nextpnr/ecp5/pack.cc
2023-02-06 17:05:28 +01:00

3114 lines
152 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <boost/optional.hpp>
#include <iterator>
#include <queue>
#include "cells.h"
#include "chain_utils.h"
#include "design_utils.h"
#include "globals.h"
#include "log.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
static bool is_nextpnr_iob(Context *ctx, CellInfo *cell)
{
return cell->type == ctx->id("$nextpnr_ibuf") || cell->type == ctx->id("$nextpnr_obuf") ||
cell->type == ctx->id("$nextpnr_iobuf");
}
static bool net_is_constant(const Context *ctx, NetInfo *net, bool &value)
{
auto gnd = ctx->id("$PACKER_GND_NET");
auto vcc = ctx->id("$PACKER_VCC_NET");
if (net == nullptr)
return false;
if (net->name.in(gnd, vcc)) {
value = (net->name == vcc);
return true;
} else {
return false;
}
}
class Ecp5Packer
{
public:
Ecp5Packer(Context *ctx) : ctx(ctx){};
private:
// Process the contents of packed_cells and new_cells
void flush_cells()
{
for (auto pcell : packed_cells) {
ctx->cells.erase(pcell);
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
packed_cells.clear();
new_cells.clear();
}
// Print logic usage
void print_logic_usage()
{
int total_luts = 0, total_ffs = 0;
int total_ramluts = 0, total_ramwluts = 0;
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_TRELLIS_COMB) {
total_luts += 1;
Loc l = ctx->getBelLocation(bel);
if (l.z <= 3)
total_ramluts += 1;
}
if (ctx->getBelType(bel) == id_TRELLIS_FF)
total_ffs += 1;
if (ctx->getBelType(bel) == id_TRELLIS_RAMW)
total_ramwluts += 2;
}
int used_lgluts = 0, used_cyluts = 0, used_ramluts = 0, used_ramwluts = 0, used_ffs = 0;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_lut(ctx, ci))
++used_lgluts;
if (is_carry(ctx, ci))
used_cyluts += 2;
if (is_dpram(ctx, ci)) {
used_ramluts += 4;
used_ramwluts += 2;
}
if (is_ff(ctx, ci))
++used_ffs;
}
log_info("Logic utilisation before packing:\n");
auto pc = [](int used, int total) { return 100 * used / total; };
int used_luts = used_lgluts + used_cyluts + used_ramluts + used_ramwluts;
log_info(" Total LUT4s: %5d/%5d %5d%%\n", used_luts, total_luts, pc(used_luts, total_luts));
log_info(" logic LUTs: %5d/%5d %5d%%\n", used_lgluts, total_luts, pc(used_lgluts, total_luts));
log_info(" carry LUTs: %5d/%5d %5d%%\n", used_cyluts, total_luts, pc(used_cyluts, total_luts));
log_info(" RAM LUTs: %5d/%5d %5d%%\n", used_ramluts, total_ramluts, pc(used_ramluts, total_ramluts));
log_info(" RAMW LUTs: %5d/%5d %5d%%\n", used_ramwluts, total_ramwluts,
pc(used_ramwluts, total_ramwluts));
log_break();
log_info(" Total DFFs: %5d/%5d %5d%%\n", used_ffs, total_ffs, pc(used_ffs, total_ffs));
log_break();
}
// Pack LUTs
void pack_luts()
{
log_info("Packing LUTs...\n");
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_lut(ctx, ci))
lut_to_comb(ctx, ci);
}
}
// Gets the z-position of a cell in a macro
int get_macro_cell_z(const CellInfo *ci)
{
if (ci->constr_abs_z)
return ci->constr_z;
else if (ci->cluster != ClusterId() && ctx->getClusterRootCell(ci->cluster) != ci)
return ci->constr_z + get_macro_cell_z(ctx->getClusterRootCell(ci->cluster));
else
return 0;
}
// Gets the relative xy-position of a cell in a macro
std::pair<int, int> get_macro_cell_xy(const CellInfo *ci)
{
if (ci->cluster != ClusterId())
return {ci->constr_x, ci->constr_y};
else
return {0, 0};
}
// Relatively constrain one cell to another
void rel_constr_cells(CellInfo *a, CellInfo *b, int dz)
{
if (a->cluster != ClusterId() && ctx->getClusterRootCell(a->cluster) != a) {
NPNR_ASSERT(b->cluster == ClusterId());
NPNR_ASSERT(b->constr_children.empty());
CellInfo *root = ctx->getClusterRootCell(a->cluster);
root->constr_children.push_back(b);
b->cluster = root->cluster;
b->constr_x = a->constr_x;
b->constr_y = a->constr_y;
b->constr_z = get_macro_cell_z(a) + dz;
b->constr_abs_z = a->constr_abs_z;
} else if (b->cluster != ClusterId() && ctx->getClusterRootCell(b->cluster) != b) {
NPNR_ASSERT(a->constr_children.empty());
CellInfo *root = ctx->getClusterRootCell(b->cluster);
root->constr_children.push_back(a);
a->cluster = root->cluster;
a->constr_x = b->constr_x;
a->constr_y = b->constr_y;
a->constr_z = get_macro_cell_z(b) - dz;
a->constr_abs_z = b->constr_abs_z;
} else if (!b->constr_children.empty()) {
NPNR_ASSERT(a->constr_children.empty());
b->constr_children.push_back(a);
a->cluster = b->cluster;
a->constr_x = 0;
a->constr_y = 0;
a->constr_z = get_macro_cell_z(b) - dz;
a->constr_abs_z = b->constr_abs_z;
} else {
NPNR_ASSERT(a->cluster == ClusterId() || ctx->getClusterRootCell(a->cluster) == a);
a->constr_children.push_back(b);
a->cluster = a->name;
b->cluster = a->name;
b->constr_x = 0;
b->constr_y = 0;
b->constr_z = get_macro_cell_z(a) + dz;
b->constr_abs_z = a->constr_abs_z;
}
}
// Check if it is legal to add a FF to a macro
// This reuses the tile validity code
bool can_add_flipflop_to_macro(CellInfo *comb, CellInfo *ff)
{
Arch::LogicTileStatus lts;
std::fill(lts.cells.begin(), lts.cells.end(), nullptr);
lts.tile_dirty = true;
for (auto &sl : lts.slices)
sl.dirty = true;
auto process_cell = [&](CellInfo *ci) {
if (get_macro_cell_xy(ci) != get_macro_cell_xy(comb))
return;
int z = get_macro_cell_z(ci);
auto &slot = lts.cells.at(z);
NPNR_ASSERT(slot == nullptr);
slot = ci;
// Make sure fields needed for validity checking are set correctly
ctx->assign_arch_info_for_cell(ci);
};
if (comb->cluster != ClusterId()) {
CellInfo *root = ctx->getClusterRootCell(comb->cluster);
process_cell(root);
for (auto &ch : root->constr_children)
process_cell(ch);
} else {
process_cell(comb);
for (auto &ch : comb->constr_children)
process_cell(ch);
}
int ff_z = get_macro_cell_z(comb) + (Arch::BEL_FF - Arch::BEL_COMB);
if (lts.cells.at(ff_z) != nullptr)
return false;
ctx->assign_arch_info_for_cell(ff);
lts.cells.at(ff_z) = ff;
return ctx->slices_compatible(&lts);
}
void pack_ffs()
{
log_info("Packing FFs...\n");
int pairs = 0;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_ff(ctx, ci)) {
NetInfo *di = ci->getPort(id_DI);
if (di->driver.cell != nullptr && di->driver.cell->type == id_TRELLIS_COMB && di->driver.port == id_F) {
CellInfo *comb = di->driver.cell;
if (comb->cluster != ClusterId()) {
// Special procedure where the comb cell is part of an existing macro
// Need to make sure that CLK, CE, SR, etc are shared correctly, or
// the design will not be routeable
if (can_add_flipflop_to_macro(comb, ci)) {
ci->params[id_SD] = std::string("1");
rel_constr_cells(comb, ci, (Arch::BEL_FF - Arch::BEL_COMB));
// Packed successfully
++pairs;
continue;
}
} else {
// LUT/COMB is not part of a macro, this is the easy case
// Constrain FF and LUT together, no need to rewire
ci->params[id_SD] = std::string("1");
comb->constr_children.push_back(ci);
ci->cluster = comb->name;
comb->cluster = comb->name;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = (Arch::BEL_FF - Arch::BEL_COMB);
ci->constr_abs_z = false;
// Packed successfully
++pairs;
continue;
}
}
{
// Didn't manage to pack it with a driving combinational cell
// Rewire to use general routing
ci->params[id_SD] = std::string("0");
ci->renamePort(id_DI, id_M);
}
}
}
log_info(" %d FFs paired with LUTs.\n", pairs);
}
// Return true if an port is a top level port that provides its own IOBUF
bool is_top_port(PortRef &port)
{
if (port.cell == nullptr)
return false;
if (port.cell->type == id_DCUA) {
return port.port.in(id_CH0_HDINP, id_CH0_HDINN, id_CH0_HDOUTP, id_CH0_HDOUTN, id_CH1_HDINP, id_CH1_HDINN,
id_CH1_HDOUTP, id_CH1_HDOUTN);
} else if (port.cell->type == id_EXTREFB) {
return port.port.in(id_REFCLKP, id_REFCLKN);
} else {
return false;
}
}
// Return true if a net only drives a top port
bool drives_top_port(NetInfo *net, PortRef &tp)
{
if (net == nullptr)
return false;
for (auto user : net->users) {
if (is_top_port(user)) {
if (net->users.entries() > 1)
log_error(" port %s.%s must be connected to (and only to) a top level pin\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx));
tp = user;
return true;
}
}
if (net->driver.cell != nullptr && is_top_port(net->driver)) {
if (net->users.entries() > 1)
log_error(" port %s.%s must be connected to (and only to) a top level pin\n",
net->driver.cell->name.c_str(ctx), net->driver.port.c_str(ctx));
tp = net->driver;
return true;
}
return false;
}
// Pass to pack LUT5s into a newly created slice
void pack_lut5xs()
{
log_info("Packing LUT5-7s...\n");
// Gets the "COMB1" side of a LUT5, where we pack a LUT[67] into
auto get_comb1_from_lut5 = [&](CellInfo *lut5) {
NetInfo *f1 = lut5->getPort(id_F1);
NPNR_ASSERT(f1 != nullptr);
NPNR_ASSERT(f1->driver.cell != nullptr);
return f1->driver.cell;
};
dict<IdString, std::pair<CellInfo *, CellInfo *>> lut5_roots, lut6_roots, lut7_roots;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_pfumx(ctx, ci)) {
NetInfo *f0 = ci->ports.at(id_BLUT).net;
if (f0 == nullptr)
log_error("PFUMX '%s' has disconnected port 'BLUT'\n", ci->name.c_str(ctx));
NetInfo *f1 = ci->ports.at(id_ALUT).net;
if (f1 == nullptr)
log_error("PFUMX '%s' has disconnected port 'ALUT'\n", ci->name.c_str(ctx));
CellInfo *lut0 =
(f0->driver.cell && f0->driver.cell->type == id_TRELLIS_COMB && f0->driver.port == id_F)
? f0->driver.cell
: nullptr;
CellInfo *lut1 =
(f1->driver.cell && f1->driver.cell->type == id_TRELLIS_COMB && f1->driver.port == id_F)
? f1->driver.cell
: nullptr;
if (lut0 == nullptr || lut0->cluster != ClusterId())
log_error("PFUMX '%s' has BLUT driven by cell other than a LUT\n", ci->name.c_str(ctx));
if (lut1 == nullptr || lut1->cluster != ClusterId())
log_error("PFUMX '%s' has ALUT driven by cell other than a LUT\n", ci->name.c_str(ctx));
lut0->addInput(id_F1);
lut0->addInput(id_M);
lut0->addOutput(id_OFX);
ci->movePortTo(id_Z, lut0, id_OFX);
ci->movePortTo(id_ALUT, lut0, id_F1);
ci->movePortTo(id_C0, lut0, id_M);
ci->disconnectPort(id_BLUT);
lut5_roots[lut0->name] = {lut0, lut1};
packed_cells.insert(ci->name);
}
}
flush_cells();
// Pack LUT6s
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_l6mux(ctx, ci)) {
NetInfo *ofx0_0 = ci->ports.at(id_D0).net;
if (ofx0_0 == nullptr)
log_error("L6MUX21 '%s' has disconnected port 'D0'\n", ci->name.c_str(ctx));
NetInfo *ofx0_1 = ci->ports.at(id_D1).net;
if (ofx0_1 == nullptr)
log_error("L6MUX21 '%s' has disconnected port 'D1'\n", ci->name.c_str(ctx));
CellInfo *comb0 = (ofx0_0->driver.cell && ofx0_0->driver.cell->type == id_TRELLIS_COMB &&
ofx0_0->driver.port == id_OFX)
? ofx0_0->driver.cell
: nullptr;
CellInfo *comb1 = (ofx0_1->driver.cell && ofx0_1->driver.cell->type == id_TRELLIS_COMB &&
ofx0_1->driver.port == id_OFX)
? ofx0_1->driver.cell
: nullptr;
if (comb0 == nullptr) {
if (!net_driven_by(ctx, ofx0_0, is_l6mux, id_Z))
log_error("L6MUX21 '%s' has D0 driven by cell other than a SLICE OFX0 but not a LUT7 mux "
"('%s.%s')\n",
ci->name.c_str(ctx), ofx0_0->driver.cell->name.c_str(ctx),
ofx0_0->driver.port.c_str(ctx));
continue;
}
if (lut6_roots.count(comb0->name))
continue;
if (comb1 == nullptr) {
if (!net_driven_by(ctx, ofx0_1, is_l6mux, id_Z))
log_error("L6MUX21 '%s' has D1 driven by cell other than a SLICE OFX0 but not a LUT7 mux "
"('%s.%s')\n",
ci->name.c_str(ctx), ofx0_0->driver.cell->name.c_str(ctx),
ofx0_0->driver.port.c_str(ctx));
continue;
}
if (lut6_roots.count(comb1->name))
continue;
if (ctx->verbose)
log_info(" mux '%s' forms part of a LUT6\n", cell.first.c_str(ctx));
comb0 = get_comb1_from_lut5(comb0);
comb1 = get_comb1_from_lut5(comb1);
comb1->addInput(id_FXA);
comb1->addInput(id_FXB);
comb1->addInput(id_M);
comb1->addOutput(id_OFX);
ci->movePortTo(id_D0, comb1, id_FXA);
ci->movePortTo(id_D1, comb1, id_FXB);
ci->movePortTo(id_SD, comb1, id_M);
ci->movePortTo(id_Z, comb1, id_OFX);
lut6_roots[comb1->name] = {comb0, comb1};
packed_cells.insert(ci->name);
}
}
flush_cells();
// Pack LUT7s
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_l6mux(ctx, ci)) {
NetInfo *ofx1_0 = ci->ports.at(id_D0).net;
if (ofx1_0 == nullptr)
log_error("L6MUX21 '%s' has disconnected port 'D0'\n", ci->name.c_str(ctx));
NetInfo *ofx1_1 = ci->ports.at(id_D1).net;
if (ofx1_1 == nullptr)
log_error("L6MUX21 '%s' has disconnected port 'D1'\n", ci->name.c_str(ctx));
CellInfo *comb1 = (ofx1_0->driver.cell && ofx1_0->driver.cell->type == id_TRELLIS_COMB &&
ofx1_0->driver.port == id_OFX)
? ofx1_0->driver.cell
: nullptr;
CellInfo *comb3 = (ofx1_1->driver.cell && ofx1_1->driver.cell->type == id_TRELLIS_COMB &&
ofx1_1->driver.port == id_OFX)
? ofx1_1->driver.cell
: nullptr;
if (comb1 == nullptr)
log_error("L6MUX21 '%s' has D0 driven by cell other than a SLICE OFX ('%s.%s')\n",
ci->name.c_str(ctx), ofx1_0->driver.cell->name.c_str(ctx),
ofx1_0->driver.port.c_str(ctx));
if (comb3 == nullptr)
log_error("L6MUX21 '%s' has D1 driven by cell other than a SLICE OFX ('%s.%s')\n",
