nextpnr/fpga_interchange/arch.cc
gatecat 93e34b8754 interchange: Disambiguate cell and bel pins when creating Vcc ties
The pins created for tieing to Vcc were being named after the bel pin,
relying on the fact that Xilinx names cell and bel pins differently for
LUTs. This isn't true for Nexus devices which uses the same names for
both, and was causing a failure as a result.

This uses a "PHYS_" prefix that's highly unlikely to appear in a cell
pin name to disambiguate.

Signed-off-by: gatecat <gatecat@ds0.me>
2021-04-09 10:26:32 +01:00

1995 lines
68 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Wolf <claire@symbioticeda.com>
* Copyright (C) 2018-19 David Shah <david@symbioticeda.com>
* Copyright (C) 2021 Symbiflow Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "arch.h"
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/uuid/detail/sha1.hpp>
#include <cmath>
#include <cstring>
#include <queue>
#include "constraints.impl.h"
#include "fpga_interchange.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
#include "xdc.h"
// Include tcl.h late because it messed with defines and let them leave the
// scope of the header.
#include <tcl.h>
//#define DEBUG_BINDING
//#define USE_LOOKAHEAD
//#define DEBUG_CELL_PIN_MAPPING
// Define to enable some idempotent sanity checks for some important
// operations prior to placement and routing.
#define IDEMPOTENT_CHECK
NEXTPNR_NAMESPACE_BEGIN
struct SiteBelPair
{
std::string site;
IdString bel;
SiteBelPair() {}
SiteBelPair(std::string site, IdString bel) : site(site), bel(bel) {}
bool operator==(const SiteBelPair &other) const { return site == other.site && bel == other.bel; }
};
NEXTPNR_NAMESPACE_END
template <> struct std::hash<NEXTPNR_NAMESPACE_PREFIX SiteBelPair>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX SiteBelPair &site_bel) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, std::hash<std::string>()(site_bel.site));
boost::hash_combine(seed, std::hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(site_bel.bel));
return seed;
}
};
NEXTPNR_NAMESPACE_BEGIN
static std::pair<std::string, std::string> split_identifier_name_dot(const std::string &name)
{
size_t first_dot = name.find('.');
NPNR_ASSERT(first_dot != std::string::npos);
return std::make_pair(name.substr(0, first_dot), name.substr(first_dot + 1));
};
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx) {}
// -----------------------------------------------------------------------
static const ChipInfoPOD *get_chip_info(const RelPtr<ChipInfoPOD> *ptr) { return ptr->get(); }
static std::string sha1_hash(const char *data, size_t size)
{
boost::uuids::detail::sha1 hasher;
hasher.process_bytes(data, size);
// unsigned int[5]
boost::uuids::detail::sha1::digest_type digest;
hasher.get_digest(digest);
std::ostringstream buf;
for (int i = 0; i < 5; ++i)
buf << std::hex << std::setfill('0') << std::setw(8) << digest[i];
return buf.str();
}
Arch::Arch(ArchArgs args) : args(args), disallow_site_routing(false)
{
try {
blob_file.open(args.chipdb);
if (args.chipdb.empty() || !blob_file.is_open())
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
const char *blob = reinterpret_cast<const char *>(blob_file.data());
chipdb_hash = sha1_hash(blob, blob_file.size());
chip_info = get_chip_info(reinterpret_cast<const RelPtr<ChipInfoPOD> *>(blob));
} catch (...) {
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
}
if (chip_info->version != kExpectedChipInfoVersion) {
log_error("Expected chipdb with version %d found version %d\n", kExpectedChipInfoVersion, chip_info->version);
}
// Read strings from constids into IdString database, checking that list
// is unique and matches expected constid value.
const RelSlice<RelPtr<char>> &constids = *chip_info->constids;
for (size_t i = 0; i < constids.size(); ++i) {
IdString::initialize_add(this, constids[i].get(), i + 1);
}
id_GND = id("GND");
id_VCC = id("VCC");
// Sanity check cell name ids.
const CellMapPOD &cell_map = *chip_info->cell_map;
int32_t first_cell_id = cell_map.cell_names[0];
for (int32_t i = 0; i < cell_map.cell_names.ssize(); ++i) {
log_assert(cell_map.cell_names[i] == i + first_cell_id);
}
io_port_types.emplace(this->id("$nextpnr_ibuf"));
io_port_types.emplace(this->id("$nextpnr_obuf"));
io_port_types.emplace(this->id("$nextpnr_iobuf"));
io_port_types.emplace(this->id("$nextpnr_inv"));
if (!this->args.package.empty()) {
IdString package = this->id(this->args.package);
package_index = -1;
for (size_t i = 0; i < chip_info->packages.size(); ++i) {
if (IdString(chip_info->packages[i].package) == package) {
NPNR_ASSERT(package_index == -1);
package_index = i;
}
}
if (package_index == -1) {
log_error("Could not find package '%s' in chipdb.\n", this->args.package.c_str());
}
} else {
// Default to first package.
NPNR_ASSERT(chip_info->packages.size() > 0);
if (chip_info->packages.size() == 1) {
IdString package_name(chip_info->packages[0].package);
this->args.package = package_name.str(this);
package_index = 0;
} else {
log_info(
"Package must be specified (with --package arg) when multiple packages are available, packages:\n");
for (const auto &package : chip_info->packages) {
log_info(" - %s\n", IdString(package.package).c_str(this));
}
log_error("--package is required!\n");
}
}
std::unordered_set<SiteBelPair> site_bel_pads;
for (const auto &package_pin : chip_info->packages[package_index].pins) {
IdString site(package_pin.site);
IdString bel(package_pin.bel);
site_bel_pads.emplace(SiteBelPair(site.str(this), bel));
}
for (BelId bel : getBels()) {
auto &bel_data = bel_info(chip_info, bel);
const SiteInstInfoPOD &site = get_site_inst(bel);
auto iter = site_bel_pads.find(SiteBelPair(site.site_name.get(), IdString(bel_data.name)));
if (iter != site_bel_pads.end()) {
pads.emplace(bel);
}
}
explain_constraints = false;
int tile_type_index = 0;
size_t max_tag_count = 0;
for (const TileTypeInfoPOD &tile_type : chip_info->tile_types) {
max_tag_count = std::max(max_tag_count, tile_type.tags.size());
auto &type_definition = constraints.definitions[tile_type_index++];
for (const ConstraintTagPOD &tag : tile_type.tags) {
type_definition.emplace_back();
auto &definition = type_definition.back();
definition.prefix = IdString(tag.tag_prefix);
definition.default_state = IdString(tag.default_state);
NPNR_ASSERT(tag.states.size() < kMaxState);
definition.states.reserve(tag.states.size());
for (auto state : tag.states) {
definition.states.push_back(IdString(state));
}
}
// Logic BELs (e.g. placable BELs) should always appear first in the
// bel data list.
