QColor("#000000");
gridColor_ = QColor("#333");
gFrameColor_ = QColor("#d0d0d0");
gHiddenColor_ = QColor("#606060");
gInactiveColor_ = QColor("#303030");
gActiveColor_ = QColor("#f0f0f0");
frameColor_ = QColor("#0066ba");
auto fmt = format();
fmt.setMajorVersion(3);
fmt.setMinorVersion(1);
setFormat(fmt);
fmt = format();
// printf("FPGAViewWidget running on OpenGL %d.%d\n", fmt.majorVersion(), fmt.minorVersion());
if (fmt.majorVersion() < 3) {
printf("Could not get OpenGL 3.0 context. Aborting.\n");
log_abort();
}
if (fmt.minorVersion() < 1) {
printf("Could not get OpenGL 3.1 context - trying anyway...\n ");
}
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(update()));
timer->start(5000);
}
FPGAViewWidget::~FPGAViewWidget() {}
void FPGAViewWidget::newContext(Context *ctx)
{
ctx_ = ctx;
update();
}
QSize FPGAViewWidget::minimumSizeHint() const { return QSize(640, 480); }
QSize FPGAViewWidget::sizeHint() const { return QSize(640, 480); }
void FPGAViewWidget::initializeGL()
{
if (!lineShader_.compile()) {
log_error("Could not compile shader.\n");
}
initializeOpenGLFunctions();
glClearColor(backgroundColor_.red() / 255, backgroundColor_.green() / 255, backgroundColor_.blue() / 255, 0.0);
}
QMatrix4x4 FPGAViewWidget::getProjection(void)
{
QMatrix4x4 matrix;
const float aspect = float(width()) / float(height());
matrix.perspective(3.14 / 2, aspect, zoomNear_, zoomFar_);
matrix.translate(0.0f, 0.0f, -zoom_);
return matrix;
}
void FPGAViewWidget::paintGL()
{
auto gl = QOpenGLContext::currentContext()->functions();
const qreal retinaScale = devicePixelRatio();
gl->glViewport(0, 0, width() * retinaScale, height() * retinaScale);
gl->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
QMatrix4x4 matrix = getProjection();
matrix *= viewMove_;
// Calculate world thickness to achieve a screen 1px/1.1px line.
float thick1Px = mouseToWorldCoordinates(1, 0).x();
float thick11Px = mouseToWorldCoordinates(1.1, 0).x();
// Draw grid.
auto grid = LineShaderData();
for (float i = -100.0f; i < 100.0f; i += 1.0f) {
PolyLine(-100.0f, i, 100.0f, i).build(grid);
PolyLine(i, -100.0f, i, 100.0f).build(grid);
}
lineShader_.draw(grid, gridColor_, thick1Px, matrix);
if (ctx_) {
auto &&proxy = ctx_->rwproxy();
auto updates = proxy.getUIUpdatesRequired();
// Collapse all updates to a full redraw.
// TODO(q3k) fix this.
bool redraw = (updates.allUIReload
|| !updates.belUIReload.empty()
|| !updates.wireUIReload.empty()
|| !updates.pipUIReload.empty()
|| !updates.groupUIReload.empty()
|| updates.frameUIReload);
if (redraw) {
shaders_[0].clear();
shaders_[1].clear();
shaders_[2].clear();
shaders_[3].clear();
// Draw Bels.
for (auto bel : ctx_->getBels()) {
drawDecal(proxy, shaders_, ctx_->getBelDecal(bel));
}
// Draw Wires.
for (auto wire : ctx_->getWires()) {
drawDecal(proxy, shaders_, ctx_->getWireDecal(wire));
}
// Draw Pips.
for (auto pip : ctx_->getPips()) {
drawDecal(proxy, shaders_, ctx_->getPipDecal(pip));
}
// Draw Groups.
for (auto group : ctx_->getGroups()) {
drawDecal(proxy, shaders_, ctx_->getGroupDecal(group));
}
// Draw Frame Graphics.
drawDecal(proxy, shaders_, ctx_->getFrameDecal());
}
}
lineShader_.draw(shaders_[0], gFrameColor_, thick11Px, matrix);
lineShader_.draw(shaders_[1], gHiddenColor_, thick11Px, matrix);
lineShader_.draw(shaders_[2], gInactiveColor_, thick11Px, matrix);
lineShader_.draw(shaders_[3], gActiveColor_, thick11Px, matrix);
//lineShader_.draw(frame, matrix);
}
void FPGAViewWidget::resizeGL(int width, int height) {}
void FPGAViewWidget::mousePressEvent(QMouseEvent *event) { lastPos_ = event->pos(); }
// Invert the projection matrix to calculate screen/mouse to world/grid
// coordinates.
QVector4D FPGAViewWidget::mouseToWorldCoordinates(int x, int y)
{
QMatrix4x4 p = getProjection();
QVector2D unit = p.map(QVector4D(1, 1, 0, 1)).toVector2DAffine();
float sx = (((float)x) / (width() / 2));
float sy = (((float)y) / (height() / 2));
return QVector4D(sx / unit.x(), sy / unit.y(), 0, 1);
}
void FPGAViewWidget::mouseMoveEvent(QMouseEvent *event)
{
const int dx = event->x() - lastPos_.x();
const int dy = event->y() - lastPos_.y();
lastPos_ = event->pos();
auto world = mouseToWorldCoordinates(dx, dy);
viewMove_.translate(world.x(), -world.y());
update();
}
void FPGAViewWidget::wheelEvent(QWheelEvent *event)
{
QPoint degree = event->angleDelta() / 8;
if (!degree.isNull()) {
if (zoom_ < zoomNear_) {
zoom_ = zoomNear_;
} else if (zoom_ < zoomLvl1_) {
zoom_ -= degree.y() / 10.0;
} else if (zoom_ < zoomLvl2_) {
zoom_ -= degree.y() / 5.0;
} else if (zoom_ < zoomFar_) {
zoom_ -= degree.y();
} else {
zoom_ = zoomFar_;
}
update();
}
}
NEXTPNR_NAMESPACE_END