ci->name.c_str(ctx), ofx1_1->driver.cell->name.c_str(ctx),
ofx1_1->driver.port.c_str(ctx));
NetInfo *fxa_0 = comb1->ports.at(id_FXA).net;
if (fxa_0 == nullptr)
log_error("SLICE '%s' has disconnected port 'FXA'\n", comb1->name.c_str(ctx));
NetInfo *fxa_1 = comb3->ports.at(id_FXA).net;
if (fxa_1 == nullptr)
log_error("SLICE '%s' has disconnected port 'FXA'\n", comb3->name.c_str(ctx));
CellInfo *comb2 = net_driven_by(
ctx, fxa_1,
[](const Context *ctx, const CellInfo *ci) {
(void)ctx;
return ci->type == id_TRELLIS_COMB;
},
id_OFX);
if (comb2 == nullptr)
log_error("SLICE '%s' has FXA driven by cell other than a SLICE OFX0 ('%s.%s')\n",
comb3->name.c_str(ctx), fxa_1->driver.cell->name.c_str(ctx),
fxa_1->driver.port.c_str(ctx));
comb2 = get_comb1_from_lut5(comb2);
comb2->addInput(id_FXA);
comb2->addInput(id_FXB);
comb2->addInput(id_M);
comb2->addOutput(id_OFX);
ci->movePortTo(id_D0, comb2, id_FXA);
ci->movePortTo(id_D1, comb2, id_FXB);
ci->movePortTo(id_SD, comb2, id_M);
ci->movePortTo(id_Z, comb2, id_OFX);
lut7_roots[comb2->name] = {comb1, comb3};
packed_cells.insert(ci->name);
}
}
for (auto &root : lut7_roots) {
auto &cells = root.second;
cells.second->cluster = cells.second->name;
cells.second->constr_abs_z = true;
cells.second->constr_z = (1 << Arch::lc_idx_shift) | Arch::BEL_COMB;
rel_constr_cells(cells.second, cells.first, (4 << Arch::lc_idx_shift));
}
for (auto &root : lut6_roots) {
auto &cells = root.second;
rel_constr_cells(cells.second, cells.first, (2 << Arch::lc_idx_shift));
}
for (auto &root : lut5_roots) {
auto &cells = root.second;
rel_constr_cells(cells.first, cells.second, (1 << Arch::lc_idx_shift));
}
flush_cells();
}
// Simple "packer" to remove nextpnr IOBUFs, this assumes IOBUFs are manually instantiated
void pack_io()
{
log_info("Packing IOs..\n");
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_nextpnr_iob(ctx, ci)) {
CellInfo *trio = nullptr;
NetInfo *ionet = nullptr;
PortRef tp;
if (ci->type == ctx->id("$nextpnr_ibuf") || ci->type == ctx->id("$nextpnr_iobuf")) {
ionet = ci->ports.at(id_O).net;
trio = net_only_drives(ctx, ionet, is_trellis_io, id_B, true, ci);
} else if (ci->type == ctx->id("$nextpnr_obuf")) {
ionet = ci->ports.at(id_I).net;
trio = net_only_drives(ctx, ci->ports.at(id_I).net, is_trellis_io, id_B, true, ci);
}
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
// No IO buffer insertion in out-of-context mode, just remove the nextpnr buffer
// and leave the top level port
for (auto &port : ci->ports)
ci->disconnectPort(port.first);
} else if (trio != nullptr) {
// Trivial case, TRELLIS_IO used. Just remove the IOBUF
log_info("%s feeds TRELLIS_IO %s, removing %s %s.\n", ci->name.c_str(ctx), trio->name.c_str(ctx),
ci->type.c_str(ctx), ci->name.c_str(ctx));
NetInfo *net = trio->ports.at(id_B).net;
if (((ci->type == ctx->id("$nextpnr_ibuf") || ci->type == ctx->id("$nextpnr_iobuf")) &&
net->users.entries() > 1) ||
(ci->type == ctx->id("$nextpnr_obuf") &&
(net->users.entries() > 2 || net->driver.cell != nullptr)) ||
(ci->type == ctx->id("$nextpnr_iobuf") && ci->ports.at(id_I).net != nullptr &&
ci->ports.at(id_I).net->driver.cell != nullptr))
log_error("Pin B of %s '%s' connected to more than a single top level IO.\n",
trio->type.c_str(ctx), trio->name.c_str(ctx));
if (net != nullptr) {
if (net->clkconstr != nullptr && trio->ports.count(id_O)) {
NetInfo *onet = trio->ports.at(id_O).net;
if (onet != nullptr && !onet->clkconstr) {
// Move clock constraint from IO pad to input buffer output
std::swap(net->clkconstr, onet->clkconstr);
}
}
}
} else if (drives_top_port(ionet, tp)) {
log_info("%s feeds %s %s.%s, removing %s %s.\n", ci->name.c_str(ctx), tp.cell->type.c_str(ctx),
tp.cell->name.c_str(ctx), tp.port.c_str(ctx), ci->type.c_str(ctx), ci->name.c_str(ctx));
if (ionet != nullptr) {
ctx->nets.erase(ionet->name);
tp.cell->ports.at(tp.port).net = nullptr;
}
if (ci->type == ctx->id("$nextpnr_iobuf")) {
NetInfo *net2 = ci->ports.at(id_I).net;
if (net2 != nullptr) {
ctx->nets.erase(net2->name);
}
}
} else {
// Create a TRELLIS_IO buffer
std::unique_ptr<CellInfo> tr_cell =
create_ecp5_cell(ctx, id_TRELLIS_IO, ci->name.str(ctx) + "$tr_io");
nxio_to_tr(ctx, ci, tr_cell.get(), new_cells, packed_cells);
new_cells.push_back(std::move(tr_cell));
trio = new_cells.back().get();
}
for (auto port : ci->ports)
ci->disconnectPort(port.first);
packed_cells.insert(ci->name);
if (trio != nullptr) {
for (const auto &attr : ci->attrs)
trio->attrs[attr.first] = attr.second;
auto loc_attr = trio->attrs.find(id_LOC);
if (loc_attr != trio->attrs.end()) {
std::string pin = loc_attr->second.as_string();
BelId pinBel = ctx->get_package_pin_bel(pin);
if (pinBel == BelId()) {
log_error("IO pin '%s' constrained to pin '%s', which does not exist for package '%s'.\n",
trio->name.c_str(ctx), pin.c_str(), ctx->args.package.c_str());
} else {
log_info("pin '%s' constrained to Bel '%s'.\n", trio->name.c_str(ctx),
ctx->nameOfBel(pinBel));
}
trio->attrs[id_BEL] = ctx->getBelName(pinBel).str(ctx);
}
}
}
}
flush_cells();
}
// Create a feed in to the carry chain
CellInfo *make_carry_feed_in(NetInfo *carry, PortRef chain_in)
{
std::unique_ptr<CellInfo> feedin = create_ecp5_cell(ctx, id_CCU2C);
feedin->params[id_INIT0] = Property(10, 16); // LUT4 = 0; LUT2 = A
feedin->params[id_INIT1] = Property(65535, 16);
feedin->params[id_INJECT1_0] = std::string("NO");
feedin->params[id_INJECT1_1] = std::string("YES");
carry->users.remove(chain_in.cell->ports.at(chain_in.port).user_idx);
feedin->connectPort(id_A0, carry);
NetInfo *new_carry = ctx->createNet(ctx->id(feedin->name.str(ctx) + "$COUT"));
feedin->connectPort(id_COUT, new_carry);
chain_in.cell->ports[chain_in.port].net = nullptr;
chain_in.cell->ports[chain_in.port].user_idx = {};
chain_in.cell->connectPort(chain_in.port, new_carry);
CellInfo *feedin_ptr = feedin.get();
IdString feedin_name = feedin->name;
ctx->cells[feedin_name] = std::move(feedin);
return feedin_ptr;
}
// Create a feed out and loop through from the carry chain
CellInfo *make_carry_feed_out(NetInfo *carry, boost::optional<PortRef> chain_next = boost::optional<PortRef>())
{
std::unique_ptr<CellInfo> feedout = create_ecp5_cell(ctx, id_CCU2C);
feedout->params[id_INIT0] = Property(0, 16);
feedout->params[id_INIT1] = Property(10, 16); // LUT4 = 0; LUT2 = A
feedout->params[id_INJECT1_0] = std::string("NO");
feedout->params[id_INJECT1_1] = std::string("NO");
PortRef carry_drv = carry->driver;
carry->driver.cell = nullptr;
feedout->connectPort(id_S0, carry);
NetInfo *new_cin = ctx->createNet(ctx->id(feedout->name.str(ctx) + "$CIN"));
new_cin->driver = carry_drv;
carry_drv.cell->ports.at(carry_drv.port).net = new_cin;
feedout->connectPort(id_CIN, new_cin);
if (chain_next) {
// Loop back into LUT4_1 for feedthrough
feedout->connectPort(id_A1, carry);
if (chain_next->cell && chain_next->cell->ports.at(chain_next->port).user_idx)
carry->users.remove(chain_next->cell->ports.at(chain_next->port).user_idx);
NetInfo *new_cout = ctx->createNet(ctx->id(feedout->name.str(ctx) + "$COUT"));
feedout->connectPort(id_COUT, new_cout);
chain_next->cell->ports[chain_next->port].net = nullptr;
chain_next->cell->connectPort(chain_next->port, new_cout);
}
CellInfo *feedout_ptr = feedout.get();
IdString feedout_name = feedout->name;
ctx->cells[feedout_name] = std::move(feedout);
return feedout_ptr;
}
// Split a carry chain into multiple legal chains
std::vector<CellChain> split_carry_chain(CellChain &carryc)
{
bool start_of_chain = true;
std::vector<CellChain> chains;
const int max_length = (ctx->chip_info->width - 4) * 4 - 2;
auto curr_cell = carryc.cells.begin();
while (curr_cell != carryc.cells.end()) {
CellInfo *cell = *curr_cell;
if (start_of_chain) {
chains.emplace_back();
start_of_chain = false;
if (cell->ports.at(id_CIN).net) {
// CIN is not constant and not part of a chain. Must feed in from fabric
PortRef inport;
inport.cell = cell;
inport.port = id_CIN;
CellInfo *feedin = make_carry_feed_in(cell->ports.at(id_CIN).net, inport);
chains.back().cells.push_back(feedin);
}
}
chains.back().cells.push_back(cell);
bool split_chain = int(chains.back().cells.size()) > max_length;
if (split_chain) {
CellInfo *passout = make_carry_feed_out(cell->ports.at(id_COUT).net);
chains.back().cells.back() = passout;
start_of_chain = true;
} else {
NetInfo *carry_net = cell->ports.at(id_COUT).net;
bool at_end = (curr_cell == carryc.cells.end() - 1);
if (carry_net != nullptr && (carry_net->users.entries() > 1 || at_end)) {
boost::optional<PortRef> nextport;
if (!at_end) {
auto next_cell = *(curr_cell + 1);
PortRef nextpr;
nextpr.cell = next_cell;
nextpr.port = id_CIN;
nextport = nextpr;
}
CellInfo *passout = make_carry_feed_out(cell->ports.at(id_COUT).net, nextport);
chains.back().cells.push_back(passout);
}
++curr_cell;
}
}
return chains;
}
// Pack carries and set up appropriate relative constraints
void pack_carries()
{
log_info("Packing carries...\n");
// Find all chains (including single carry cells)
auto carry_chains = find_chains(
ctx, [](const Context *ctx, const CellInfo *cell) { return is_carry(ctx, cell); },
[](const Context *ctx, const CellInfo *cell) {
return net_driven_by(ctx, cell->ports.at(id_CIN).net, is_carry, id_COUT);
},
[](const Context *ctx, const CellInfo *cell) {
return net_only_drives(ctx, cell->ports.at(id_COUT).net, is_carry, id_CIN, false);
},
1);
std::vector<CellChain> all_chains;
// Chain splitting
for (auto &base_chain : carry_chains) {
if (ctx->verbose) {
log_info("Found carry chain: \n");
for (auto entry : base_chain.cells)
log_info(" %s\n", entry->name.c_str(ctx));
log_info("\n");
}
std::vector<CellChain> split_chains = split_carry_chain(base_chain);
for (auto &chain : split_chains) {
all_chains.push_back(chain);
}
}
std::vector<std::vector<CellInfo *>> packed_chains;
// Chain packing
std::vector<std::tuple<CellInfo *, CellInfo *, int>> ff_packing;
for (auto &chain : all_chains) {
int cell_count = 0;
std::vector<CellInfo *> packed_chain;
for (auto &cell : chain.cells) {
std::unique_ptr<CellInfo> comb0 =
create_ecp5_cell(ctx, id_TRELLIS_COMB, cell->name.str(ctx) + "$CCU2_COMB0");
std::unique_ptr<CellInfo> comb1 =
create_ecp5_cell(ctx, id_TRELLIS_COMB, cell->name.str(ctx) + "$CCU2_COMB1");
NetInfo *carry_net = ctx->createNet(ctx->id(cell->name.str(ctx) + "$CCU2_FCI_INT"));
ccu2_to_comb(ctx, cell, comb0.get(), carry_net, 0);
ccu2_to_comb(ctx, cell, comb1.get(), carry_net, 1);
packed_chain.push_back(comb0.get());
packed_chain.push_back(comb1.get());
new_cells.push_back(std::move(comb0));
new_cells.push_back(std::move(comb1));
packed_cells.insert(cell->name);
cell_count++;
}
packed_chains.push_back(packed_chain);
}
// Relative chain placement
for (auto &chain : packed_chains) {
chain.at(0)->constr_abs_z = true;
chain.at(0)->constr_z = 0;
chain.at(0)->cluster = chain.at(0)->name;
for (int i = 1; i < int(chain.size()); i++) {
chain.at(i)->constr_x = (i / 8);
chain.at(i)->constr_y = 0;
chain.at(i)->constr_z = (i % 8) << ctx->lc_idx_shift | Arch::BEL_COMB;
chain.at(i)->constr_abs_z = true;
chain.at(i)->cluster = chain.at(0)->name;
chain.at(0)->constr_children.push_back(chain.at(i));
}
}
flush_cells();
}
// Pack distributed RAM
void pack_dram()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (is_dpram(ctx, ci)) {
// Create RAMW slice
std::unique_ptr<CellInfo> ramw_slice =
create_ecp5_cell(ctx, id_TRELLIS_RAMW, ci->name.str(ctx) + "$RAMW_SLICE");
dram_to_ramw_split(ctx, ci, ramw_slice.get());
// Create actual RAM slices
std::unique_ptr<CellInfo> ram_comb[4];
for (int i = 0; i < 4; i++) {
ram_comb[i] = create_ecp5_cell(ctx, id_TRELLIS_COMB,
ci->name.str(ctx) + "$DPRAM_COMB" + std::to_string(i));
dram_to_comb(ctx, ci, ram_comb[i].get(), ramw_slice.get(), i);
}
// Create 'block' SLICEs as a placement hint that these cells are mutually exclusive with the RAMW
std::unique_ptr<CellInfo> ramw_block[2];
for (int i = 0; i < 2; i++) {
ramw_block[i] = create_ecp5_cell(ctx, id_TRELLIS_COMB,
ci->name.str(ctx) + "$RAMW_BLOCK" + std::to_string(i));
ramw_block[i]->params[id_MODE] = std::string("RAMW_BLOCK");
}
// Disconnect ports of original cell after packing
ci->disconnectPort(id_WCK);
ci->disconnectPort(id_WRE);
for (int i = 0; i < 4; i++)
ci->disconnectPort(ctx->idf("RAD[%d]", i));
// Setup placement constraints
// Use the 0th bit as an anchor
ram_comb[0]->constr_abs_z = true;
ram_comb[0]->constr_z = Arch::BEL_COMB;
ram_comb[0]->cluster = ram_comb[0]->name;
for (int i = 1; i < 4; i++) {
ram_comb[i]->cluster = ram_comb[0]->name;
ram_comb[i]->constr_abs_z = true;
ram_comb[i]->constr_x = 0;
ram_comb[i]->constr_y = 0;
ram_comb[i]->constr_z = (i << ctx->lc_idx_shift) | Arch::BEL_COMB;
ram_comb[0]->constr_children.push_back(ram_comb[i].get());