//
// When iterating over BELs this property is depended on to skip
// non-placable BELs (e.g. routing BELs and site ports).
bool in_logic_bels = true;
for (const BelInfoPOD &bel_info : tile_type.bel_data) {
if (in_logic_bels && bel_info.category != BEL_CATEGORY_LOGIC) {
in_logic_bels = false;
}
if (!in_logic_bels) {
NPNR_ASSERT(bel_info.category != BEL_CATEGORY_LOGIC);
}
}
}
// Initially LutElement vectors for each tile type.
tile_type_index = 0;
lut_elements.resize(chip_info->tile_types.size());
for (const TileTypeInfoPOD &tile_type : chip_info->tile_types) {
std::vector<LutElement> &elements = lut_elements[tile_type_index++];
elements.reserve(tile_type.lut_elements.size());
for (auto &lut_element : tile_type.lut_elements) {
elements.emplace_back();
LutElement &element = elements.back();
element.width = lut_element.width;
for (auto &lut_bel : lut_element.lut_bels) {
IdString name(lut_bel.name);
auto result = element.lut_bels.emplace(name, LutBel());
NPNR_ASSERT(result.second);
LutBel &lut = result.first->second;
lut.name = name;
lut.low_bit = lut_bel.low_bit;
lut.high_bit = lut_bel.high_bit;
lut.pins.reserve(lut_bel.pins.size());
for (size_t i = 0; i < lut_bel.pins.size(); ++i) {
IdString pin(lut_bel.pins[i]);
lut.pins.push_back(pin);
lut.pin_to_index[pin] = i;
}
lut.output_pin = IdString(lut_bel.out_pin);
}
element.compute_pin_order();
}
}
// Map lut cell types to their LutCellPOD
wire_lut = nullptr;
for (const LutCellPOD &lut_cell : chip_info->cell_map->lut_cells) {
IdString cell_type(lut_cell.cell);
auto result = lut_cells.emplace(cell_type, &lut_cell);
NPNR_ASSERT(result.second);
if(lut_cell.input_pins.size() == 1) {
// Only really expecting 1 single input LUT type!
NPNR_ASSERT(wire_lut == nullptr);
wire_lut = &lut_cell;
}
}
raw_bin_constant = std::regex("[01]+", std::regex_constants::ECMAScript | std::regex_constants::optimize);
verilog_bin_constant =
std::regex("([0-9]+)'b([01]+)", std::regex_constants::ECMAScript | std::regex_constants::optimize);
verilog_hex_constant =
std::regex("([0-9]+)'h([0-9a-fA-F]+)", std::regex_constants::ECMAScript | std::regex_constants::optimize);
default_tags.resize(max_tag_count);
}
void Arch::init()
{
#ifdef USE_LOOKAHEAD
lookahead.init(getCtx(), getCtx());
#endif
dedicated_interconnect.init(getCtx());
cell_parameters.init(getCtx());
for (size_t tile_type = 0; tile_type < chip_info->tile_types.size(); ++tile_type) {
pseudo_pip_data.init_tile_type(getCtx(), tile_type);
}
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const { return chip_info->name.get(); }
// -----------------------------------------------------------------------
IdString Arch::archArgsToId(ArchArgs args) const { return IdString(); }
// -----------------------------------------------------------------------
void Arch::setup_byname() const
{
by_name_mutex.lock();
if (tile_by_name.empty()) {
for (int i = 0; i < chip_info->tiles.ssize(); i++) {
tile_by_name[id(chip_info->tiles[i].name.get())] = i;
}
}
if (site_by_name.empty()) {
for (int i = 0; i < chip_info->tiles.ssize(); i++) {
auto &tile = chip_info->tiles[i];
auto &tile_type = chip_info->tile_types[tile.type];
for (size_t j = 0; j < tile_type.site_types.size(); j++) {
auto &site = chip_info->sites[tile.sites[j]];
site_by_name[id(site.name.get())] = std::make_pair(i, j);
}
}
}
by_name_mutex.unlock();
}
BelId Arch::getBelByName(IdStringList name) const
{
BelId ret;
if (name.ids.size() != 2) {
return BelId();
}
setup_byname();
int tile, site;
std::tie(tile, site) = site_by_name.at(name.ids[0]);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString belname = name.ids[1];
for (int i = 0; i < tile_info.bel_data.ssize(); i++) {
if (tile_info.bel_data[i].site == site && tile_info.bel_data[i].name == belname.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
return ret;
}
BelRange Arch::getBelsByTile(int x, int y) const
{
BelRange br;
br.b.cursor_tile = get_tile_index(x, y);
br.e.cursor_tile = br.b.cursor_tile;
br.b.cursor_index = 0;
br.e.cursor_index = chip_info->tile_types[chip_info->tiles[br.b.cursor_tile].type].bel_data.size();
br.b.chip = chip_info;
br.e.chip = chip_info;
if (br.b != br.e) {
++br.e;
}
return br;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int pin_index = get_bel_pin_index(bel, pin);
auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(pin_index >= 0 && pin_index < bel_data.num_bel_wires);
const int32_t *wires = bel_data.wires.get();
int32_t wire_index = wires[pin_index];
if (wire_index < 0) {
// This BEL pin is not connected.
return WireId();
} else {
return canonical_wire(chip_info, bel.tile, wire_index);
}
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int pin_index = get_bel_pin_index(bel, pin);
auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(pin_index >= 0 && pin_index < bel_data.num_bel_wires);
const int32_t *types = bel_data.types.get();
return PortType(types[pin_index]);
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdStringList name) const
{
WireId ret;
if (name.ids.size() != 2) {
return WireId();
}
setup_byname();
auto iter = site_by_name.find(name.ids[0]);
if (iter != site_by_name.end()) {
int tile;
int site;
std::tie(tile, site) = iter->second;
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString wirename = name.ids[1];
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == wirename.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
} else {
int tile = tile_by_name.at(name.ids[0]);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString wirename = name.ids[1];
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == wirename.index) {
int32_t node = chip_info->tiles[tile].tile_wire_to_node[i];
if (node == -1) {
// Not a nodal wire
ret.tile = tile;
ret.index = i;
} else {
// Is a nodal wire, set tile to -1
ret.tile = -1;
ret.index = node;
}
break;
}
}
}
return ret;
}
IdString Arch::getWireType(WireId wire) const { return id(""); }
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const { return {}; }
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdStringList name) const
{
// PIP name structure:
// Tile PIP: <tile name>/<source wire name>.<destination wire name>
// Site PIP: <site name>/<bel name>/<input bel pin name>
// Site pin: <site name>/<bel name>
// Psuedo site PIP: <site name>/<source wire name>.<destination wire name>
setup_byname();
if (name.ids.size() == 3) {
// This is a Site PIP.
IdString site_name = name.ids[0];
IdString belname = name.ids[1];
IdString pinname = name.ids[2];
int tile;
int site;
std::tie(tile, site) = site_by_name.at(site_name);
auto tile_type_idx = chip_info->tiles[tile].type;
auto &tile_info = chip_info->tile_types[tile_type_idx];
std::array<IdString, 2> ids{name.ids[0], belname};
BelId bel = getBelByName(IdStringList(ids));
NPNR_ASSERT(bel != BelId());
int pin_index = get_bel_pin_index(bel, pinname);
NPNR_ASSERT(pin_index >= 0);
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].bel == bel.index &&
tile_info.pip_data[i].extra_data == pin_index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
} else {
auto iter = site_by_name.find(name.ids[0]);
if (iter != site_by_name.end()) {
// This is either a site pin or a psuedo site pip.
// psuedo site pips are <site>/<src site wire>.<dst site wire>
// site pins are <site>/<bel>
int tile;
int site;
std::tie(tile, site) = iter->second;
auto tile_type_idx = chip_info->tiles[tile].type;
auto &tile_info = chip_info->tile_types[tile_type_idx];
std::string pip_second = name.ids[1].str(this);
auto split = pip_second.find('.');
if (split == std::string::npos) {
// This is a site pin!
BelId bel = getBelByName(name);
NPNR_ASSERT(bel != BelId());
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].bel == bel.index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
} else {
// This is a psuedo site pip!