}
for (int i = 0; i < 2; i++) {
ramw_block[i]->cluster = ram_comb[0]->name;
ramw_block[i]->constr_abs_z = true;
ramw_block[i]->constr_x = 0;
ramw_block[i]->constr_y = 0;
ramw_block[i]->constr_z = ((i + 4) << ctx->lc_idx_shift) | Arch::BEL_COMB;
ram_comb[0]->constr_children.push_back(ramw_block[i].get());
}
ramw_slice->cluster = ram_comb[0]->name;
ramw_slice->constr_abs_z = true;
ramw_slice->constr_x = 0;
ramw_slice->constr_y = 0;
ramw_slice->constr_z = (4 << ctx->lc_idx_shift) | Arch::BEL_RAMW;
ram_comb[0]->constr_children.push_back(ramw_slice.get());
for (int i = 0; i < 4; i++)
new_cells.push_back(std::move(ram_comb[i]));
for (int i = 0; i < 2; i++)
new_cells.push_back(std::move(ramw_block[i]));
new_cells.push_back(std::move(ramw_slice));
packed_cells.insert(ci->name);
}
}
flush_cells();
}
int make_init_with_const_input(int init, int input, bool value)
{
int new_init = 0;
for (int i = 0; i < 16; i++) {
if (((i >> input) & 0x1) != value) {
int other_i = (i & (~(1 << input))) | (value << input);
if ((init >> other_i) & 0x1)
new_init |= (1 << i);
} else {
if ((init >> i) & 0x1)
new_init |= (1 << i);
}
}
return new_init;
}
void set_lut_input_constant(CellInfo *cell, IdString input, bool value)
{
int index = std::string("ABCD").find(input.str(ctx));
int init = int_or_default(cell->params, id_INIT);
int new_init = make_init_with_const_input(init, index, value);
cell->params[id_INIT] = Property(new_init, 16);
cell->ports.at(input).net = nullptr;
}
void set_ccu2c_input_constant(CellInfo *cell, IdString input, bool value)
{
std::string input_str = input.str(ctx);
int lut = std::stoi(input_str.substr(1));
int index = std::string("ABCD").find(input_str[0]);
int init = int_or_default(cell->params, ctx->id("INIT" + std::to_string(lut)));
int new_init = make_init_with_const_input(init, index, value);
cell->params[ctx->id("INIT" + std::to_string(lut))] = Property(new_init, 16);
cell->ports.at(input).net = nullptr;
}
bool is_ccu2c_port_high(CellInfo *cell, IdString input)
{
if (!cell->ports.count(input))
return true; // disconnected port is high
if (cell->ports.at(input).net == nullptr || cell->ports.at(input).net->name == ctx->id("$PACKER_VCC_NET"))
return true; // disconnected or tied-high port
if (cell->ports.at(input).net->driver.cell != nullptr && cell->ports.at(input).net->driver.cell->type == id_VCC)
return true; // pre-pack high
return false;
}
// Merge a net into a constant net
void set_net_constant(const Context *ctx, NetInfo *orig, NetInfo *constnet, bool constval)
{
orig->driver.cell = nullptr;
for (auto user : orig->users) {
if (user.cell != nullptr) {
CellInfo *uc = user.cell;
if (ctx->verbose)
log_info("%s user %s\n", orig->name.c_str(ctx), uc->name.c_str(ctx));
if (is_lut(ctx, uc)) {
set_lut_input_constant(uc, user.port, constval);
} else if (is_ff(ctx, uc) && user.port == id_CE) {
uc->params[id_CEMUX] = std::string(constval ? "1" : "0");
uc->ports[user.port].net = nullptr;
} else if (is_carry(ctx, uc)) {
if (constval && (user.port.in(id_A0, id_A1, id_B0, id_B1, id_C0, id_C1, id_D0, id_D1))) {
// Input tied high, nothing special to do (bitstream gen will auto-enable tie-high)
uc->ports[user.port].net = nullptr;
} else if (!constval) {
if (user.port.in(id_A0, id_A1, id_B0, id_B1)) {
// These inputs can be switched to tie-high without consequence
set_ccu2c_input_constant(uc, user.port, constval);
} else if (user.port == id_C0 && is_ccu2c_port_high(uc, id_D0)) {
// Partner must be tied high
set_ccu2c_input_constant(uc, user.port, constval);
} else if (user.port == id_D0 && is_ccu2c_port_high(uc, id_C0)) {
// Partner must be tied high
set_ccu2c_input_constant(uc, user.port, constval);
} else if (user.port == id_C1 && is_ccu2c_port_high(uc, id_D1)) {
// Partner must be tied high
set_ccu2c_input_constant(uc, user.port, constval);
} else if (user.port == id_D1 && is_ccu2c_port_high(uc, id_C1)) {
// Partner must be tied high
set_ccu2c_input_constant(uc, user.port, constval);
} else {
// Not allowed to change to a tie-high
uc->ports[user.port].net = constnet;
uc->ports[user.port].user_idx = constnet->users.add(user);
}
} else {
uc->ports[user.port].net = constnet;
uc->ports[user.port].user_idx = constnet->users.add(user);
}
} else if (is_ff(ctx, uc) && user.port == id_LSR &&
((!constval && str_or_default(uc->params, id_LSRMUX, "LSR") == "LSR") ||
(constval && str_or_default(uc->params, id_LSRMUX, "LSR") == "INV"))) {
uc->ports[user.port].net = nullptr;
} else if (uc->type == id_DP16KD) {
if (user.port.in(id_CLKA, id_CLKB, id_RSTA, id_RSTB, id_WEA, id_WEB, id_CEA, id_CEB, id_OCEA,
id_OCEB, id_CSA0, id_CSA1, id_CSA2, id_CSB0, id_CSB1, id_CSB2)) {
// Connect to CIB CLK, LSR or CE. Default state is 1
uc->params[ctx->id(user.port.str(ctx) + "MUX")] = constval ? user.port.str(ctx) : "INV";
} else {
// Connected to CIB ABCD. Default state is bitstream configurable
uc->params[ctx->id(user.port.str(ctx) + "MUX")] = std::string(constval ? "1" : "0");
}
uc->ports[user.port].net = nullptr;
} else if (uc->type.in(id_ALU54B, id_MULT18X18D)) {
if (user.port.str(ctx).substr(0, 3) == "CLK" || user.port.str(ctx).substr(0, 2) == "CE" ||
user.port.str(ctx).substr(0, 3) == "RST" || user.port.str(ctx).substr(0, 3) == "SRO" ||
user.port.str(ctx).substr(0, 3) == "SRI" || user.port.str(ctx).substr(0, 2) == "RO" ||
user.port.str(ctx).substr(0, 2) == "MA" || user.port.str(ctx).substr(0, 2) == "MB" ||
user.port.str(ctx).substr(0, 3) == "CFB" || user.port.str(ctx).substr(0, 3) == "CIN" ||
user.port.str(ctx).substr(0, 6) == "SOURCE" || user.port.str(ctx).substr(0, 6) == "SIGNED" ||
user.port.str(ctx).substr(0, 2) == "OP") {
uc->ports[user.port].net = constnet;
uc->ports[user.port].user_idx = constnet->users.add(user);
} else {
// Connected to CIB ABCD. Default state is bitstream configurable
uc->params[ctx->id(user.port.str(ctx) + "MUX")] = std::string(constval ? "1" : "0");
uc->ports[user.port].net = nullptr;
}
} else {
uc->ports[user.port].net = constnet;
uc->ports[user.port].user_idx = constnet->users.add(user);
}
}
}
orig->users.clear();
}
// Pack constants (simple implementation)
void pack_constants()
{
log_info("Packing constants..\n");
std::unique_ptr<CellInfo> gnd_cell = create_ecp5_cell(ctx, id_LUT4, "$PACKER_GND");
gnd_cell->params[id_INIT] = Property(0, 16);
auto gnd_net = std::make_unique<NetInfo>(ctx->id("$PACKER_GND_NET"));
gnd_net->driver.cell = gnd_cell.get();
gnd_net->driver.port = id_Z;
gnd_cell->ports.at(id_Z).net = gnd_net.get();
std::unique_ptr<CellInfo> vcc_cell = create_ecp5_cell(ctx, id_LUT4, "$PACKER_VCC");
vcc_cell->params[id_INIT] = Property(65535, 16);
auto vcc_net = std::make_unique<NetInfo>(ctx->id("$PACKER_VCC_NET"));
vcc_net->driver.cell = vcc_cell.get();
vcc_net->driver.port = id_Z;
vcc_cell->ports.at(id_Z).net = vcc_net.get();
std::vector<IdString> dead_nets;
bool gnd_used = false, vcc_used = false;
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
if (ni->driver.cell != nullptr && ni->driver.cell->type == id_GND) {
IdString drv_cell = ni->driver.cell->name;
set_net_constant(ctx, ni, gnd_net.get(), false);
gnd_used = true;
dead_nets.push_back(net.first);
ctx->cells.erase(drv_cell);
} else if (ni->driver.cell != nullptr && ni->driver.cell->type == id_VCC) {
IdString drv_cell = ni->driver.cell->name;
set_net_constant(ctx, ni, vcc_net.get(), true);
vcc_used = true;
dead_nets.push_back(net.first);
ctx->cells.erase(drv_cell);
}
}
if (gnd_used) {
ctx->cells[gnd_cell->name] = std::move(gnd_cell);
ctx->nets[gnd_net->name] = std::move(gnd_net);
}
if (vcc_used) {
ctx->cells[vcc_cell->name] = std::move(vcc_cell);
ctx->nets[vcc_net->name] = std::move(vcc_net);
}
for (auto dn : dead_nets) {
ctx->nets.erase(dn);
}
}
void autocreate_empty_port(CellInfo *cell, IdString port)
{
if (!cell->ports.count(port)) {
cell->ports[port].name = port;
cell->ports[port].net = nullptr;
cell->ports[port].type = PORT_IN;
}
}
// Pack EBR
void pack_ebr()
{
// Autoincrement WID (starting from 3 seems to match vendor behaviour?)
int wid = 3;
auto rename_bus = [&](CellInfo *c, const std::string &oldname, const std::string &newname, int width,
int oldoffset, int newoffset) {
for (int i = 0; i < width; i++)
c->renamePort(ctx->id(oldname + std::to_string(i + oldoffset)),
ctx->id(newname + std::to_string(i + newoffset)));
};
auto rename_param = [&](CellInfo *c, const std::string &oldname, const std::string &newname) {
IdString o = ctx->id(oldname), n = ctx->id(newname);
if (!c->params.count(o))
return;
c->params[n] = c->params[o];
c->params.erase(o);
};
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
// Convert 36-bit PDP RAMs to regular 18-bit DP ones that match the Bel
if (ci->type == id_PDPW16KD) {
ci->params[id_DATA_WIDTH_A] = 36; // force PDP mode
ci->params.erase(id_DATA_WIDTH_W);
rename_bus(ci, "BE", "ADA", 4, 0, 0);
rename_bus(ci, "ADW", "ADA", 9, 0, 5);
rename_bus(ci, "ADR", "ADB", 14, 0, 0);
rename_bus(ci, "CSW", "CSA", 3, 0, 0);
rename_bus(ci, "CSR", "CSB", 3, 0, 0);
rename_bus(ci, "DI", "DIA", 18, 0, 0);
rename_bus(ci, "DI", "DIB", 18, 18, 0);
rename_bus(ci, "DO", "DOA", 18, 18, 0);
rename_bus(ci, "DO", "DOB", 18, 0, 0);
ci->renamePort(id_CLKW, id_CLKA);
ci->renamePort(id_CLKR, id_CLKB);
ci->renamePort(id_CEW, id_CEA);
ci->renamePort(id_CER, id_CEB);
ci->renamePort(id_OCER, id_OCEB);
rename_param(ci, "CLKWMUX", "CLKAMUX");
if (str_or_default(ci->params, id_CLKAMUX) == "CLKW")
ci->params[id_CLKAMUX] = std::string("CLKA");
rename_param(ci, "CLKRMUX", "CLKBMUX");
if (str_or_default(ci->params, id_CLKBMUX) == "CLKR")
ci->params[id_CLKBMUX] = std::string("CLKB");
rename_param(ci, "CSDECODE_W", "CSDECODE_A");
rename_param(ci, "CSDECODE_R", "CSDECODE_B");
std::string outreg = str_or_default(ci->params, id_REGMODE, "NOREG");
ci->params[id_REGMODE_A] = outreg;
ci->params[id_REGMODE_B] = outreg;
ci->params.erase(id_REGMODE);
rename_param(ci, "DATA_WIDTH_R", "DATA_WIDTH_B");
if (ci->ports.count(id_RST)) {
autocreate_empty_port(ci, id_RSTA);
autocreate_empty_port(ci, id_RSTB);
NetInfo *rst = ci->ports.at(id_RST).net;
ci->connectPort(id_RSTA, rst);
ci->connectPort(id_RSTB, rst);
ci->disconnectPort(id_RST);
ci->ports.erase(id_RST);
}
ci->type = id_DP16KD;
}
}
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_DP16KD) {
// Add ports, even if disconnected, to ensure correct tie-offs
for (int i = 0; i < 14; i++) {
autocreate_empty_port(ci, ctx->id("ADA" + std::to_string(i)));
autocreate_empty_port(ci, ctx->id("ADB" + std::to_string(i)));
}
for (int i = 0; i < 18; i++) {
autocreate_empty_port(ci, ctx->id("DIA" + std::to_string(i)));
autocreate_empty_port(ci, ctx->id("DIB" + std::to_string(i)));
}
for (int i = 0; i < 3; i++) {
autocreate_empty_port(ci, ctx->id("CSA" + std::to_string(i)));
autocreate_empty_port(ci, ctx->id("CSB" + std::to_string(i)));
}
for (int i = 0; i < 3; i++) {
autocreate_empty_port(ci, ctx->id("CSA" + std::to_string(i)));
autocreate_empty_port(ci, ctx->id("CSB" + std::to_string(i)));
}
autocreate_empty_port(ci, id_CLKA);
autocreate_empty_port(ci, id_CEA);
autocreate_empty_port(ci, id_OCEA);
autocreate_empty_port(ci, id_WEA);
autocreate_empty_port(ci, id_RSTA);
autocreate_empty_port(ci, id_CLKB);
autocreate_empty_port(ci, id_CEB);
autocreate_empty_port(ci, id_OCEB);
autocreate_empty_port(ci, id_WEB);
autocreate_empty_port(ci, id_RSTB);
ci->attrs[id_WID] = wid++;
}
}
}
// Pack DSPs
void pack_dsps()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_MULT18X18D) {
// Add ports, even if disconnected, to ensure correct tie-offs
for (auto sig : {"CLK", "CE", "RST"})
for (int i = 0; i < 4; i++)
autocreate_empty_port(ci, ctx->id(sig + std::to_string(i)));
for (auto sig : {"SIGNED", "SOURCE"})
for (auto c : {"A", "B"})
autocreate_empty_port(ci, ctx->id(sig + std::string(c)));
for (auto port : {"A", "B", "C"})
for (int i = 0; i < 18; i++)
autocreate_empty_port(ci, ctx->id(port + std::to_string(i)));
for (auto port : {"SRIA", "SRIB"})
for (int i = 0; i < 18; i++)
autocreate_empty_port(ci, ctx->id(port + std::to_string(i)));
} else if (ci->type == id_ALU54B) {
for (auto sig : {"CLK", "CE", "RST"})
for (int i = 0; i < 4; i++)
autocreate_empty_port(ci, ctx->id(sig + std::to_string(i)));
autocreate_empty_port(ci, id_SIGNEDIA);
autocreate_empty_port(ci, id_SIGNEDIB);
autocreate_empty_port(ci, id_SIGNEDCIN);
for (auto port : {"A", "B", "MA", "MB"})
for (int i = 0; i < 36; i++)
autocreate_empty_port(ci, ctx->id(port + std::to_string(i)));
for (auto port : {"C", "CFB", "CIN"})
for (int i = 0; i < 54; i++)
autocreate_empty_port(ci, ctx->id(port + std::to_string(i)));
for (int i = 0; i < 11; i++)
autocreate_empty_port(ci, ctx->id("OP" + std::to_string(i)));
// Find the MULT18X18Ds feeding this ALU54B's MA and MB inputs.