IdString src_site_wire = id(pip_second.substr(0, split));
IdString dst_site_wire = id(pip_second.substr(split + 1));
int32_t src_index = -1;
int32_t dst_index = -1;
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == src_site_wire.index) {
src_index = i;
if (dst_index != -1) {
break;
}
}
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == dst_site_wire.index) {
dst_index = i;
if (src_index != -1) {
break;
}
}
}
NPNR_ASSERT(src_index != -1);
NPNR_ASSERT(dst_index != -1);
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].src_index == src_index &&
tile_info.pip_data[i].dst_index == dst_index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
}
} else {
int tile = tile_by_name.at(name.ids[0]);
size_t tile_type_idx = chip_info->tiles[tile].type;
auto &tile_info = chip_info->tile_types[tile_type_idx];
std::string pip_second = name.ids[1].str(this);
auto spn = split_identifier_name_dot(pip_second);
auto src_wire_name = id(spn.first);
auto dst_wire_name = id(spn.second);
int32_t src_index = -1;
int32_t dst_index = -1;
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == src_wire_name.index) {
src_index = i;
if (dst_index != -1) {
break;
}
}
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == dst_wire_name.index) {
dst_index = i;
if (src_index != -1) {
break;
}
}
}
NPNR_ASSERT(src_index != -1);
NPNR_ASSERT(dst_index != -1);
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].src_index == src_index && tile_info.pip_data[i].dst_index == dst_index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
}
}
return PipId();
}
IdStringList Arch::getPipName(PipId pip) const
{
// PIP name structure:
// Tile PIP: <tile name>/<source wire name>.<destination wire name>
// Psuedo site PIP: <site name>/<input site wire>.<output site wire>
// Site PIP: <site name>/<bel name>/<input bel pin name>
// Site pin: <site name>/<bel name>
NPNR_ASSERT(pip != PipId());
auto &tile = chip_info->tiles[pip.tile];
auto &tile_type = loc_info(chip_info, pip);
auto &pip_info = tile_type.pip_data[pip.index];
if (pip_info.site != -1) {
// This is either a site pin or a site pip.
auto &site = get_site_inst(pip);
auto &bel = tile_type.bel_data[pip_info.bel];
IdString bel_name(bel.name);
if (bel.category == BEL_CATEGORY_LOGIC) {
// This is a psuedo pip
IdString src_wire_name = IdString(tile_type.wire_data[pip_info.src_index].name);
IdString dst_wire_name = IdString(tile_type.wire_data[pip_info.dst_index].name);
IdString pip = id(src_wire_name.str(this) + "." + dst_wire_name.str(this));
std::array<IdString, 2> ids{id(site.name.get()), pip};
return IdStringList(ids);
} else if (bel.category == BEL_CATEGORY_ROUTING) {
// This is a site pip.
IdString pin_name(bel.ports[pip_info.extra_data]);
std::array<IdString, 3> ids{id(site.name.get()), bel_name, pin_name};
return IdStringList(ids);
} else {
NPNR_ASSERT(bel.category == BEL_CATEGORY_SITE_PORT);
// This is a site pin, just the name of the BEL is a unique identifier.
std::array<IdString, 2> ids{id(site.name.get()), bel_name};
return IdStringList(ids);
}
} else {
// This is a tile pip.
IdString src_wire_name = IdString(tile_type.wire_data[pip_info.src_index].name);
IdString dst_wire_name = IdString(tile_type.wire_data[pip_info.dst_index].name);
IdString pip = id(src_wire_name.str(this) + "." + dst_wire_name.str(this));
std::array<IdString, 2> ids{id(std::string(tile.name.get())), pip};
return IdStringList(ids);
}
}
IdString Arch::getPipType(PipId pip) const { return id("PIP"); }
std::vector<std::pair<IdString, std::string>> Arch::getPipAttrs(PipId pip) const { return {}; }
// -----------------------------------------------------------------------
BelId Arch::getBelByLocation(Loc loc) const
{
BelId bi;
if (loc.x >= chip_info->width || loc.y >= chip_info->height)
return BelId();
bi.tile = get_tile_index(loc);
auto &li = loc_info(chip_info, bi);
if (loc.z >= li.bel_data.ssize()) {
return BelId();
} else {
bi.index = loc.z;
return bi;
}
}
std::vector<std::pair<IdString, std::string>> Arch::getBelAttrs(BelId bel) const { return {}; }
// -----------------------------------------------------------------------
ArcBounds Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
int dst_tile = dst.tile == -1 ? chip_info->nodes[dst.index].tile_wires[0].tile : dst.tile;
int src_tile = src.tile == -1 ? chip_info->nodes[src.index].tile_wires[0].tile : src.tile;
int x0 = 0, x1 = 0, y0 = 0, y1 = 0;
int src_x, src_y;
get_tile_x_y(src_tile, &src_x, &src_y);
int dst_x, dst_y;
get_tile_x_y(dst_tile, &dst_x, &dst_y);
auto expand = [&](int x, int y) {
x0 = std::min(x0, x);
x1 = std::max(x1, x);
y0 = std::min(y0, y);
y1 = std::max(y1, y);
};
expand(src_x, src_y);
expand(dst_x, dst_y);
if (source_locs.count(src))
expand(source_locs.at(src).x, source_locs.at(src).y);
if (sink_locs.count(dst)) {
expand(sink_locs.at(dst).x, sink_locs.at(dst).y);
}
return {x0, y0, x1, y1};
}
bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const { return false; }
// -----------------------------------------------------------------------
bool Arch::pack()
{
decode_lut_cells();
merge_constant_nets();
pack_ports();
return true;
}
static void prepare_for_placement(Context *ctx)
{
ctx->remove_site_routing();
// Re-map BEL pins without constant pins
for (BelId bel : ctx->getBels()) {
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell != nullptr && cell->cell_mapping != -1) {
ctx->map_cell_pins(cell, cell->cell_mapping, /*bind_constants=*/false);
}
}
}
bool Arch::place()
{
// Before placement, ripup placement specific bindings and unmask all cell
// pins.
getCtx()->check();
prepare_for_placement(getCtx());
getCtx()->check();
#ifdef IDEMPOTENT_CHECK
prepare_for_placement(getCtx());
getCtx()->check();
#endif
std::string placer = str_or_default(settings, id("placer"), defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
cfg.criticalityExponent = 7;
cfg.alpha = 0.08;
cfg.beta = 0.4;
cfg.placeAllAtOnce = true;
cfg.hpwl_scale_x = 1;
cfg.hpwl_scale_y = 2;
cfg.spread_scale_x = 2;
cfg.spread_scale_y = 1;
cfg.solverTolerance = 0.6e-6;
if (!placer_heap(getCtx(), cfg))
return false;
} else if (placer == "sa") {
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
} else {
log_error("FPGA interchange architecture does not support placer '%s'\n", placer.c_str());
}
getCtx()->attrs[getCtx()->id("step")] = std::string("place");
archInfoToAttributes();
getCtx()->check();
return true;
}
static void prepare_sites_for_routing(Context *ctx)
{
// Reset site routing and remove masked cell pins from previous router run
// (if any).
ctx->remove_site_routing();
// Re-map BEL pins with constant pins
for (BelId bel : ctx->getBels()) {
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell != nullptr && cell->cell_mapping != -1) {
ctx->map_cell_pins(cell, cell->cell_mapping, /*bind_constants=*/true);
}
}
// Have site router bind site routing (via bindPip and bindWire).
// This is important so that the pseudo pips are correctly blocked prior
// to handing the design to the generalized router algorithms.
for (auto &tile_pair : ctx->tileStatus) {
for (auto &site_router : tile_pair.second.sites) {
if (site_router.cells_in_site.empty()) {
continue;
}
site_router.bindSiteRouting(ctx);
}
tile_pair.second.pseudo_pip_model.prepare_for_routing(ctx, tile_pair.second.sites);
}
// Fixup LUT vcc pins.
IdString vcc_net_name(ctx->chip_info->constants->vcc_net_name);
for (BelId bel : ctx->getBels()) {
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell == nullptr) {
continue;
}
if (cell->lut_cell.vcc_pins.empty()) {
continue;
}
for (auto bel_pin : cell->lut_cell.vcc_pins) {
// We can't rely on bel pins not clashing with cell names (for Xilinx they use different naming schemes, for
// Nexus they are the same) so add a prefix to the bel pin name to disambiguate it
IdString cell_pin = ctx->id(stringf("%s_PHYS", ctx->nameOf(bel_pin)));
PortInfo port_info;
port_info.name = cell_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
#ifdef DEBUG_LUT_MAPPING
if (ctx->verbose) {
log_info("%s must be tied to VCC, tying now\n", ctx->nameOfWire(lut_pin_wire));
}
#endif
auto result = cell->ports.emplace(cell_pin, port_info);
if (result.second) {
cell->cell_bel_pins[cell_pin].push_back(bel_pin);
ctx->connectPort(vcc_net_name, cell->name, cell_pin);
cell->const_ports.emplace(cell_pin);
} else {
NPNR_ASSERT(result.first->second.net == ctx->getNetByAlias(vcc_net_name));
auto result2 = cell->cell_bel_pins.emplace(cell_pin, std::vector<IdString>({bel_pin}));
NPNR_ASSERT(result2.first->second.at(0) == bel_pin);
NPNR_ASSERT(result2.first->second.size() == 1);
}
}
}
}
bool Arch::route()
{
getCtx()->check();
prepare_sites_for_routing(getCtx());
getCtx()->check();
#ifdef IDEMPOTENT_CHECK
prepare_sites_for_routing(getCtx());
getCtx()->check();
#endif
std::string router = str_or_default(settings, id("router"), defaultRouter);
// Disallow site routing during general routing. This is because
// "prepare_sites_for_routing" has already assigned routing for all sites
// in the design, and if the router wants to route-thru a site, it *MUST*
// use a pseudo-pip.
//
// It is not legal in the FPGA interchange to enter a site and not
// terminate at a BEL pin.
disallow_site_routing = true;
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("FPGA interchange architecture does not support router '%s'\n", router.c_str());
}
disallow_site_routing = false;
getCtx()->attrs[getCtx()->id("step")] = std::string("route");
archInfoToAttributes();
getCtx()->check();
// Now that routing is complete, unmask BEL pins.
unmask_bel_pins();
getCtx()->check();
return result;
}
// -----------------------------------------------------------------------
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const { return {}; }
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const
{
DecalXY decalxy;
return decalxy;
}
DecalXY Arch::getPipDecal(PipId pip) const { return {}; };
DecalXY Arch::getGroupDecal(GroupId pip) const { return {}; };
// -----------------------------------------------------------------------
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
#ifdef USE_LOOKAHEAD
return lookahead.estimateDelay(getCtx(), src, dst);
#else
// Note: Something is better than nothing when USE_LOOKAHEAD is not
// defined.
int src_tile = src.tile == -1 ? chip_info->nodes[src.index].tile_wires[0].tile : src.tile;
int dst_tile = dst.tile == -1 ? chip_info->nodes[dst.index].tile_wires[0].tile : dst.tile;
int src_x, src_y;
get_tile_x_y(src_tile, &src_x, &src_y);
int dst_x, dst_y;
get_tile_x_y(dst_tile, &dst_x, &dst_y);
delay_t base = 30 * std::min(std::abs(dst_x - src_x), 18) + 10 * std::max(std::abs(dst_x - src_x) - 18, 0) +
60 * std::min(std::abs(dst_y - src_y), 6) + 20 * std::max(std::abs(dst_y - src_y) - 6, 0) + 300;
base = (base * 3) / 2;
return base;
#endif
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
// FIXME: Implement when adding timing-driven place and route.
int src_x, src_y;
get_tile_x_y(net_info->driver.cell->bel.tile, &src_x, &src_y);
int dst_x, dst_y;
get_tile_x_y(sink.cell->bel.tile, &dst_x, &dst_y);
delay_t base = 30 * std::min(std::abs(dst_x - src_x), 18) + 10 * std::max(std::abs(dst_x - src_x) - 18, 0) +
60 * std::min(std::abs(dst_y - src_y), 6) + 20 * std::max(std::abs(dst_y - src_y) - 6, 0) + 300;
base = (base * 3) / 2;
return base;
}
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const
{
// FIXME: Implement when adding timing-driven place and route.
return false;
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
// FIXME: Implement when adding timing-driven place and route.
return TMG_IGNORE;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
// FIXME: Implement when adding timing-driven place and route.
TimingClockingInfo info;
return info;
}
// -----------------------------------------------------------------------
void Arch::read_logical_netlist(const std::string &filename)
{
FpgaInterchange::read_logical_netlist(getCtx(), filename);
}
void Arch::write_physical_netlist(const std::string &filename) const
{
FpgaInterchange::write_physical_netlist(getCtx(), filename);
}
void Arch::parse_xdc(const std::string &filename)
{
TclInterp interp(getCtx());
auto result = Tcl_EvalFile(interp.interp, filename.c_str());
if (result != TCL_OK) {
log_error("Error in %s:%d => %s\n", filename.c_str(), Tcl_GetErrorLine(interp.interp),
Tcl_GetStringResult(interp.interp));
}
}
std::string Arch::get_part() const
{
// FIXME: Need a map between device / package / speed grade and part.
return chip_info->name.get() + args.package + "-1";
}
// -----------------------------------------------------------------------
#ifdef WITH_HEAP
const std::string Arch::defaultPlacer = "heap";
#else
const std::string Arch::defaultPlacer = "sa";
#endif
const std::vector<std::string> Arch::availablePlacers = {"sa",
#ifdef WITH_HEAP
"heap"
#endif
};
const std::string Arch::defaultRouter = "router2";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
void Arch::map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants)
{
cell->cell_mapping = mapping;
if (cell->lut_cell.pins.empty()) {
cell->cell_bel_pins.clear();
cell->masked_cell_bel_pins.clear();
} else {
std::vector<IdString> cell_pin_to_remove;
for (auto port_pair : cell->cell_bel_pins) {
if (!cell->lut_cell.lut_pins.count(port_pair.first)) {
cell_pin_to_remove.push_back(port_pair.first);
}
}
for (IdString cell_pin : cell_pin_to_remove) {
NPNR_ASSERT(cell->cell_bel_pins.erase(cell_pin));
}
}
for (IdString const_port : cell->const_ports) {
disconnectPort(cell->name, const_port);
NPNR_ASSERT(cell->ports.erase(const_port));
}
const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping];
IdString gnd_net_name(chip_info->constants->gnd_net_name);
IdString vcc_net_name(chip_info->constants->vcc_net_name);
for (const auto &pin_map : cell_pin_map.common_pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
// Skip assigned LUT pins, as they are already mapped!