CellInfo *mult_a = nullptr;
CellInfo *mult_b = nullptr;
for (auto port : {id_MA0, id_MB0}) {
CellInfo *mult = net_driven_by(
ctx, ci->ports.at(port).net,
[](const Context *ctx, const CellInfo *cell) { return cell->type == id_MULT18X18D; },
id_P0);
// We'll handle the mult not existing in check_alu below.
if (mult == nullptr)
break;
// Set relative constraint depending on ALU port.
if (port == id_MA0) {
mult->constr_x = mult->constr_z = -3;
mult_a = mult;
} else if (port == id_MB0) {
mult->constr_x = mult->constr_z = -2;
mult_b = mult;
}
mult->constr_y = 0;
mult->cluster = ci->name;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->cluster = ci->name;
ci->constr_children.push_back(mult);
log_info("DSP: Constraining MULT18X18D '%s' to ALU54B '%s' port %s\n", mult->name.c_str(ctx),
cell.first.c_str(ctx), ctx->nameOf(port));
}
// Check existance of, and connectivity to, each MULT.
check_alu(ci, mult_a, mult_b);
}
}
}
// Check ALU54B is correctly connected to two MULT18X18Ds.
void check_alu(CellInfo *alu, CellInfo *mult_a, CellInfo *mult_b)
{
// MULT18X18Ds must be detected on both inputs.
if (mult_a == nullptr) {
log_error("No MULT18X18D found connected to ALU54B '%s' port A\n", alu->name.c_str(ctx));
} else if (mult_b == nullptr) {
log_error("No MULT18X18D found connected to ALU54B '%s' port B\n", alu->name.c_str(ctx));
}
// Placement doesn't work if only one or the other of
// the ALU and MULTs have a BEL specified.
auto alu_has_bel = alu->attrs.count(id_BEL);
for (auto mult : {mult_a, mult_b}) {
auto mult_has_bel = mult->attrs.count(id_BEL);
if (alu_has_bel && !mult_has_bel) {
log_error("ALU54B '%s' has a fixed BEL specified, but connected "
"MULT18X18D '%s' does not, specify both or neither.\n",
alu->name.c_str(ctx), mult->name.c_str(ctx));
} else if (!alu_has_bel && mult_has_bel) {
log_error("ALU54B '%s' does not have a fixed BEL specified, but "
"connected MULT18X18D '%s' does, specify both or neither.\n",
alu->name.c_str(ctx), mult->name.c_str(ctx));
}
}
// Cannot have MULT OUTPUT_CLK set when connected to an ALU unless
// MULT_BYPASS is also enabled.
for (auto mult : {mult_a, mult_b}) {
if (str_or_default(mult->params, id_REG_OUTPUT_CLK, "NONE") != "NONE" &&
str_or_default(mult->params, id_MULT_BYPASS, "DISABLED") != "ENABLED") {
log_error("MULT18X18D '%s' REG_OUTPUT_CLK must be NONE when driving ALU without MULT_BYPASS\n",
mult->name.c_str(ctx));
}
}
// SIGNEDIA and SIGNEDIB inputs must be connected to SIGNEDP output.
NetInfo *net = alu->ports.at(id_SIGNEDIA).net;
if (net == nullptr || net->driver.cell != mult_a || net->driver.port != id_SIGNEDP) {
log_error("ALU54B '%s' input SIGNEDIA must be driven by SIGNEDP of"
" MULT18X18D '%s'\n",
alu->name.c_str(ctx), mult_a->name.c_str(ctx));
}
net = alu->ports.at(id_SIGNEDIB).net;
if (net == nullptr || net->driver.cell != mult_b || net->driver.port != id_SIGNEDP) {
log_error("ALU54B '%s' input SIGNEDIB must be driven by SIGNEDP of"
" MULT18X18D '%s'\n",
alu->name.c_str(ctx), mult_b->name.c_str(ctx));
}
// All A and B inputs must be connected to ROA/ROB outputs,
// and all MA and MB inputs must be connected to P outputs.
for (int i = 0; i < 36; i++) {
IdString mult_port;
if (i < 18)
mult_port = ctx->id(std::string("ROA") + std::to_string(i));
else
mult_port = ctx->id(std::string("ROB") + std::to_string(i - 18));
IdString alu_port = ctx->id(std::string("A") + std::to_string(i));
net = alu->ports.at(alu_port).net;
if (net == nullptr || net->driver.cell != mult_a || net->driver.port != mult_port) {
log_error("ALU54B '%s' input %s must be driven by %s of MULT18X18D '%s'\n", alu->name.c_str(ctx),
alu_port.c_str(ctx), mult_port.c_str(ctx), mult_a->name.c_str(ctx));
}
alu_port = ctx->id(std::string("B") + std::to_string(i));
net = alu->ports.at(alu_port).net;
if (net == nullptr || net->driver.cell != mult_b || net->driver.port != mult_port) {
log_error("ALU54B '%s' input %s must be driven by %s of MULT18X18D '%s'\n", alu->name.c_str(ctx),
alu_port.c_str(ctx), mult_port.c_str(ctx), mult_b->name.c_str(ctx));
}
mult_port = ctx->id(std::string("P") + std::to_string(i));
alu_port = ctx->id(std::string("MA") + std::to_string(i));
net = alu->ports.at(alu_port).net;
if (net == nullptr || net->driver.cell != mult_a || net->driver.port != mult_port) {
log_error("ALU54B '%s' input %s must be driven by %s of MULT18X18D '%s'\n", alu->name.c_str(ctx),
alu_port.c_str(ctx), mult_port.c_str(ctx), mult_a->name.c_str(ctx));
}
alu_port = ctx->id(std::string("MB") + std::to_string(i));
net = alu->ports.at(alu_port).net;
if (net == nullptr || net->driver.cell != mult_b || net->driver.port != mult_port) {
log_error("ALU54B '%s' input %s must be driven by %s of MULT18X18D '%s'\n", alu->name.c_str(ctx),
alu_port.c_str(ctx), mult_port.c_str(ctx), mult_b->name.c_str(ctx));
}
}
}
// "Pack" DCUs
void pack_dcus()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_DCUA) {
if (ci->attrs.count(id_LOC)) {
std::string loc = ci->attrs.at(id_LOC).as_string();
if (loc == "DCU0" &&
(ctx->args.type == ArchArgs::LFE5UM_25F || ctx->args.type == ArchArgs::LFE5UM5G_25F))
ci->attrs[id_BEL] = std::string("X42/Y50/DCU");
else if (loc == "DCU0" &&
(ctx->args.type == ArchArgs::LFE5UM_45F || ctx->args.type == ArchArgs::LFE5UM5G_45F))
ci->attrs[id_BEL] = std::string("X42/Y71/DCU");
else if (loc == "DCU1" &&
(ctx->args.type == ArchArgs::LFE5UM_45F || ctx->args.type == ArchArgs::LFE5UM5G_45F))
ci->attrs[id_BEL] = std::string("X69/Y71/DCU");
else if (loc == "DCU0" &&
(ctx->args.type == ArchArgs::LFE5UM_85F || ctx->args.type == ArchArgs::LFE5UM5G_85F))
ci->attrs[id_BEL] = std::string("X46/Y95/DCU");
else if (loc == "DCU1" &&
(ctx->args.type == ArchArgs::LFE5UM_85F || ctx->args.type == ArchArgs::LFE5UM5G_85F))
ci->attrs[id_BEL] = std::string("X71/Y95/DCU");
else
log_error("no DCU location '%s' in device '%s'\n", loc.c_str(), ctx->getChipName().c_str());
}
if (!ci->attrs.count(id_BEL))
log_error("DCU must be constrained to a Bel!\n");
// Empty port auto-creation to generate correct tie-downs
BelId exemplar_bel;
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_DCUA) {
exemplar_bel = bel;
break;
}
}
NPNR_ASSERT(exemplar_bel != BelId());
for (auto pin : ctx->getBelPins(exemplar_bel))
if (ctx->getBelPinType(exemplar_bel, pin) == PORT_IN)
autocreate_empty_port(ci, pin);
// Disconnect these ports if connected to constant to prevent routing failure
for (auto ndport : {id_D_TXBIT_CLKP_FROM_ND, id_D_TXBIT_CLKN_FROM_ND, id_D_SYNC_ND,
id_D_TXPLL_LOL_FROM_ND, id_CH0_HDINN, id_CH0_HDINP, id_CH1_HDINN, id_CH1_HDINP}) {
const NetInfo *net = ci->getPort(ndport);
if (net == nullptr || net->driver.cell == nullptr)
continue;
IdString ct = net->driver.cell->type;
if (ct.in(id_GND, id_VCC)) {
ci->disconnectPort(ndport);
ci->ports.erase(ndport);
}
}
}
}
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_EXTREFB) {
const NetInfo *refo = ci->getPort(id_REFCLKO);
CellInfo *dcu = nullptr;
std::string loc_bel = std::string("NONE");
std::string dcu_bel = std::string("NONE");
if (ci->attrs.count(id_LOC)) {
std::string loc = ci->attrs.at(id_LOC).as_string();
if (loc == "EXTREF0" &&
(ctx->args.type == ArchArgs::LFE5UM_25F || ctx->args.type == ArchArgs::LFE5UM5G_25F))
loc_bel = std::string("X42/Y50/EXTREF");
else if (loc == "EXTREF0" &&
(ctx->args.type == ArchArgs::LFE5UM_45F || ctx->args.type == ArchArgs::LFE5UM5G_45F))
loc_bel = std::string("X42/Y71/EXTREF");
else if (loc == "EXTREF1" &&
(ctx->args.type == ArchArgs::LFE5UM_45F || ctx->args.type == ArchArgs::LFE5UM5G_45F))
loc_bel = std::string("X69/Y71/EXTREF");
else if (loc == "EXTREF0" &&
(ctx->args.type == ArchArgs::LFE5UM_85F || ctx->args.type == ArchArgs::LFE5UM5G_85F))
loc_bel = std::string("X46/Y95/EXTREF");
else if (loc == "EXTREF1" &&
(ctx->args.type == ArchArgs::LFE5UM_85F || ctx->args.type == ArchArgs::LFE5UM5G_85F))
loc_bel = std::string("X71/Y95/EXTREF");
}
if (refo == nullptr)
log_error("EXTREFB REFCLKO must not be unconnected\n");
for (auto user : refo->users) {
if (user.cell->type != id_DCUA)
continue;
if (dcu != nullptr && dcu != user.cell)
log_error("EXTREFB REFCLKO must only drive a single DCUA\n");
dcu = user.cell;
}
if (dcu != nullptr) {
if (!dcu->attrs.count(id_BEL))
log_error("DCU must be constrained to a Bel!\n");
dcu_bel = dcu->attrs.at(id_BEL).as_string();
NPNR_ASSERT(dcu_bel.substr(dcu_bel.length() - 3) == "DCU");
dcu_bel.replace(dcu_bel.length() - 3, 3, "EXTREF");
}
if (dcu_bel != loc_bel) {
if (dcu_bel == "NONE" && loc_bel == "NONE") {
log_error("EXTREFB has neither a LOC or a directly associated DCUA\n");
} else if (dcu_bel == "NONE") {
ci->attrs[id_BEL] = loc_bel;
dcu_bel = loc_bel;
} else if (loc_bel == "NONE") {
ci->attrs[id_BEL] = dcu_bel;
} else {
log_error("EXTREFB has conflicting LOC '%s' and associated DCUA '%s'\n", loc_bel.c_str(),
dcu_bel.c_str());
}
} else {
if (dcu_bel == "NONE")
log_error("EXTREFB has no LOC or associated DCUA\n");
ci->attrs[id_BEL] = dcu_bel;
}
} else if (ci->type == id_PCSCLKDIV) {
const NetInfo *clki = ci->getPort(id_CLKI);
if (clki != nullptr && clki->driver.cell != nullptr && clki->driver.cell->type == id_DCUA) {
CellInfo *dcu = clki->driver.cell;
if (!dcu->attrs.count(id_BEL))
log_error("DCU must be constrained to a Bel!\n");
BelId bel = ctx->getBelByNameStr(dcu->attrs.at(id_BEL).as_string());
if (bel == BelId())
log_error("Invalid DCU bel '%s'\n", dcu->attrs.at(id_BEL).c_str());
Loc loc = ctx->getBelLocation(bel);
// DCU0 -> CLKDIV z=0; DCU1 -> CLKDIV z=1
ci->constr_abs_z = true;
ci->constr_z = (loc.x >= 69) ? 1 : 0;
}
}
}
}
// Miscellaneous packer tasks
void pack_misc()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_USRMCLK) {
ci->renamePort(id_USRMCLKI, id_PADDO);
ci->renamePort(id_USRMCLKTS, id_PADDT);
ci->renamePort(id_USRMCLKO, id_PADDI);
} else if (ci->type.in(id_GSR, id_SGSR)) {
ci->params[id_MODE] = std::string("ACTIVE_LOW");
ci->params[id_SYNCMODE] = ci->type == id_SGSR ? std::string("SYNC") : std::string("ASYNC");
ci->type = id_GSR;
for (BelId bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_GSR)
continue;
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
ctx->gsrclk_wire = ctx->getBelPinWire(bel, id_CLK);
}
}
}
}
// Preplace PLL
void preplace_plls()
{
std::set<BelId> available_plls;
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_EHXPLLL && ctx->checkBelAvail(bel))
available_plls.insert(bel);
}
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_EHXPLLL && ci->attrs.count(id_BEL))
available_plls.erase(ctx->getBelByNameStr(ci->attrs.at(id_BEL).as_string()));
}
// Place PLL connected to fixed drivers such as IO close to their source
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_EHXPLLL && !ci->attrs.count(id_BEL)) {
const NetInfo *drivernet = ci->getPort(id_CLKI);
if (drivernet == nullptr || drivernet->driver.cell == nullptr)
continue;
const CellInfo *drivercell = drivernet->driver.cell;
if (!drivercell->attrs.count(id_BEL))
continue;
BelId drvbel = ctx->getBelByNameStr(drivercell->attrs.at(id_BEL).as_string());
Loc drvloc = ctx->getBelLocation(drvbel);
BelId closest_pll;
int closest_distance = std::numeric_limits<int>::max();
for (auto bel : available_plls) {
Loc pllloc = ctx->getBelLocation(bel);
int distance = std::abs(drvloc.x - pllloc.x) + std::abs(drvloc.y - pllloc.y);
if (distance < closest_distance) {
closest_pll = bel;
closest_distance = distance;
}
}
if (closest_pll == BelId())
log_error("failed to place PLL '%s'\n", ci->name.c_str(ctx));
available_plls.erase(closest_pll);
ci->attrs[id_BEL] = ctx->getBelName(closest_pll).str(ctx);
}
}
// Place PLLs driven by logic, etc, randomly
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_EHXPLLL && !ci->attrs.count(id_BEL)) {
if (available_plls.empty())
log_error("failed to place PLL '%s'\n", ci->name.c_str(ctx));
BelId next_pll = *(available_plls.begin());
available_plls.erase(next_pll);
ci->attrs[id_BEL] = ctx->getBelName(next_pll).str(ctx);
}
}
}
// Check if two nets have identical constant drivers