if (cell->lut_cell.lut_pins.count(cell_pin) && cell->cell_bel_pins.count(cell_pin)) {
continue;
}
if (cell_pin == id_GND) {
if (bind_constants) {
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
cell->cell_bel_pins[bel_pin].push_back(bel_pin);
connectPort(gnd_net_name, cell->name, bel_pin);
cell->const_ports.emplace(bel_pin);
} else {
NPNR_ASSERT(result.first->second.net == getNetByAlias(gnd_net_name));
auto result2 = cell->cell_bel_pins.emplace(bel_pin, std::vector<IdString>({bel_pin}));
NPNR_ASSERT(result2.first->second.at(0) == bel_pin);
NPNR_ASSERT(result2.first->second.size() == 1);
}
}
continue;
}
if (cell_pin == id_VCC) {
if (bind_constants) {
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
cell->cell_bel_pins[bel_pin].push_back(bel_pin);
connectPort(vcc_net_name, cell->name, bel_pin);
cell->const_ports.emplace(bel_pin);
} else {
NPNR_ASSERT(result.first->second.net == getNetByAlias(vcc_net_name));
auto result2 = cell->cell_bel_pins.emplace(bel_pin, std::vector<IdString>({bel_pin}));
NPNR_ASSERT(result2.first->second.at(0) == bel_pin);
NPNR_ASSERT(result2.first->second.size() == 1);
}
}
continue;
}
cell->cell_bel_pins[cell_pin].push_back(bel_pin);
}
for (const auto &parameter_pin_map : cell_pin_map.parameter_pins) {
IdString param_key(parameter_pin_map.key);
IdString param_value(parameter_pin_map.value);
auto iter = cell->params.find(param_key);
if (iter == cell->params.end()) {
continue;
}
if (!cell_parameters.compare_property(getCtx(), cell->type, param_key, iter->second, param_value)) {
continue;
}
#ifdef DEBUG_CELL_PIN_MAPPING
log_info("parameter match on param_key %s\n", param_key.c_str(this));
#endif
for (const auto &pin_map : parameter_pin_map.pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
#ifdef DEBUG_CELL_PIN_MAPPING
log_info(" %s => %s\n", cell_pin.c_str(this), bel_pin.c_str(this));
#endif
// Skip assigned LUT pins, as they are already mapped!
if (cell->lut_cell.lut_pins.count(cell_pin) && cell->cell_bel_pins.count(cell_pin)) {
continue;
}
if (cell_pin == id_GND) {
if (bind_constants) {
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
cell->cell_bel_pins[bel_pin].push_back(bel_pin);
connectPort(gnd_net_name, cell->name, bel_pin);
cell->const_ports.emplace(bel_pin);
} else {
NPNR_ASSERT(result.first->second.net == getNetByAlias(gnd_net_name));
auto result2 = cell->cell_bel_pins.emplace(bel_pin, std::vector<IdString>({bel_pin}));
NPNR_ASSERT(result2.first->second.at(0) == bel_pin);
NPNR_ASSERT(result2.first->second.size() == 1);
}
}
continue;
}
if (cell_pin == id_VCC) {
if (bind_constants) {
PortInfo port_info;
port_info.name = bel_pin;
port_info.type = PORT_IN;
port_info.net = nullptr;
auto result = cell->ports.emplace(bel_pin, port_info);
if (result.second) {
cell->cell_bel_pins[bel_pin].push_back(bel_pin);
connectPort(vcc_net_name, cell->name, bel_pin);
cell->const_ports.emplace(bel_pin);
} else {
NPNR_ASSERT(result.first->second.net == getNetByAlias(vcc_net_name));
auto result2 = cell->cell_bel_pins.emplace(bel_pin, std::vector<IdString>({bel_pin}));
NPNR_ASSERT(result2.first->second.at(0) == bel_pin);
NPNR_ASSERT(result2.first->second.size() == 1);
}
}
continue;
}
cell->cell_bel_pins[cell_pin].push_back(bel_pin);
}
}
#ifdef DEBUG_CELL_PIN_MAPPING
log_info("Pin mapping for cell %s (type: %s)\n", cell->name.c_str(getCtx()), cell->type.c_str(getCtx()));
for (auto &pin_pair : cell->cell_bel_pins) {
log_info(" %s =>", pin_pair.first.c_str(getCtx()));
for (IdString bel_pin : pin_pair.second) {
log(" %s", bel_pin.c_str(getCtx()));
}
log("\n");
}
#endif
}
void Arch::map_port_pins(BelId bel, CellInfo *cell) const
{
IdStringRange pins = getBelPins(bel);
IdString pin = get_only_value(pins);
NPNR_ASSERT(cell->ports.size() == 1);
cell->cell_bel_pins[cell->ports.begin()->first].clear();
cell->cell_bel_pins[cell->ports.begin()->first].push_back(pin);
}
bool Arch::is_net_within_site(const NetInfo &net) const
{
if (net.driver.cell == nullptr || net.driver.cell->bel == BelId()) {
return false;
}
BelId driver = net.driver.cell->bel;
int32_t site = bel_info(chip_info, driver).site;
NPNR_ASSERT(site >= 0);
for (const auto &user : net.users) {
if (user.cell == nullptr || user.cell->bel == BelId()) {
return false;
}
BelId user_bel = user.cell->bel;
if (user_bel.tile != driver.tile) {
return false;
}
if (bel_info(chip_info, user_bel).site != site) {
return false;
}
}
return true;
}
size_t Arch::get_cell_type_index(IdString cell_type) const
{
const CellMapPOD &cell_map = *chip_info->cell_map;
int cell_offset = cell_type.index - cell_map.cell_names[0];
if ((cell_offset < 0 || cell_offset >= cell_map.cell_names.ssize())) {
log_error("Cell %s is not a placable element.\n", cell_type.c_str(this));
}
NPNR_ASSERT(cell_map.cell_names[cell_offset] == cell_type.index);
return cell_offset;
}
void Arch::merge_constant_nets()
{
NetInfo *gnd_net = nullptr;
NetInfo *vcc_net = nullptr;
bool need_gnd_source = false;
bool need_vcc_source = false;
IdString gnd_net_name(chip_info->constants->gnd_net_name);
IdString gnd_cell_type(chip_info->constants->gnd_cell_name);
IdString gnd_cell_port(chip_info->constants->gnd_cell_port);
auto gnd_iter = nets.find(gnd_net_name);
if (gnd_iter != nets.end()) {
NPNR_ASSERT(gnd_iter->second->driver.cell != nullptr);
NPNR_ASSERT(gnd_iter->second->driver.cell->type == gnd_cell_type);
NPNR_ASSERT(gnd_iter->second->driver.port == gnd_cell_port);
gnd_net = gnd_iter->second.get();
} else {
gnd_net = createNet(gnd_net_name);
need_gnd_source = true;
}
IdString vcc_net_name(chip_info->constants->vcc_net_name);
IdString vcc_cell_type(chip_info->constants->vcc_cell_name);
IdString vcc_cell_port(chip_info->constants->vcc_cell_port);
auto vcc_iter = nets.find(vcc_net_name);
if (vcc_iter != nets.end()) {
NPNR_ASSERT(vcc_iter->second->driver.cell != nullptr);
NPNR_ASSERT(vcc_iter->second->driver.cell->type == vcc_cell_type);