bool equal_constant(NetInfo *a, NetInfo *b)
{
if (a->driver.cell == nullptr || b->driver.cell == nullptr)
return (a->driver.cell == nullptr && b->driver.cell == nullptr);
if (a->driver.cell->type != id_GND && a->driver.cell->type != id_VCC)
return false;
return a->driver.cell->type == b->driver.cell->type;
}
struct EdgeClockInfo
{
CellInfo *buffer = nullptr;
NetInfo *unbuf = nullptr;
NetInfo *buf = nullptr;
};
std::map<std::pair<int, int>, EdgeClockInfo> eclks;
std::map<NetInfo *, int> bridge_side_hint;
void make_eclk(PortInfo &usr_port, CellInfo *usr_cell, BelId usr_bel, int bank)
{
NetInfo *ecknet = usr_port.net;
if (ecknet == nullptr)
log_error("Input '%s' of cell '%s' cannot be disconnected\n", usr_port.name.c_str(ctx),
usr_cell->name.c_str(ctx));
int found_eclk = -1, free_eclk = -1;
for (int i = 0; i < 2; i++) {
if (eclks.count(std::make_pair(bank, i))) {
if (eclks.at(std::make_pair(bank, i)).unbuf == ecknet) {
found_eclk = i;
break;
}
} else if (free_eclk == -1) {
if (bridge_side_hint.count(ecknet) && bridge_side_hint.at(ecknet) != i)
continue;
free_eclk = i;
}
}
if (found_eclk == -1) {
if (free_eclk == -1) {
log_error("Unable to promote edge clock '%s' for bank %d. 2/2 edge clocks already used by '%s' and "
"'%s'.\n",
ecknet->name.c_str(ctx), bank, eclks.at(std::make_pair(bank, 0)).unbuf->name.c_str(ctx),
eclks.at(std::make_pair(bank, 1)).unbuf->name.c_str(ctx));
} else {
log_info("Promoted '%s' to bank %d ECLK%d.\n", ecknet->name.c_str(ctx), bank, free_eclk);
auto &eclk = eclks[std::make_pair(bank, free_eclk)];
eclk.unbuf = ecknet;
IdString eckname = ctx->id(ecknet->name.str(ctx) + "$eclk" + std::to_string(bank) + "_" +
std::to_string(free_eclk));
NetInfo *promoted_ecknet = ctx->createNet(eckname);
promoted_ecknet->attrs[id_ECP5_IS_GLOBAL] = 1; // Prevents router etc touching this special net
eclk.buf = promoted_ecknet;
// Insert TRELLIS_ECLKBUF to isolate edge clock from general routing
std::unique_ptr<CellInfo> eclkbuf =
create_ecp5_cell(ctx, id_TRELLIS_ECLKBUF, eckname.str(ctx) + "$buffer");
BelId target_bel;
// Find the correct Bel for the ECLKBUF
IdString eclkname = ctx->id("G_BANK" + std::to_string(bank) + "ECLK" + std::to_string(free_eclk));
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_TRELLIS_ECLKBUF)
continue;
if (ctx->get_wire_basename(ctx->getBelPinWire(bel, id_ECLKO)) != eclkname)
continue;
target_bel = bel;
break;
}
NPNR_ASSERT(target_bel != BelId());
eclkbuf->attrs[id_BEL] = ctx->getBelName(target_bel).str(ctx);
eclkbuf->connectPort(id_ECLKI, ecknet);
eclkbuf->connectPort(id_ECLKO, eclk.buf);
found_eclk = free_eclk;
eclk.buffer = eclkbuf.get();
new_cells.push_back(std::move(eclkbuf));
}
}
auto &eclk = eclks[std::make_pair(bank, found_eclk)];
usr_cell->disconnectPort(usr_port.name);
usr_port.net = nullptr;
usr_cell->connectPort(usr_port.name, eclk.buf);
// Simple ECLK router
WireId userWire = ctx->getBelPinWire(usr_bel, usr_port.name);
IdString bnke_name = ctx->id("BNK_ECLK" + std::to_string(found_eclk));
IdString global_name = ctx->id("G_BANK" + std::to_string(bank) + "ECLK" + std::to_string(found_eclk));
std::queue<WireId> upstream;
dict<WireId, PipId> backtrace;
upstream.push(userWire);
WireId next;
while (true) {
if (upstream.empty() || upstream.size() > 30000)
log_error("failed to route bank %d ECLK%d to %s.%s\n", bank, found_eclk, ctx->nameOfBel(usr_bel),
usr_port.name.c_str(ctx));
next = upstream.front();
upstream.pop();
if (ctx->debug)
log_info(" visited %s\n", ctx->nameOfWire(next));
IdString basename = ctx->get_wire_basename(next);
if (basename == bnke_name || basename == global_name) {
break;
}
if (ctx->checkWireAvail(next)) {
for (auto pip : ctx->getPipsUphill(next)) {
WireId src = ctx->getPipSrcWire(pip);
backtrace[src] = pip;
upstream.push(src);
}
}
}
// Set all the pips we found along the way
WireId cursor = next;
while (true) {
auto fnd = backtrace.find(cursor);
if (fnd == backtrace.end())
break;
ctx->bindPip(fnd->second, eclk.buf, STRENGTH_LOCKED);
cursor = ctx->getPipDstWire(fnd->second);
}
}
void tie_zero(CellInfo *ci, IdString port)
{
if (!ci->ports.count(port)) {
ci->ports[port].name = port;
ci->ports[port].type = PORT_IN;
}
IdString name = ctx->id(ci->name.str(ctx) + "$zero$" + port.str(ctx));
auto zero_cell = std::make_unique<CellInfo>(ctx, name, id_GND);
NetInfo *zero_net = ctx->createNet(name);
zero_cell->addOutput(id_GND);
zero_cell->connectPort(id_GND, zero_net);
ci->connectPort(port, zero_net);
new_cells.push_back(std::move(zero_cell));
}
dict<IdString, std::pair<bool, int>> dqsbuf_dqsg;
// Pack DQSBUFs
void pack_dqsbuf()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_DQSBUFM) {
CellInfo *pio = net_driven_by(ctx, ci->ports.at(id_DQSI).net, is_trellis_io, id_O);
if (pio == nullptr || ci->ports.at(id_DQSI).net->users.entries() > 1)
log_error("DQSBUFM '%s' DQSI input must be connected only to a top level input\n",
ci->name.c_str(ctx));
if (!pio->attrs.count(id_BEL))
log_error("DQSBUFM can only be used with a pin-constrained PIO connected to its DQSI input"
"(while processing '%s').\n",
ci->name.c_str(ctx));
BelId pio_bel = ctx->getBelByNameStr(pio->attrs.at(id_BEL).as_string());
NPNR_ASSERT(pio_bel != BelId());
Loc pio_loc = ctx->getBelLocation(pio_bel);
if (pio_loc.z != 0)
log_error("PIO '%s' does not appear to be a DQS site (expecting an 'A' pin).\n",
ctx->nameOfBel(pio_bel));
pio_loc.z = 8;
BelId dqsbuf = ctx->getBelByLocation(pio_loc);
if (dqsbuf == BelId() || ctx->getBelType(dqsbuf) != id_DQSBUFM)
log_error("PIO '%s' does not appear to be a DQS site (didn't find a DQSBUFM).\n",
ctx->nameOfBel(pio_bel));
ci->attrs[id_BEL] = ctx->getBelName(dqsbuf).str(ctx);
bool got_dqsg =
ctx->get_pio_dqs_group(pio_bel, dqsbuf_dqsg[ci->name].first, dqsbuf_dqsg[ci->name].second);
NPNR_ASSERT(got_dqsg);
log_info("Constrained DQSBUFM '%s' to %cDQS%d\n", ci->name.c_str(ctx),
dqsbuf_dqsg[ci->name].first ? 'R' : 'L', dqsbuf_dqsg[ci->name].second);
// Set all special ports, if used as 'globals' that the router won't touch
for (auto port : {id_DQSR90, id_RDPNTR0, id_RDPNTR1, id_RDPNTR2, id_WRPNTR0, id_WRPNTR1, id_WRPNTR2,
id_DQSW270, id_DQSW}) {
if (!ci->ports.count(port))
continue;
NetInfo *pn = ci->ports.at(port).net;
if (pn == nullptr)
continue;
for (auto &usr : pn->users) {
if (usr.port != port || (usr.cell->type != id_ODDRX2DQA && usr.cell->type != id_ODDRX2DQSB &&
usr.cell->type != id_TSHX2DQSA && usr.cell->type != id_IDDRX2DQA &&
usr.cell->type != id_TSHX2DQA && usr.cell->type != id_IOLOGIC))
log_error("Port '%s' of DQSBUFM '%s' cannot drive port '%s' of cell '%s'.\n",
port.c_str(ctx), ci->name.c_str(ctx), usr.port.c_str(ctx),
usr.cell->name.c_str(ctx));
}
pn->attrs[id_ECP5_IS_GLOBAL] = 1;
}
for (auto zport :
{id_RDMOVE, id_RDDIRECTION, id_WRMOVE, id_WRDIRECTION, id_READ0, id_READ1, id_READCLKSEL0,
id_READCLKSEL1, id_READCLKSEL2, id_DYNDELAY0, id_DYNDELAY1, id_DYNDELAY2, id_DYNDELAY3,
id_DYNDELAY4, id_DYNDELAY5, id_DYNDELAY6, id_DYNDELAY7}) {
if (ci->getPort(zport) == nullptr)
tie_zero(ci, zport);
}
}
}
}
int lookup_delay(const std::string &del_mode)
{
if (del_mode == "USER_DEFINED")
return 0;
else if (del_mode == "DQS_ALIGNED_X2")
return 6;
else if (del_mode == "DQS_CMD_CLK")
return 9;
else if (del_mode == "ECLK_ALIGNED")
return 21;
else if (del_mode == "ECLK_CENTERED")
return 11;
else if (del_mode == "ECLKBRIDGE_ALIGNED")
return 39;
else if (del_mode == "ECLKBRIDGE_CENTERED")
return 29;
else if (del_mode == "SCLK_ALIGNED")
return 50;
else if (del_mode == "SCLK_CENTERED")
return 39;
else if (del_mode == "SCLK_ZEROHOLD")
return 59;
else
log_error("Unsupported DEL_MODE '%s'\n", del_mode.c_str());
}
// Pack IOLOGIC
void pack_iologic()
{
dict<IdString, CellInfo *> pio_iologic;
auto set_iologic_sclk = [&](CellInfo *iol, CellInfo *prim, IdString port, bool input, bool disconnect = true) {
NetInfo *sclk = nullptr;
if (prim->ports.count(port))
sclk = prim->ports[port].net;
if (sclk == nullptr) {
iol->params[input ? id_CLKIMUX : id_CLKOMUX] = std::string("0");
} else {
iol->params[input ? id_CLKIMUX : id_CLKOMUX] = std::string("CLK");
if (iol->ports[id_CLK].net != nullptr) {
if (iol->ports[id_CLK].net != sclk && !equal_constant(iol->ports[id_CLK].net, sclk))
log_error("IOLOGIC '%s' has conflicting clocks '%s' and '%s'\n", iol->name.c_str(ctx),
iol->ports[id_CLK].net->name.c_str(ctx), sclk->name.c_str(ctx));
} else {
iol->connectPort(id_CLK, sclk);
}
}
if (prim->ports.count(port) && disconnect)
prim->disconnectPort(port);
};
auto set_iologic_eclk = [&](CellInfo *iol, CellInfo *prim, IdString port) {
NetInfo *eclk = nullptr;
if (prim->ports.count(port))
eclk = prim->ports[port].net;
if (eclk == nullptr)
log_error("%s '%s' cannot have disconnected ECLK", prim->type.c_str(ctx), prim->name.c_str(ctx));
if (iol->ports[id_ECLK].net != nullptr) {
if (iol->ports[id_ECLK].net != eclk)
log_error("IOLOGIC '%s' has conflicting ECLKs '%s' and '%s'\n", iol->name.c_str(ctx),
iol->ports[id_ECLK].net->name.c_str(ctx), eclk->name.c_str(ctx));
} else {
iol->connectPort(id_ECLK, eclk);
}
if (prim->ports.count(port))
prim->disconnectPort(port);
};
auto set_iologic_lsr = [&](CellInfo *iol, CellInfo *prim, IdString port, bool input, bool disconnect = true) {
NetInfo *lsr = nullptr;
if (prim->ports.count(port))
lsr = prim->ports[port].net;
if (lsr == nullptr) {
iol->params[input ? id_LSRIMUX : id_LSROMUX] = std::string("0");
} else {
iol->params[input ? id_LSRIMUX : id_LSROMUX] = std::string("LSRMUX");
if (iol->ports[id_LSR].net != nullptr && !equal_constant(iol->ports[id_LSR].net, lsr)) {
if (iol->ports[id_LSR].net != lsr)
log_error("IOLOGIC '%s' has conflicting LSR signals '%s' and '%s'\n", iol->name.c_str(ctx),
iol->ports[id_LSR].net->name.c_str(ctx), lsr->name.c_str(ctx));
} else if (iol->ports[id_LSR].net == nullptr) {
iol->connectPort(id_LSR, lsr);
}
}
if (prim->ports.count(port) && disconnect)
prim->disconnectPort(port);
};
bool warned_oddrx_iddrx = false;
auto set_iologic_mode = [&](CellInfo *iol, std::string mode) {
auto &curr_mode = iol->params[id_MODE].str;
if (curr_mode != "NONE" && mode == "IREG_OREG")
return;
if ((curr_mode == "IDDRXN" && mode == "ODDRXN") || (curr_mode == "ODDRXN" && mode == "IDDRXN")) {
if (!warned_oddrx_iddrx) {
warned_oddrx_iddrx = true;
log_warning("Use of IDDRXN and ODDRXN primitives on the same pin is unofficial and unsupported!\n");
}
curr_mode = "ODDRXN";
return;
}
if (curr_mode != "NONE" && curr_mode != "IREG_OREG" && curr_mode != mode)
log_error("IOLOGIC '%s' has conflicting modes '%s' and '%s'\n", iol->name.c_str(ctx), curr_mode.c_str(),
mode.c_str());
if (iol->type == id_SIOLOGIC && mode != "IREG_OREG" && mode != "IDDRX1_ODDRX1" && mode != "NONE")
log_error("IOLOGIC '%s' is set to mode '%s', but this is only supported for left and right IO\n",
iol->name.c_str(ctx), mode.c_str());
curr_mode = mode;
};
auto get_pio_bel = [&](CellInfo *pio, CellInfo *curr) {
if (!pio->attrs.count(id_BEL))
log_error("IOLOGIC functionality (DDR, DELAY, DQS, etc) can only be used with pin-constrained PIO "
"(while processing '%s').\n",
curr->name.c_str(ctx));
BelId bel = ctx->getBelByNameStr(pio->attrs.at(id_BEL).as_string());
NPNR_ASSERT(bel != BelId());
return bel;
};
auto create_pio_iologic = [&](CellInfo *pio, CellInfo *curr) {
BelId bel = get_pio_bel(pio, curr);
log_info("IOLOGIC component %s connected to PIO Bel %s\n", curr->name.c_str(ctx), ctx->nameOfBel(bel));
Loc loc = ctx->getBelLocation(bel);
bool s = false;
if (loc.y == 0 || loc.y == (ctx->chip_info->height - 1))
s = true;
std::unique_ptr<CellInfo> iol =
create_ecp5_cell(ctx, s ? id_SIOLOGIC : id_IOLOGIC, pio->name.str(ctx) + "$IOL");
loc.z += s ? 2 : 4;
iol->attrs[id_BEL] = ctx->getBelName(ctx->getBelByLocation(loc)).str(ctx);
CellInfo *iol_ptr = iol.get();
pio_iologic[pio->name] = iol_ptr;
new_cells.push_back(std::move(iol));
return iol_ptr;
};
auto process_dqs_port = [&](CellInfo *prim, CellInfo *pio, CellInfo *iol, IdString port) {