NPNR_ASSERT(vcc_iter->second->driver.port == vcc_cell_port);
vcc_net = vcc_iter->second.get();
} else {
vcc_net = createNet(vcc_net_name);
need_vcc_source = true;
}
std::vector<IdString> other_gnd_nets;
std::vector<IdString> other_vcc_nets;
for (auto &net_pair : nets) {
if (net_pair.first == gnd_net_name) {
NPNR_ASSERT(net_pair.second.get() == gnd_net);
continue;
}
if (net_pair.first == vcc_net_name) {
NPNR_ASSERT(net_pair.second.get() == vcc_net);
continue;
}
NetInfo *net = net_pair.second.get();
if (net->driver.cell == nullptr) {
continue;
}
if (net->driver.cell->type == gnd_cell_type) {
NPNR_ASSERT(net->driver.port == gnd_cell_port);
other_gnd_nets.push_back(net_pair.first);
if (need_gnd_source) {
IdString driver_cell = net->driver.cell->name;
disconnectPort(driver_cell, gnd_cell_port);
connectPort(gnd_net_name, driver_cell, gnd_cell_port);
need_gnd_source = false;
}
NPNR_ASSERT(net->driver.port == gnd_cell_port);
std::vector<PortRef> users_copy = net->users;
for (const PortRef &port_ref : users_copy) {
IdString cell = port_ref.cell->name;
disconnectPort(cell, port_ref.port);
connectPort(gnd_net_name, cell, port_ref.port);
}
continue;
}
if (net->driver.cell->type == vcc_cell_type) {
NPNR_ASSERT(net->driver.port == vcc_cell_port);
other_vcc_nets.push_back(net_pair.first);
if (need_vcc_source) {
IdString driver_cell = net->driver.cell->name;
disconnectPort(driver_cell, vcc_cell_port);
connectPort(vcc_net_name, driver_cell, vcc_cell_port);
need_vcc_source = false;
}
NPNR_ASSERT(net->driver.port == vcc_cell_port);
std::vector<PortRef> users_copy = net->users;
for (const PortRef &port_ref : users_copy) {
IdString cell = port_ref.cell->name;
disconnectPort(cell, port_ref.port);
connectPort(vcc_net_name, cell, port_ref.port);
}
}
}
for (IdString other_gnd_net : other_gnd_nets) {
NetInfo *net = getNetByAlias(other_gnd_net);
NPNR_ASSERT(net->users.empty());
if (net->driver.cell) {
PortRef driver = net->driver;
IdString cell_to_remove = driver.cell->name;
disconnectPort(driver.cell->name, driver.port);
NPNR_ASSERT(cells.erase(cell_to_remove));
}
}
for (IdString other_vcc_net : other_vcc_nets) {
NetInfo *net = getNetByAlias(other_vcc_net);
NPNR_ASSERT(net->users.empty());
if (net->driver.cell) {
PortRef driver = net->driver;
IdString cell_to_remove = driver.cell->name;
disconnectPort(driver.cell->name, driver.port);
NPNR_ASSERT(cells.erase(cell_to_remove));
}
}
for (IdString other_gnd_net : other_gnd_nets) {
NPNR_ASSERT(nets.erase(other_gnd_net));
gnd_net->aliases.push_back(other_gnd_net);
net_aliases[other_gnd_net] = gnd_net_name;
}
for (IdString other_vcc_net : other_vcc_nets) {
NPNR_ASSERT(nets.erase(other_vcc_net));
vcc_net->aliases.push_back(other_vcc_net);
net_aliases[other_vcc_net] = vcc_net_name;
}
if (need_gnd_source) {
CellInfo *gnd_cell = createCell(gnd_cell_type, gnd_cell_type);
gnd_cell->addOutput(gnd_cell_port);
connectPort(gnd_net_name, gnd_cell_type, gnd_cell_port);
}
if (need_vcc_source) {
CellInfo *vcc_cell = createCell(vcc_cell_type, vcc_cell_type);
vcc_cell->addOutput(vcc_cell_port);
connectPort(vcc_net_name, vcc_cell_type, vcc_cell_port);
}
}
const std::vector<IdString> &Arch::getBelPinsForCellPin(const CellInfo *cell_info, IdString pin) const
{
auto iter = cell_info->cell_bel_pins.find(pin);
if (iter == cell_info->cell_bel_pins.end()) {
return no_pins;
} else {
return iter->second;
}
}
void Arch::report_invalid_bel(BelId bel, CellInfo *cell) const
{
int32_t mapping = bel_info(chip_info, bel).pin_map[get_cell_type_index(cell->type)];
NPNR_ASSERT(mapping < 0);
log_error("Cell %s (%s) cannot be placed at BEL %s (mapping %d)\n", cell->name.c_str(this), cell->type.c_str(this),
nameOfBel(bel), mapping);
}
void Arch::decode_lut_cells()
{
for (auto &cell_pair : cells) {
CellInfo *cell = cell_pair.second.get();
auto iter = lut_cells.find(cell->type);
if (iter == lut_cells.end()) {
cell->lut_cell.pins.clear();
cell->lut_cell.equation.clear();
continue;
}
const LutCellPOD &lut_cell = *iter->second;
cell->lut_cell.pins.reserve(lut_cell.input_pins.size());
for (uint32_t pin : lut_cell.input_pins) {
cell->lut_cell.pins.push_back(IdString(pin));
cell->lut_cell.lut_pins.emplace(IdString(pin));
}
IdString equation_parameter(lut_cell.parameter);
const Property &equation = cell->params.at(equation_parameter);
cell->lut_cell.equation.resize(1 << cell->lut_cell.pins.size());
cell->lut_cell.equation = cell_parameters.parse_int_like(getCtx(), cell->type, equation_parameter, equation);
}
}
void Arch::remove_pip_pseudo_wires(PipId pip, NetInfo *net)
{
WireId wire;
wire.tile = pip.tile;
const PipInfoPOD &pip_data = pip_info(chip_info, pip);
for (int32_t wire_index : pip_data.pseudo_cell_wires) {
NPNR_ASSERT(wire_index != -1);
wire.index = wire_index;
auto iter = wire_to_net.find(wire);
NPNR_ASSERT(iter != wire_to_net.end());
// This wire better already have been assigned to this net!
if (iter->second != net) {
if (iter->second == nullptr) {
log_error("Wire %s part of pseudo pip %s but net is null\n", nameOfWire(wire), nameOfPip(pip));
} else {
log_error("Wire %s part of pseudo pip %s but net is '%s' instead of net '%s'\n", nameOfWire(wire),
nameOfPip(pip), iter->second->name.c_str(this), net->name.c_str(this));
}
}
auto wire_iter = net->wires.find(wire);
if (wire_iter != net->wires.end()) {
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Removing %s from net %s, but it's in net wires\n", nameOfWire(wire), net->name.c_str(this));
}
#endif
// This wire is part of net->wires, make sure it has no pip,
// but leave it alone. It will get cleaned up via
// unbindWire.
if (wire_iter->second.pip != PipId() && wire_iter->second.pip != pip) {
log_error("Wire %s report source'd from pip %s, which is not %s\n", nameOfWire(wire),
nameOfPip(wire_iter->second.pip), nameOfPip(pip));
}
NPNR_ASSERT(wire_iter->second.pip == PipId() || wire_iter->second.pip == pip);
} else {
// This wire is not in net->wires, update wire_to_net.