NetInfo *sig = nullptr;
if (prim->ports.count(port))
sig = prim->ports[port].net;
if (sig == nullptr || sig->driver.cell == nullptr)
log_error("Port %s of cell '%s' cannot be disconnected, it must be driven by a DQSBUFM\n",
port.c_str(ctx), prim->name.c_str(ctx));
if (iol->ports.at(port).net != nullptr) {
if (iol->ports.at(port).net != sig) {
log_error("IOLOGIC '%s' has conflicting %s signals '%s' and '%s'\n", iol->name.c_str(ctx),
port.c_str(ctx), iol->ports[port].net->name.c_str(ctx), sig->name.c_str(ctx));
}
prim->disconnectPort(port);
} else {
bool dqsr;
int dqsgroup;
bool has_dqs = ctx->get_pio_dqs_group(get_pio_bel(pio, prim), dqsr, dqsgroup);
if (!has_dqs)
log_error("Primitive '%s' cannot be connected to top level port '%s' as the associated pin is not "
"in any DQS group",
prim->name.c_str(ctx), pio->name.c_str(ctx));
if (sig->driver.cell->type != id_DQSBUFM || sig->driver.port != port)
log_error("Port %s of cell '%s' must be driven by port %s of a DQSBUFM", port.c_str(ctx),
prim->name.c_str(ctx), port.c_str(ctx));
auto &driver_group = dqsbuf_dqsg.at(sig->driver.cell->name);
if (driver_group.first != dqsr || driver_group.second != dqsgroup)
log_error("DQS group mismatch, port %s of '%s' in group %cDQ%d is driven by DQSBUFM '%s' in group "
"%cDQ%d\n",
port.c_str(ctx), prim->name.c_str(ctx), dqsr ? 'R' : 'L', dqsgroup,
sig->driver.cell->name.c_str(ctx), driver_group.first ? 'R' : 'L', driver_group.second);
prim->movePortTo(port, iol, port);
}
};
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type.in(id_DELAYF, id_DELAYG)) {
CellInfo *i_pio = net_driven_by(ctx, ci->ports.at(id_A).net, is_trellis_io, id_O);
CellInfo *o_pio = net_only_drives(ctx, ci->ports.at(id_Z).net, is_trellis_io, id_I, true);
CellInfo *iol = nullptr;
if (i_pio != nullptr && ci->ports.at(id_A).net->users.entries() == 1) {
iol = create_pio_iologic(i_pio, ci);
set_iologic_mode(iol, "IREG_OREG");
bool drives_iologic = false;
for (auto user : ci->ports.at(id_Z).net->users)
if (is_iologic_input_cell(ctx, user.cell) &&
(user.port == id_D || (user.cell->type == id_TRELLIS_FF && user.port == id_DI)))
drives_iologic = true;
if (drives_iologic) {
// Reconnect to PIO which the packer expects later on
NetInfo *input_net = ci->ports.at(id_A).net, *dly_net = ci->ports.at(id_Z).net;
i_pio->disconnectPort(id_O);
i_pio->ports.at(id_O).net = nullptr;
ci->disconnectPort(id_A);
ci->ports.at(id_A).net = nullptr;
ci->disconnectPort(id_Z);
ci->ports.at(id_Z).net = nullptr;
i_pio->connectPort(id_O, dly_net);
iol->connectPort(id_INDD, input_net);
iol->connectPort(id_DI, input_net);
} else {
ci->movePortTo(id_A, iol, id_PADDI);
ci->movePortTo(id_Z, iol, id_INDD);
}
packed_cells.insert(cell.first);
} else if (o_pio != nullptr) {
iol = create_pio_iologic(o_pio, ci);
iol->params[ctx->id("DELAY.OUTDEL")] = std::string("ENABLED");
bool driven_by_iol = false;
NetInfo *input_net = ci->ports.at(id_A).net, *dly_net = ci->ports.at(id_Z).net;
if (input_net->driver.cell != nullptr && is_iologic_output_cell(ctx, input_net->driver.cell) &&
input_net->driver.port == id_Q)
driven_by_iol = true;
if (driven_by_iol) {
o_pio->disconnectPort(id_I);
o_pio->ports.at(id_I).net = nullptr;
ci->disconnectPort(id_A);
ci->ports.at(id_A).net = nullptr;
ci->disconnectPort(id_Z);
ci->ports.at(id_Z).net = nullptr;
o_pio->connectPort(id_I, input_net);
ctx->nets.erase(dly_net->name);
} else {
ci->movePortTo(id_A, iol, id_TXDATA0);
ci->movePortTo(id_Z, iol, id_IOLDO);
if (!o_pio->ports.count(id_IOLDO)) {
o_pio->ports[id_IOLDO].name = id_IOLDO;
o_pio->ports[id_IOLDO].type = PORT_IN;
}
o_pio->movePortTo(id_I, o_pio, id_IOLDO);
}
packed_cells.insert(cell.first);
} else {
log_error("%s '%s' must be connected directly to top level input or output\n", ci->type.c_str(ctx),
ci->name.c_str(ctx));
}
iol->params[ctx->id("DELAY.DEL_VALUE")] =
lookup_delay(str_or_default(ci->params, id_DEL_MODE, "USER_DEFINED"));
if (ci->params.count(id_DEL_VALUE) &&
(!ci->params.at(id_DEL_VALUE).is_string ||
std::string(ci->params.at(id_DEL_VALUE).as_string()).substr(0, 5) != "DELAY"))
iol->params[ctx->id("DELAY.DEL_VALUE")] = ci->params.at(id_DEL_VALUE);
if (ci->ports.count(id_LOADN))
ci->movePortTo(id_LOADN, iol, id_LOADN);
else
tie_zero(iol, id_LOADN);
if (ci->ports.count(id_MOVE))
ci->movePortTo(id_MOVE, iol, id_MOVE);
else
tie_zero(iol, id_MOVE);
if (ci->ports.count(id_DIRECTION))
ci->movePortTo(id_DIRECTION, iol, id_DIRECTION);
else
tie_zero(iol, id_DIRECTION);
if (ci->ports.count(id_CFLAG))
ci->movePortTo(id_CFLAG, iol, id_CFLAG);
}
}
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_IDDRX1F) {
CellInfo *pio = net_driven_by(ctx, ci->ports.at(id_D).net, is_trellis_io, id_O);
if (pio == nullptr || ci->ports.at(id_D).net->users.entries() > 1)
log_error("IDDRX1F '%s' D input must be connected only to a top level input\n",
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "IDDRX1_ODDRX1");
ci->movePortTo(id_D, iol, id_PADDI);
set_iologic_sclk(iol, ci, id_SCLK, true);
set_iologic_lsr(iol, ci, id_RST, true);
ci->movePortTo(id_Q0, iol, id_RXDATA0);
ci->movePortTo(id_Q1, iol, id_RXDATA1);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
packed_cells.insert(cell.first);
} else if (ci->type == id_ODDRX1F) {
CellInfo *pio = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_I, true);
if (pio == nullptr)
log_error("ODDRX1F '%s' Q output must be connected only to a top level output\n",
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "IDDRX1_ODDRX1");
ci->movePortTo(id_Q, iol, id_IOLDO);
if (!pio->ports.count(id_IOLDO)) {
pio->ports[id_IOLDO].name = id_IOLDO;
pio->ports[id_IOLDO].type = PORT_IN;
}
pio->movePortTo(id_I, pio, id_IOLDO);
pio->params[id_DATAMUX_ODDR] = std::string("IOLDO");
set_iologic_sclk(iol, ci, id_SCLK, false);
set_iologic_lsr(iol, ci, id_RST, false);
ci->movePortTo(id_D0, iol, id_TXDATA0);
ci->movePortTo(id_D1, iol, id_TXDATA1);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
packed_cells.insert(cell.first);
} else if (ci->type.in(id_ODDRX2F, id_ODDR71B)) {
CellInfo *pio = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_I, true);
if (pio == nullptr)
log_error("%s '%s' Q output must be connected only to a top level output\n", ci->type.c_str(ctx),
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "ODDRXN");
ci->movePortTo(id_Q, iol, id_IOLDO);
if (!pio->ports.count(id_IOLDO)) {
pio->ports[id_IOLDO].name = id_IOLDO;
pio->ports[id_IOLDO].type = PORT_IN;
}
pio->movePortTo(id_I, pio, id_IOLDO);
set_iologic_sclk(iol, ci, id_SCLK, false, false);
set_iologic_sclk(iol, ci, id_SCLK, true);
set_iologic_eclk(iol, ci, id_ECLK);
set_iologic_lsr(iol, ci, id_RST, false, false);
set_iologic_lsr(iol, ci, id_RST, true);
ci->movePortTo(id_D0, iol, id_TXDATA0);
ci->movePortTo(id_D1, iol, id_TXDATA1);
ci->movePortTo(id_D2, iol, id_TXDATA2);
ci->movePortTo(id_D3, iol, id_TXDATA3);
if (ci->type == id_ODDR71B) {
Loc loc = ctx->getBelLocation(ctx->getBelByNameStr(pio->attrs.at(id_BEL).as_string()));
if (loc.z % 2 == 1)
log_error("ODDR71B '%s' can only be used at 'A' or 'C' locations\n", ci->name.c_str(ctx));
ci->movePortTo(id_D4, iol, id_TXDATA4);
ci->movePortTo(id_D5, iol, id_TXDATA5);
ci->movePortTo(id_D6, iol, id_TXDATA6);
iol->params[ctx->id("ODDRXN.MODE")] = std::string("ODDR71");
} else {
iol->params[ctx->id("ODDRXN.MODE")] = std::string("ODDRX2");
}
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
pio->params[id_DATAMUX_ODDR] = std::string("IOLDO");
packed_cells.insert(cell.first);
} else if (ci->type.in(id_IDDRX2F, id_IDDR71B)) {
CellInfo *pio = net_driven_by(ctx, ci->ports.at(id_D).net, is_trellis_io, id_O);
if (pio == nullptr || ci->ports.at(id_D).net->users.entries() > 1)
log_error("%s '%s' D input must be connected only to a top level input\n", ci->type.c_str(ctx),
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "IDDRXN");
ci->movePortTo(id_D, iol, id_PADDI);
set_iologic_sclk(iol, ci, id_SCLK, true);
set_iologic_eclk(iol, ci, id_ECLK);
set_iologic_lsr(iol, ci, id_RST, true);
ci->movePortTo(id_Q0, iol, id_RXDATA0);
ci->movePortTo(id_Q1, iol, id_RXDATA1);
ci->movePortTo(id_Q2, iol, id_RXDATA2);
ci->movePortTo(id_Q3, iol, id_RXDATA3);
if (ci->type == id_IDDR71B) {
Loc loc = ctx->getBelLocation(ctx->getBelByNameStr(pio->attrs.at(id_BEL).as_string()));
if (loc.z % 2 == 1)
log_error("IDDR71B '%s' can only be used at 'A' or 'C' locations\n", ci->name.c_str(ctx));
ci->movePortTo(id_Q4, iol, id_RXDATA4);
ci->movePortTo(id_Q5, iol, id_RXDATA5);
ci->movePortTo(id_Q6, iol, id_RXDATA6);
ci->movePortTo(id_ALIGNWD, iol, id_SLIP);
iol->params[ctx->id("IDDRXN.MODE")] = std::string("IDDR71");
} else {
iol->params[ctx->id("IDDRXN.MODE")] = std::string("IDDRX2");
}
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
packed_cells.insert(cell.first);
} else if (ci->type == id_OSHX2A) {
CellInfo *pio = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_I, true);
if (pio == nullptr)
log_error("OSHX2A '%s' Q output must be connected only to a top level output\n",
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "MIDDRX_MODDRX");
ci->movePortTo(id_Q, iol, id_IOLDO);
if (!pio->ports.count(id_IOLDO)) {
pio->ports[id_IOLDO].name = id_IOLDO;
pio->ports[id_IOLDO].type = PORT_IN;
}
pio->movePortTo(id_I, pio, id_IOLDO);
set_iologic_sclk(iol, ci, id_SCLK, false);
set_iologic_eclk(iol, ci, id_ECLK);
set_iologic_lsr(iol, ci, id_RST, false, false);
set_iologic_lsr(iol, ci, id_RST, true);
ci->movePortTo(id_D0, iol, id_TXDATA0);
ci->movePortTo(id_D1, iol, id_TXDATA2);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
iol->params[ctx->id("MODDRX.MODE")] = std::string("MOSHX2");
pio->params[id_DATAMUX_MDDR] = std::string("IOLDO");
packed_cells.insert(cell.first);
} else if (ci->type.in(id_ODDRX2DQA, id_ODDRX2DQSB)) {
CellInfo *pio = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_I, true);
if (pio == nullptr)
log_error("%s '%s' Q output must be connected only to a top level output\n", ci->type.c_str(ctx),
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "MIDDRX_MODDRX");
ci->movePortTo(id_Q, iol, id_IOLDO);
if (!pio->ports.count(id_IOLDO)) {
pio->ports[id_IOLDO].name = id_IOLDO;
pio->ports[id_IOLDO].type = PORT_IN;
}
pio->movePortTo(id_I, pio, id_IOLDO);
set_iologic_sclk(iol, ci, id_SCLK, false);
set_iologic_eclk(iol, ci, id_ECLK);
set_iologic_lsr(iol, ci, id_RST, false, false);
set_iologic_lsr(iol, ci, id_RST, true);
ci->movePortTo(id_D0, iol, id_TXDATA0);
ci->movePortTo(id_D1, iol, id_TXDATA1);
ci->movePortTo(id_D2, iol, id_TXDATA2);
ci->movePortTo(id_D3, iol, id_TXDATA3);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
iol->params[ctx->id("MODDRX.MODE")] = std::string("MODDRX2");
iol->params[ctx->id("MIDDRX_MODDRX.WRCLKMUX")] =
std::string(ci->type == id_ODDRX2DQSB ? "DQSW" : "DQSW270");
process_dqs_port(ci, pio, iol, ci->type == id_ODDRX2DQSB ? id_DQSW : id_DQSW270);
pio->params[id_DATAMUX_MDDR] = std::string("IOLDO");
packed_cells.insert(cell.first);
} else if (ci->type == id_IDDRX2DQA) {
CellInfo *pio = net_driven_by(ctx, ci->ports.at(id_D).net, is_trellis_io, id_O);
if (pio == nullptr || ci->ports.at(id_D).net->users.entries() > 1)
log_error("IDDRX2DQA '%s' D input must be connected only to a top level input\n",
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "MIDDRX_MODDRX");
ci->movePortTo(id_D, iol, id_PADDI);
set_iologic_sclk(iol, ci, id_SCLK, true);
set_iologic_eclk(iol, ci, id_ECLK);
set_iologic_lsr(iol, ci, id_RST, true);
ci->movePortTo(id_Q0, iol, id_RXDATA0);
ci->movePortTo(id_Q1, iol, id_RXDATA1);
ci->movePortTo(id_Q2, iol, id_RXDATA2);
ci->movePortTo(id_Q3, iol, id_RXDATA3);
ci->movePortTo(id_QWL, iol, id_INFF);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
iol->params[ctx->id("MIDDRX.MODE")] = std::string("MIDDRX2");
process_dqs_port(ci, pio, iol, id_DQSR90);
process_dqs_port(ci, pio, iol, id_RDPNTR2);
process_dqs_port(ci, pio, iol, id_RDPNTR1);
process_dqs_port(ci, pio, iol, id_RDPNTR0);
process_dqs_port(ci, pio, iol, id_WRPNTR2);
process_dqs_port(ci, pio, iol, id_WRPNTR1);
process_dqs_port(ci, pio, iol, id_WRPNTR0);
packed_cells.insert(cell.first);
} else if (ci->type.in(id_TSHX2DQA, id_TSHX2DQSA)) {
CellInfo *pio = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_T, true);
if (pio == nullptr)
log_error("%s '%s' Q output must be connected only to a top level tristate\n", ci->type.c_str(ctx),
ci->name.c_str(ctx));
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "MIDDRX_MODDRX");
ci->movePortTo(id_Q, iol, id_IOLTO);
if (!pio->ports.count(id_IOLTO)) {
pio->ports[id_IOLTO].name = id_IOLTO;
pio->ports[id_IOLTO].type = PORT_IN;
}
pio->movePortTo(id_T, pio, id_IOLTO);
set_iologic_sclk(iol, ci, id_SCLK, false);
set_iologic_eclk(iol, ci, id_ECLK);
set_iologic_lsr(iol, ci, id_RST, false);
ci->movePortTo(id_T0, iol, id_TSDATA0);
ci->movePortTo(id_T1, iol, id_TSDATA1);
process_dqs_port(ci, pio, iol, ci->type == id_TSHX2DQSA ? id_DQSW : id_DQSW270);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
iol->params[ctx->id("MTDDRX.MODE")] = std::string("MTSHX2");
iol->params[ctx->id("MTDDRX.REGSET")] = std::string("SET");
iol->params[ctx->id("MTDDRX.DQSW_INVERT")] =
std::string(ci->type == id_TSHX2DQSA ? "ENABLED" : "DISABLED");
iol->params[ctx->id("MIDDRX_MODDRX.WRCLKMUX")] =
std::string(ci->type == id_TSHX2DQSA ? "DQSW" : "DQSW270");
iol->params[id_IOLTOMUX] = std::string("TDDR");
packed_cells.insert(cell.first);
} else if (ci->type == id_TRELLIS_FF && bool_or_default(ci->attrs, id_syn_useioff)) {
// Pack IO flipflop into IOLOGIC
std::string mode = str_or_default(ci->attrs, id_ioff_dir, "");
if (mode != "output") {
// See if it can be packed as an input ff
NetInfo *d = ci->getPort(id_DI);
CellInfo *pio = net_driven_by(ctx, d, is_trellis_io, id_O);
if (pio != nullptr && d->users.entries() == 1) {
// Input FF
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "IREG_OREG");
set_iologic_sclk(iol, ci, id_CLK, true);
set_iologic_lsr(iol, ci, id_LSR, true);
// Handle CLK and CE muxes
if (str_or_default(ci->params, id_CLKMUX) == "INV")
iol->params[id_CLKIMUX] = std::string("INV");
if (str_or_default(ci->params, id_CEMUX, "CE") == "CE" ||
str_or_default(ci->params, id_CEMUX, "CE") == "INV") {
iol->params[id_CEIMUX] = std::string("CEMUX");
if (iol->getPort(id_CE) == nullptr) {
iol->params[id_CEMUX] = str_or_default(ci->params, id_CEMUX, "CE");
ci->movePortTo(id_CE, iol, id_CE);
} else {
if (iol->getPort(id_CE) != ci->getPort(id_CE) ||
str_or_default(ci->params, id_CEMUX, "CE") !=
str_or_default(iol->params, id_CEMUX, "CE"))
log_error("CE signal or polarity mismatch for IO flipflop %s with other IOFFs at "
"location.\n",
ctx->nameOf(ci));
ci->disconnectPort(id_CE);
}
} else {
iol->params[id_CEIMUX] = std::string("1");
}
// Set IOLOGIC params from FF params
iol->params[ctx->id("FF.INREGMODE")] = std::string("FF");
iol->params[ctx->id("FF.REGSET")] = str_or_default(ci->params, id_REGSET, "RESET");
iol->params[id_SRMODE] = str_or_default(ci->params, id_SRMODE, "ASYNC");
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
ci->movePortTo(id_DI, iol, id_PADDI);
ci->movePortTo(id_Q, iol, id_INFF);
packed_cells.insert(cell.first);
continue;
}
}
if (mode != "input") {
CellInfo *pio_t = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_T, true);
CellInfo *pio_i = net_only_drives(ctx, ci->ports.at(id_Q).net, is_trellis_io, id_I, true);
if (pio_t != nullptr || pio_i != nullptr) {
// Output or tristate FF
bool tri = (pio_t != nullptr);
CellInfo *pio = tri ? pio_t : pio_i;
CellInfo *iol;
if (pio_iologic.count(pio->name))
iol = pio_iologic.at(pio->name);
else
iol = create_pio_iologic(pio, ci);
set_iologic_mode(iol, "IREG_OREG");
// Connection between FF and PIO
ci->movePortTo(id_Q, iol, tri ? id_IOLTO : id_IOLDO);
if (tri) {
if (!pio->ports.count(id_IOLTO)) {
pio->ports[id_IOLTO].name = id_IOLTO;
pio->ports[id_IOLTO].type = PORT_IN;
}
pio->params[id_TRIMUX_TSREG] = std::string("IOLTO");
pio->movePortTo(id_T, pio, id_IOLTO);
} else {
if (!pio->ports.count(id_IOLDO)) {
pio->ports[id_IOLDO].name = id_IOLDO;
pio->ports[id_IOLDO].type = PORT_IN;
}
pio->params[id_DATAMUX_OREG] = std::string("IOLDO");
pio->movePortTo(id_I, pio, id_IOLDO);
}
set_iologic_sclk(iol, ci, id_CLK, false);
set_iologic_lsr(iol, ci, id_LSR, false);
// Handle CLK and CE muxes
if (str_or_default(ci->params, id_CLKMUX) == "INV")
iol->params[id_CLKOMUX] = std::string("INV");
if (str_or_default(ci->params, id_CEMUX, "CE") == "CE" ||
str_or_default(ci->params, id_CEMUX, "CE") == "INV") {
iol->params[id_CEOMUX] = std::string("CEMUX");
if (iol->getPort(id_CE) == nullptr) {
iol->params[id_CEMUX] = str_or_default(ci->params, id_CEMUX, "CE");
ci->movePortTo(id_CE, iol, id_CE);
} else {
if (iol->getPort(id_CE) != ci->getPort(id_CE) ||
str_or_default(ci->params, id_CEMUX, "CE") !=
str_or_default(iol->params, id_CEMUX, "CE"))
log_error("CE signal or polarity mismatch for IO flipflop %s with other IOFFs at "
"location.\n",
ctx->nameOf(ci));
ci->disconnectPort(id_CE);
}
} else {
iol->params[id_CEOMUX] = std::string("1");
}
// FF params
iol->params[ctx->id(tri ? "TSREG.OUTREGMODE" : "OUTREG.OUTREGMODE")] = std::string("FF");
iol->params[ctx->id(tri ? "TSREG.REGSET" : "OUTREG.REGSET")] =
str_or_default(ci->params, id_REGSET, "RESET");
iol->params[id_SRMODE] = str_or_default(ci->params, id_SRMODE, "ASYNC");
// Data input
ci->movePortTo(id_DI, iol, tri ? id_TSDATA0 : id_TXDATA0);
iol->params[id_GSR] = str_or_default(ci->params, id_GSR, "DISABLED");
packed_cells.insert(cell.first);
continue;
}
}
log_error("Failed to pack flipflop '%s' with 'syn_useioff' set into IOLOGIC.\n", ci->name.c_str(ctx));
}
}
flush_cells();
// Constrain ECLK-related cells
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_ECLKBRIDGECS) {
Loc loc;
NetInfo *i0 = ci->getPort(id_CLK0), *i1 = ci->getPort(id_CLK1), *o = ci->getPort(id_ECSOUT);
for (NetInfo *input : {i0, i1}) {
if (input == nullptr)
continue;
for (auto user : input->users) {
if (!user.cell->attrs.count(id_BEL))
continue;
Loc user_loc =
ctx->getBelLocation(ctx->getBelByNameStr(user.cell->attrs.at(id_BEL).as_string()));
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ECLKBRIDGECS)
continue;
loc = ctx->getBelLocation(bel);
if (loc.x == user_loc.x) {
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
goto eclkbridge_done;
}
}
}
if (input->driver.cell != nullptr) {
CellInfo *drv = input->driver.cell;
if (!drv->attrs.count(id_BEL))
continue;
Loc drv_loc = ctx->getBelLocation(ctx->getBelByNameStr(drv->attrs.at(id_BEL).as_string()));
BelId closest;
int closest_x = -1; // aim for same side of chip
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ECLKBRIDGECS)
continue;
loc = ctx->getBelLocation(bel);
if (closest_x == -1 || std::abs(loc.x - drv_loc.x) < std::abs(closest_x - drv_loc.x)) {
closest_x = loc.x;
closest = bel;
}
}
NPNR_ASSERT(closest != BelId());
loc = ctx->getBelLocation(closest);
ci->attrs[id_BEL] = ctx->getBelName(closest).str(ctx);
goto eclkbridge_done;
}
}
// If all else fails, place randomly
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ECLKBRIDGECS)
continue;
loc = ctx->getBelLocation(bel);
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
}
eclkbridge_done:
if (o != nullptr)
for (auto user2 : o->users) {
// Set side hint to ensure edge clock choice is routeable
if (user2.cell->type == id_ECLKSYNCB && user2.port == id_ECLKI) {
NetInfo *synco = user2.cell->getPort(id_ECLKO);
if (synco != nullptr)
bridge_side_hint[synco] = (loc.x > 1) ? 0 : 1;
}
}
continue;
}
}
// Promote/route edge clocks
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type.in(id_IOLOGIC, id_DQSBUFM)) {
if (!ci->ports.count(id_ECLK) || ci->ports.at(id_ECLK).net == nullptr)
continue;
BelId bel = ctx->getBelByNameStr(str_or_default(ci->attrs, id_BEL));
NPNR_ASSERT(bel != BelId());
Loc pioLoc = ctx->getBelLocation(bel);
if (ci->type == id_DQSBUFM)
pioLoc.z -= 8;
else
pioLoc.z -= 4;
BelId pioBel = ctx->getBelByLocation(pioLoc);
NPNR_ASSERT(pioBel != BelId());
int bank = ctx->get_pio_bel_bank(pioBel);
make_eclk(ci->ports.at(id_ECLK), ci, bel, bank);
}
}
flush_cells();
pool<BelId> used_eclksyncb;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_CLKDIVF) {
const NetInfo *clki = ci->getPort(id_CLKI);
for (auto &eclk : eclks) {
if (eclk.second.unbuf == clki) {
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_CLKDIVF)
continue;
Loc loc = ctx->getBelLocation(bel);
// CLKDIVF for bank 6/7 on the left; for bank 2/3 on the right
if (loc.x < 10 && eclk.first.first != 6 && eclk.first.first != 7)
continue;
// z-index of CLKDIVF must match index of ECLK
if (loc.z != eclk.first.second)
continue;
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
make_eclk(ci->ports.at(id_CLKI), ci, bel, eclk.first.first);
goto clkdiv_done;
}
}
}
clkdiv_done:
continue;
} else if (ci->type == id_ECLKSYNCB) {
const NetInfo *eclki = ci->getPort(id_ECLKI);
const NetInfo *eclko = ci->getPort(id_ECLKO);
if (eclki != nullptr && eclki->driver.cell != nullptr) {
if (eclki->driver.cell->type == id_ECLKBRIDGECS) {
BelId bel = ctx->getBelByNameStr(eclki->driver.cell->attrs.at(id_BEL).as_string());
Loc loc = ctx->getBelLocation(bel);
ci->attrs[id_BEL] = ctx->getBelName(ctx->getBelByLocation(Loc(loc.x, loc.y, 15))).str(ctx);
used_eclksyncb.insert(bel);
goto eclksync_done;
}
}
if (eclko == nullptr)
log_error("ECLKSYNCB '%s' has disconnected port ECLKO\n", ci->name.c_str(ctx));
for (auto user : eclko->users) {
if (user.cell->type == id_TRELLIS_ECLKBUF) {
Loc eckbuf_loc =
ctx->getBelLocation(ctx->getBelByNameStr(user.cell->attrs.at(id_BEL).as_string()));
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ECLKSYNCB)
continue;
Loc loc = ctx->getBelLocation(bel);
if (loc.x == eckbuf_loc.x && loc.y == eckbuf_loc.y && loc.z == eckbuf_loc.z - 2) {
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
used_eclksyncb.insert(bel);
goto eclksync_done;
}
}
}
}
eclksync_done:
continue;
} else if (ci->type == id_DDRDLLA) {
ci->type = id_DDRDLL; // transform from Verilog to Bel name
const NetInfo *clk = ci->getPort(id_CLK);
if (clk == nullptr)
log_error("DDRDLLA '%s' has disconnected port CLK\n", ci->name.c_str(ctx));
bool left_bank_users = false, right_bank_users = false;
// Check which side the delay codes (DDRDEL) are used on
const NetInfo *ddrdel = ci->getPort(id_DDRDEL);
if (ddrdel != nullptr) {
for (auto &usr : ddrdel->users) {
const CellInfo *uc = usr.cell;
if (uc->type != id_DQSBUFM || !uc->attrs.count(id_BEL))
continue;
BelId dqsb_bel = ctx->getBelByNameStr(uc->attrs.at(id_BEL).as_string());
Loc dqsb_loc = ctx->getBelLocation(dqsb_bel);
if (dqsb_loc.x > 15)
right_bank_users = true;
if (dqsb_loc.x < 15)
left_bank_users = true;
}
}
if (left_bank_users && right_bank_users)
log_error("DDRDLLA '%s' has DDRDEL uses on both sides of the chip.\n", ctx->nameOf(ci));
for (auto &eclk : eclks) {
if (eclk.second.unbuf == clk) {
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_DDRDLL)
continue;
Loc loc = ctx->getBelLocation(bel);
if (loc.x > 15 && left_bank_users)
continue;
if (loc.x < 15 && right_bank_users)
continue;
int ddrdll_bank = -1;
if (loc.x < 15 && loc.y < 15)
ddrdll_bank = 7;
else if (loc.x < 15 && loc.y > 15)
ddrdll_bank = 6;
else if (loc.x > 15 && loc.y < 15)
ddrdll_bank = 2;
else if (loc.x > 15 && loc.y > 15)
ddrdll_bank = 3;
if (eclk.first.first != ddrdll_bank)
continue;
log_info("Constraining DDRDLLA '%s' to bel '%s'\n", ctx->nameOf(ci), ctx->nameOfBel(bel));
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
make_eclk(ci->ports.at(id_CLK), ci, bel, eclk.first.first);
goto ddrdll_done;
}
}
}
ddrdll_done:
continue;
}
}
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_ECLKSYNCB) {
// **All** ECLKSYNCBs must be constrained
// Most will be dealt with above, but there might be some rogue cases
if (ci->attrs.count(id_BEL))
continue;
for (BelId bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ECLKSYNCB)
continue;
// Might there be a better way to pick??