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Removing %s from net %s in remove_pip_pseudo_wires\n", nameOfWire(wire),
net->name.c_str(this));
}
#endif
iter->second = nullptr;
}
}
if(pip_data.pseudo_cell_wires.size() > 0) {
get_tile_status(pip.tile).pseudo_pip_model.unbindPip(getCtx(), pip);
}
}
void Arch::assign_net_to_wire(WireId wire, NetInfo *net, const char *src, bool require_empty)
{
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Assigning wire %s to %s from %s\n", nameOfWire(wire), net->name.c_str(this), src);
}
#endif
NPNR_ASSERT(net != nullptr);
auto result = wire_to_net.emplace(wire, net);
if (!result.second) {
// This wire was already in the map, make sure this assignment was
// legal.
if (require_empty) {
NPNR_ASSERT(result.first->second == nullptr);
} else {
NPNR_ASSERT(result.first->second == nullptr || result.first->second == net);
}
result.first->second = net;
}
}
void Arch::unassign_wire(WireId wire)
{
NPNR_ASSERT(wire != WireId());
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("unassign_wire %s\n", nameOfWire(wire));
}
#endif
auto iter = wire_to_net.find(wire);
NPNR_ASSERT(iter != wire_to_net.end());
NetInfo *net = iter->second;
NPNR_ASSERT(net != nullptr);
auto &net_wires = net->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Removing pip %s because it was used to reach wire %s\n", nameOfPip(pip), nameOfWire(wire));
}
#endif
auto pip_iter = pip_to_net.find(pip);
NPNR_ASSERT(pip_iter != pip_to_net.end());
NPNR_ASSERT(pip_iter->second == net);
pip_iter->second = nullptr;
remove_pip_pseudo_wires(pip, net);
}
net_wires.erase(it);
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Removing %s from net %s in unassign_wire\n", nameOfWire(wire), net->name.c_str(this));
}
#endif
iter->second = nullptr;
}
void Arch::unbindPip(PipId pip)
{
NPNR_ASSERT(pip != PipId());
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("unbindPip %s\n", nameOfPip(pip));
}
#endif
auto pip_iter = pip_to_net.find(pip);
NPNR_ASSERT(pip_iter != pip_to_net.end());
NetInfo *net = pip_iter->second;
NPNR_ASSERT(net != nullptr);
WireId dst = getPipDstWire(pip);
auto wire_iter = wire_to_net.find(dst);
NPNR_ASSERT(wire_iter != wire_to_net.end());
NPNR_ASSERT(wire_iter->second == net);
remove_pip_pseudo_wires(pip, net);
// Clear the net now.
pip_iter->second = nullptr;
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Removing %s from net %s in unbindPip\n", nameOfWire(dst), net->name.c_str(this));
}
#endif
wire_iter->second = nullptr;
NPNR_ASSERT(net->wires.erase(dst) == 1);
refreshUiPip(pip);
refreshUiWire(dst);
}
void Arch::bindPip(PipId pip, NetInfo *net, PlaceStrength strength)
{
NPNR_ASSERT(pip != PipId());
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("bindPip %s (%d/%d) to net %s\n", nameOfPip(pip), pip.tile, pip.index, net->name.c_str(this));
}
#endif
WireId dst = getPipDstWire(pip);
NPNR_ASSERT(dst != WireId());
{
// Pip should not already be assigned to anything.
auto result = pip_to_net.emplace(pip, net);
if (!result.second) {
NPNR_ASSERT(result.first->second == nullptr);
result.first->second = net;
}
}
assign_net_to_wire(dst, net, "bindPip", /*require_empty=*/true);
assign_pip_pseudo_wires(pip, net);
{
auto result = net->wires.emplace(dst, PipMap{pip, strength});
NPNR_ASSERT(result.second);
}
refreshUiPip(pip);
refreshUiWire(dst);
}
void Arch::bindWire(WireId wire, NetInfo *net, PlaceStrength strength)
{
NPNR_ASSERT(wire != WireId());
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("bindWire %s to net %s\n", nameOfWire(wire), net->name.c_str(this));
}
#endif
assign_net_to_wire(wire, net, "bindWire", /*require_empty=*/true);
auto &pip_map = net->wires[wire];
pip_map.pip = PipId();
pip_map.strength = strength;
refreshUiWire(wire);
}
bool Arch::checkPipAvailForNet(PipId pip, NetInfo *net) const
{
NPNR_ASSERT(pip != PipId());
auto pip_iter = pip_to_net.find(pip);
if (pip_iter != pip_to_net.end() && pip_iter->second != nullptr) {
bool pip_blocked = false;
if (net == nullptr) {
pip_blocked = true;
} else {
if (net != pip_iter->second) {
pip_blocked = true;
}
}
if (pip_blocked) {
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Pip %s (%d/%d) is not available, tied to net %s\n", getCtx()->nameOfPip(pip), pip.tile,
pip.index, pip_iter->second->name.c_str(getCtx()));
}
#endif
NPNR_ASSERT(pip_iter->first == pip);
return false;
}
}
WireId src = getPipSrcWire(pip);
WireId dst = getPipDstWire(pip);
auto wire_iter = wire_to_net.find(dst);
if (wire_iter != wire_to_net.end()) {
NetInfo *wire_net = wire_iter->second;
if (wire_net != nullptr) {
auto net_iter = wire_net->wires.find(dst);
if (net_iter != wire_net->wires.end()) {
if (net == nullptr) {
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Pip %s (%d/%d) is not available, dst wire %s is tied to net %s\n",
getCtx()->nameOfPip(pip), pip.tile, pip.index, getCtx()->nameOfWire(dst),
wire_net->name.c_str(getCtx()));
}
#endif
// dst is already driven in this net, do not allow!
return false;
} else {
#ifdef DEBUG_BINDING
if (getCtx()->verbose && net_iter->second.pip != pip) {
log_info("Pip %s (%d/%d) is not available, dst wire %s is tied to net %s\n",
getCtx()->nameOfPip(pip), pip.tile, pip.index, getCtx()->nameOfWire(dst),
wire_net->name.c_str(getCtx()));
}
#endif
// This pip is available if this pip is already bound to
// this.
return net_iter->second.pip == pip;
}
}
}
}
// If this pip is a route-though, make sure all of the route-though
// wires are unbound.
const TileTypeInfoPOD &tile_type = loc_info(chip_info, pip);
const PipInfoPOD &pip_data = tile_type.pip_data[pip.index];
WireId wire;
wire.tile = pip.tile;
for (int32_t wire_index : pip_data.pseudo_cell_wires) {
wire.index = wire_index;
NPNR_ASSERT(src != wire);
NPNR_ASSERT(dst != wire);
NetInfo *net = getConflictingWireNet(wire);
if (net != nullptr) {
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Pip %s is not available because wire %s is tied to net %s\n", getCtx()->nameOfPip(pip),
getCtx()->nameOfWire(wire), net->name.c_str(getCtx()));
}
#endif
return false;
}
}
if(pip_data.pseudo_cell_wires.size() > 0) {
// FIXME: This pseudo pip check is incomplete, because constraint
// failures will not be detected. However the current FPGA
// interchange schema does not provide a cell type to place.
auto iter = tileStatus.find(pip.tile);
if(iter != tileStatus.end()) {
if(!iter->second.pseudo_pip_model.checkPipAvail(getCtx(), pip)) {
return false;
}
}
}
if (pip_data.site != -1 && net != nullptr) {
NPNR_ASSERT(net->driver.cell != nullptr);
NPNR_ASSERT(net->driver.cell->bel != BelId());
auto &src_wire_data = tile_type.wire_data[pip_data.src_index];
auto &dst_wire_data = tile_type.wire_data[pip_data.dst_index];
bool valid_pip = false;
if (pip.tile == net->driver.cell->bel.tile) {
const BelInfoPOD &bel_data = tile_type.bel_data[net->driver.cell->bel.index];
if (bel_data.site == pip_data.site) {
// Only allow site pips or output site ports.
if (dst_wire_data.site == -1) {
// Allow output site port from this site.
NPNR_ASSERT(src_wire_data.site == pip_data.site);
valid_pip = true;
}
if (dst_wire_data.site == bel_data.site && src_wire_data.site == bel_data.site) {
// This is site pip for the same site as the driver, allow
// this site pip.
valid_pip = true;
}
}
}
if(disallow_site_routing && !valid_pip) {
// For now, if driver is not part of this site, and
// disallow_site_routing is set, disallow the edge.
return false;
}
// FIXME: This check isn't perfect. If a driver and sink are in the
// same site, it is possible for the router to route-thru the site
// ports without hitting a sink, which is not legal in the FPGA
// interchange.
if (!valid_pip) {
// See if one users can enter this site.
if (dst_wire_data.site == -1) {
// This is an output site port, but not for the driver net.
// Disallow.
NPNR_ASSERT(src_wire_data.site == pip_data.site);
} else {
// This might be a valid pip, scan users.
for (auto &user : net->users) {
NPNR_ASSERT(user.cell != nullptr);
if (user.cell->bel == BelId()) {
continue;
}
auto &bel_data = bel_info(chip_info, user.cell->bel);
if (bel_data.site == pip_data.site) {
valid_pip = true;
break;
}
}
}
}
if (!valid_pip) {
#ifdef DEBUG_BINDING
if (getCtx()->verbose) {
log_info("Pip %s is within a site and not available not right now\n", getCtx()->nameOfPip(pip));
}
#endif
return false;
}
}
return true;
}
bool Arch::checkPipAvail(PipId pip) const { return checkPipAvailForNet(pip, nullptr); }
std::string Arch::get_chipdb_hash() const { return chipdb_hash; }
bool Arch::is_inverting(PipId pip) const
{
auto &tile_type = loc_info(chip_info, pip);
auto &pip_info = tile_type.pip_data[pip.index];
if (pip_info.site == -1) {
// FIXME: Some routing pips are inverters, but this is missing from
// the chipdb.
return false;
}
auto &bel_data = tile_type.bel_data[pip_info.bel];
// Is a fixed inverter if the non_inverting_pin is another pin.
return bel_data.non_inverting_pin != pip_info.extra_data && bel_data.inverting_pin == pip_info.extra_data;
}
bool Arch::can_invert(PipId pip) const
{
auto &tile_type = loc_info(chip_info, pip);
auto &pip_info = tile_type.pip_data[pip.index];
if (pip_info.site == -1) {
return false;
}
auto &bel_data = tile_type.bel_data[pip_info.bel];
// Can optionally invert if this pip is both the non_inverting_pin and
// inverting pin.
return bel_data.non_inverting_pin == pip_info.extra_data && bel_data.inverting_pin == pip_info.extra_data;
}
void Arch::mask_bel_pins_on_site_wire(NetInfo *net, WireId wire)
{
std::vector<size_t> bel_pins_to_mask;
for (const PortRef &port_ref : net->users) {
if (port_ref.cell->bel == BelId()) {
continue;
}
NPNR_ASSERT(port_ref.cell != nullptr);
auto iter = port_ref.cell->cell_bel_pins.find(port_ref.port);
if (iter == port_ref.cell->cell_bel_pins.end()) {
continue;
}
std::vector<IdString> &cell_bel_pins = iter->second;
bel_pins_to_mask.clear();
for (size_t bel_pin_idx = 0; bel_pin_idx < cell_bel_pins.size(); ++bel_pin_idx) {
IdString bel_pin = cell_bel_pins.at(bel_pin_idx);
WireId bel_pin_wire = getBelPinWire(port_ref.cell->bel, bel_pin);
if (bel_pin_wire == wire) {
bel_pins_to_mask.push_back(bel_pin_idx);
}
}
if (!bel_pins_to_mask.empty()) {
std::vector<IdString> &masked_cell_bel_pins = port_ref.cell->masked_cell_bel_pins[port_ref.port];
// Remove in reverse order to preserve indicies.
for (auto riter = bel_pins_to_mask.rbegin(); riter != bel_pins_to_mask.rend(); ++riter) {
size_t bel_pin_idx = *riter;
masked_cell_bel_pins.push_back(cell_bel_pins.at(bel_pin_idx));
cell_bel_pins.erase(cell_bel_pins.begin() + bel_pin_idx);
}
}
}
}
void Arch::unmask_bel_pins()
{
for (auto &cell_pair : cells) {
CellInfo *cell = cell_pair.second.get();
if (cell->masked_cell_bel_pins.empty()) {
continue;
}
for (auto &mask_pair : cell->masked_cell_bel_pins) {
IdString cell_port = mask_pair.first;
const std::vector<IdString> &bel_pins = mask_pair.second;
std::vector<IdString> &cell_bel_pins = cell->cell_bel_pins[cell_port];
cell_bel_pins.insert(cell_bel_pins.begin(), bel_pins.begin(), bel_pins.end());
}
cell->masked_cell_bel_pins.clear();
}
}
void Arch::remove_site_routing()
{
HashTables::HashSet<WireId> wires_to_unbind;
for (auto &net_pair : nets) {
for (auto &wire_pair : net_pair.second->wires) {
WireId wire = wire_pair.first;
if (wire_pair.second.strength != STRENGTH_PLACER) {
// Only looking for bound placer wires
continue;
}
wires_to_unbind.emplace(wire);
}
}
for (WireId wire : wires_to_unbind) {
unbindWire(wire);
}
unmask_bel_pins();
IdString id_NEXTPNR_INV = id("$nextpnr_inv");
IdString id_I = id("I");
std::vector<IdString> cells_to_remove;
for (auto &cell_pair : cells) {
CellInfo *cell = cell_pair.second.get();
if (cell->type != id_NEXTPNR_INV) {
continue;
}
disconnectPort(cell_pair.first, id_I);
cells_to_remove.push_back(cell_pair.first);
tileStatus.at(cell->bel.tile).boundcells[cell->bel.index] = nullptr;
}
for (IdString cell_name : cells_to_remove) {
NPNR_ASSERT(cells.erase(cell_name) == 1);
}
}
void Arch::explain_bel_status(BelId bel) const
{
if (isBelLocationValid(bel)) {
log_info("BEL %s is valid!\n", nameOfBel(bel));
return;
}
auto iter = tileStatus.find(bel.tile);
NPNR_ASSERT(iter != tileStatus.end());
const TileStatus &tile_status = iter->second;
const CellInfo *cell = tile_status.boundcells[bel.index];
if (!dedicated_interconnect.isBelLocationValid(bel, cell)) {
dedicated_interconnect.explain_bel_status(bel, cell);
return;
}
if (io_port_types.count(cell->type)) {
return;
}
if (!is_cell_valid_constraints(cell, tile_status, /*explain_constraints=*/true)) {
return;
}
auto &bel_data = bel_info(chip_info, bel);
const SiteRouter &site = get_site_status(tile_status, bel_data);
NPNR_ASSERT(!site.checkSiteRouting(getCtx(), tile_status));
site.explain(getCtx());
}
DelayQuad Arch::getPipDelay(PipId pip) const {
// FIXME: Implement when adding timing-driven place and route.
const auto & pip_data = pip_info(chip_info, pip);
// Scale pseudo-pips by the number of wires they consume to make them
// more expensive than a single edge. This approximation exists soley to
// make the non-timing driven solution avoid thinking that pseudo-pips
// are the same cost as regular pips.
return DelayQuad(100*(1+pip_data.pseudo_cell_wires.size()));
}
// Instance constraint templates.
template void Arch::ArchConstraints::bindBel(Arch::ArchConstraints::TagState *, const Arch::ConstraintRange);
template void Arch::ArchConstraints::unbindBel(Arch::ArchConstraints::TagState *, const Arch::ConstraintRange);
template bool Arch::ArchConstraints::isValidBelForCellType(const Context *, uint32_t,
const Arch::ArchConstraints::TagState *,
const Arch::ConstraintRange, IdString, IdString, BelId,
bool) const;
NEXTPNR_NAMESPACE_END