if (used_eclksyncb.count(bel))
continue;
log_info("Constraining ECLKSYNCB '%s' to bel '%s'\n", ctx->nameOf(ci), ctx->nameOfBel(bel));
ci->attrs[id_BEL] = ctx->getBelName(bel).str(ctx);
goto eclksync_ii_done;
}
if (0) {
eclksync_ii_done:
continue;
}
log_error("Failed to constrain ECLKSYNCB '%s'\n", ctx->nameOf(ci));
}
}
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type == id_CLKDIVF) {
if (ci->attrs.count(id_BEL))
continue;
// Case of a CLKDIVF driven by an ECLKSYNC constrained above; without the input being used elsewhere as
// an edge clock
const NetInfo *clki = ci->getPort(id_CLKI);
if (clki == nullptr || clki->driver.cell == nullptr)
continue;
CellInfo *drv = clki->driver.cell;
if (drv->type != id_ECLKSYNCB || !drv->attrs.count(id_BEL))
continue;
BelId bel = ctx->getBelByNameStr(drv->attrs.at(id_BEL).as_string());
// Find a CLKDIVF that is routeable from the ECLKSYNC
std::queue<WireId> visit;
visit.push(ctx->getBelPinWire(bel, id_ECLKO));
while (!visit.empty()) {
WireId cursor = visit.front();
visit.pop();
for (BelPin bp : ctx->getWireBelPins(cursor)) {
if (ctx->getBelType(bp.bel) != id_CLKDIVF || bp.pin != id_CLKI)
continue;
ci->attrs[id_BEL] = ctx->getBelName(bp.bel).str(ctx);
log_info("Constraining CLKDIVF '%s' to bel '%s' based on ECLKSYNCB.\n", ctx->nameOf(ci),
ctx->nameOfBel(bp.bel));
goto clkdiv_ii_done;
}
for (PipId pip : ctx->getPipsDownhill(cursor))
visit.push(ctx->getPipDstWire(pip));
}
clkdiv_ii_done:
continue;
}
}
flush_cells();
};
void generate_constraints()
{
log_info("Generating derived timing constraints...\n");
auto MHz = [&](delay_t a) { return 1000.0 / ctx->getDelayNS(a); };
auto equals_epsilon = [](delay_t a, delay_t b) { return (std::abs(a - b) / std::max(double(b), 1.0)) < 1e-3; };
auto equals_epsilon_pair = [&](DelayPair& a, DelayPair& b) {
return equals_epsilon(a.min_delay, b.min_delay)
&& equals_epsilon(a.max_delay, b.max_delay);
};
auto equals_epsilon_constr = [&](ClockConstraint& a, ClockConstraint& b) {
return equals_epsilon_pair(a.high, b.high)
&& equals_epsilon_pair(a.low, b.low)
&& equals_epsilon_pair(a.period, b.period);
};
pool<IdString> user_constrained, changed_nets;
for (auto &net : ctx->nets) {
if (net.second->clkconstr != nullptr)
user_constrained.insert(net.first);
changed_nets.insert(net.first);
}
auto get_period = [&](CellInfo *ci, IdString port, delay_t &period) {
if (!ci->ports.count(port))
return false;
NetInfo *from = ci->ports.at(port).net;
if (from == nullptr || from->clkconstr == nullptr)
return false;
period = from->clkconstr->period.minDelay();
return true;
};
auto simple_clk_contraint = [&](delay_t period) {
auto constr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
constr->low = DelayPair(period / 2);
constr->high = DelayPair(period / 2);
constr->period = DelayPair(period);
return constr;
};
auto set_constraint = [&](CellInfo *ci, IdString port, std::unique_ptr<ClockConstraint> constr) {
if (!ci->ports.count(port))
return;
NetInfo *to = ci->ports.at(port).net;
if (to == nullptr)
return;
if (to->clkconstr != nullptr) {
if (!equals_epsilon_constr(*to->clkconstr, *constr) && user_constrained.count(to->name))
log_warning(
" Overriding derived constraint of %.1f MHz on net %s with user-specified constraint of "
"%.1f MHz.\n",
MHz(to->clkconstr->period.min_delay), to->name.c_str(ctx), MHz(constr->period.min_delay));
return;
}
to->clkconstr = std::move(constr);
log_info(" Derived frequency constraint of %.1f MHz for net %s\n", MHz(to->clkconstr->period.minDelay()),
to->name.c_str(ctx));
changed_nets.insert(to->name);
};
auto copy_constraint = [&](CellInfo *ci, IdString fromPort, IdString toPort, double ratio = 1.0) {
if (!ci->ports.count(fromPort) || !ci->ports.count(toPort))
return;
NetInfo *from = ci->ports.at(fromPort).net, *to = ci->ports.at(toPort).net;
if (from == nullptr || from->clkconstr == nullptr || to == nullptr)
return;
if (to->clkconstr != nullptr) {
if (!equals_epsilon(to->clkconstr->period.minDelay(),
delay_t(from->clkconstr->period.minDelay() / ratio)) &&
user_constrained.count(to->name))
log_warning(
" Overriding derived constraint of %.1f MHz on net %s with user-specified constraint of "
"%.1f MHz.\n",
MHz(to->clkconstr->period.minDelay()), to->name.c_str(ctx),
MHz(delay_t(from->clkconstr->period.minDelay() / ratio)));
return;
}
to->clkconstr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
to->clkconstr->low =
DelayPair(ctx->getDelayFromNS(ctx->getDelayNS(from->clkconstr->low.min_delay) / ratio));
to->clkconstr->high =
DelayPair(ctx->getDelayFromNS(ctx->getDelayNS(from->clkconstr->high.min_delay) / ratio));
to->clkconstr->period =
DelayPair(ctx->getDelayFromNS(ctx->getDelayNS(from->clkconstr->period.min_delay) / ratio));
log_info(" Derived frequency constraint of %.1f MHz for net %s\n", MHz(to->clkconstr->period.minDelay()),
to->name.c_str(ctx));
changed_nets.insert(to->name);
};
// Run in a loop while constraints are changing to deal with dependencies
// Iteration limit avoids hanging in crazy loopback situation (self-fed PLLs or dividers, etc)
int iter = 0;
const int itermax = 5000;
while (!changed_nets.empty() && iter < itermax) {
++iter;
pool<IdString> changed_cells;
for (auto net : changed_nets) {
for (auto &user : ctx->nets.at(net)->users)
if (user.port.in(id_CLKI, id_ECLKI, id_CLK0, id_CLK1))
changed_cells.insert(user.cell->name);
auto &drv = ctx->nets.at(net)->driver;
if (iter == 1 && drv.cell != nullptr && drv.port == id_OSC)
changed_cells.insert(drv.cell->name);
}
changed_nets.clear();
for (auto cell : changed_cells) {
CellInfo *ci = ctx->cells.at(cell).get();
if (ci->type == id_CLKDIVF) {
std::string div = str_or_default(ci->params, id_DIV, "2.0");
double ratio;
if (div == "2.0")
ratio = 1 / 2.0;
else if (div == "3.5")
ratio = 1 / 3.5;
else
log_error("Unsupported divider ratio '%s' on CLKDIVF '%s'\n", div.c_str(), ci->name.c_str(ctx));
copy_constraint(ci, id_CLKI, id_CDIVX, ratio);
} else if (ci->type.in(id_ECLKSYNCB, id_TRELLIS_ECLKBUF)) {
copy_constraint(ci, id_ECLKI, id_ECLKO, 1);
} else if (ci->type == id_ECLKBRIDGECS) {
copy_constraint(ci, id_CLK0, id_ECSOUT, 1);
copy_constraint(ci, id_CLK1, id_ECSOUT, 1);
} else if (ci->type == id_DCCA) {
copy_constraint(ci, id_CLKI, id_CLKO, 1);
} else if (ci->type == id_DCSC) {
if ((!ci->ports.count(id_CLK0) && !ci->ports.count(id_CLK1)) || !ci->ports.count(id_DCSOUT))
continue;
auto mode = str_or_default(ci->params, id_DCSMODE, "POS");
bool mode_constant = false;
auto mode_is_constant = net_is_constant(ctx, ci->ports.at(id_MODESEL).net, mode_constant);
if (mode_is_constant && mode_constant == false) {
if (mode == "CLK0_LOW" || mode == "CLK0_HIGH" || mode == "CLK0") {
copy_constraint(ci, id_CLK0, id_DCSOUT, 1.0);
continue;
} else if (mode == "CLK1_LOW" || mode == "CLK1_HIGH" || mode == "CLK1") {
copy_constraint(ci, id_CLK1, id_DCSOUT, 1.0);
continue;
} else if (mode == "LOW" || mode == "HIGH") {
continue;
}
}
std::unique_ptr<ClockConstraint> derived_constr = nullptr;
std::vector<NetInfo*> in_ports = {
ci->ports.at(id_CLK0).net,
ci->ports.at(id_CLK1).net,
};
// Generate all unique clock pairs find the worst
// constraint from switching between them and merge them
// into the final output constraint.
for (size_t i = 0; i < in_ports.size(); ++i) {
auto p1 = in_ports[i];
if (p1 == nullptr || p1->clkconstr == nullptr) {
derived_constr = nullptr;
break;
}
for (size_t j = i + 1; j < in_ports.size(); ++j) {
auto p2 = in_ports[j];
if (p2 == nullptr || p2->clkconstr == nullptr) {
break;
}
auto& c1 = p1->clkconstr;
auto& c2 = p2->clkconstr;
auto merged_constr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
if (mode == "NEG") {
merged_constr->low = DelayPair(
std::min(c1->low.min_delay, c2->low.min_delay),
std::max(
c1->low.max_delay + c2->period.max_delay,
c2->low.max_delay + c1->period.max_delay
)
);
} else {
merged_constr->low = DelayPair(
std::min(c1->low.min_delay, c2->low.min_delay),
std::max(c1->low.max_delay, c2->low.max_delay)
);
}
if (mode == "POS") {
merged_constr->high = DelayPair(
std::min(c1->high.min_delay, c2->high.min_delay),
std::max(
c1->high.max_delay + c2->period.max_delay,
c2->high.max_delay + c1->period.max_delay
)
);
} else {
merged_constr->high = DelayPair(
std::min(c1->high.min_delay, c2->high.min_delay),
std::max(c1->high.max_delay, c2->high.max_delay)
);
}
merged_constr->period = DelayPair(
std::min(c1->period.min_delay, c2->period.min_delay),
std::max(c1->period.max_delay, c2->period.max_delay)
);
if (derived_constr == nullptr) {
derived_constr = std::move(merged_constr);
continue;
}
derived_constr->period.min_delay = std::min(
derived_constr->period.min_delay,
merged_constr->period.min_delay
);
derived_constr->period.max_delay = std::max(
derived_constr->period.max_delay,
merged_constr->period.max_delay
);
derived_constr->low.min_delay = std::min(
derived_constr->low.min_delay,
merged_constr->low.min_delay
);
derived_constr->low.max_delay = std::max(
derived_constr->low.max_delay,
merged_constr->low.max_delay
);
derived_constr->high.min_delay = std::min(
derived_constr->high.min_delay,
merged_constr->high.min_delay
);
derived_constr->high.max_delay = std::max(
derived_constr->high.max_delay,
merged_constr->high.max_delay
);
}
}
if (derived_constr != nullptr) {
set_constraint(ci, id_DCSOUT, std::move(derived_constr));
}
} else if (ci->type == id_EHXPLLL) {
delay_t period_in;
if (!get_period(ci, id_CLKI, period_in))
continue;
log_info(" Input frequency of PLL '%s' is constrained to %.1f MHz\n", ci->name.c_str(ctx),
MHz(period_in));
double period_in_div = period_in * int_or_default(ci->params, id_CLKI_DIV, 1);
std::string path = str_or_default(ci->params, id_FEEDBK_PATH, "CLKOP");
int feedback_div = int_or_default(ci->params, id_CLKFB_DIV, 1);
if (path == "CLKOP" || path == "INT_OP")
feedback_div *= int_or_default(ci->params, id_CLKOP_DIV, 1);
else if (path == "CLKOS" || path == "INT_OS")
feedback_div *= int_or_default(ci->params, id_CLKOS_DIV, 1);
else if (path == "CLKOS2" || path == "INT_OS2")
feedback_div *= int_or_default(ci->params, id_CLKOS2_DIV, 1);
else if (path == "CLKOS3" || path == "INT_OS3")
feedback_div *= int_or_default(ci->params, id_CLKOS3_DIV, 1);
else {
log_info(" Unable to determine output frequencies for PLL '%s' with FEEDBK_PATH=%s\n",
ci->name.c_str(ctx), path.c_str());
continue;
}
double vco_period = period_in_div / feedback_div;
double vco_freq = MHz(vco_period);
if (vco_freq < 400 || vco_freq > 800)
log_info(" Derived VCO frequency %.1f MHz of PLL '%s' is out of legal range [400MHz, "
"800MHz]\n",
vco_freq, ci->name.c_str(ctx));
set_constraint(ci, id_CLKOP, simple_clk_contraint(vco_period * int_or_default(ci->params, id_CLKOP_DIV, 1)));
set_constraint(ci, id_CLKOS, simple_clk_contraint(vco_period * int_or_default(ci->params, id_CLKOS_DIV, 1)));
set_constraint(ci, id_CLKOS2, simple_clk_contraint(vco_period * int_or_default(ci->params, id_CLKOS2_DIV, 1)));
set_constraint(ci, id_CLKOS3, simple_clk_contraint(vco_period * int_or_default(ci->params, id_CLKOS3_DIV, 1)));
} else if (ci->type == id_OSCG) {
int div = int_or_default(ci->params, id_DIV, 128);
set_constraint(ci, id_OSC, simple_clk_contraint(delay_t((1.0e6 / (2.0 * 155)) * div)));
}
}
}
}
void prepack_checks()
{
// Check for legacy-style JSON (use CEMUX as a clue) and error out, avoiding a confusing assertion failure
// later
for (auto &cell : ctx->cells) {
if (is_ff(ctx, cell.second.get()) && cell.second->params.count(id_CEMUX) &&
!cell.second->params[id_CEMUX].is_string)
log_error("Found netlist using legacy-style JSON parameter values, please update your Yosys.\n");
}
}
public:
void pack()
{
prepack_checks();
print_logic_usage();
pack_io();
pack_dqsbuf();
preplace_plls();
pack_iologic();
pack_ebr();
pack_dsps();
pack_dcus();
pack_misc();
pack_constants();
pack_dram();
pack_carries();
pack_luts();
pack_lut5xs();
pack_ffs();
generate_constraints();
promote_ecp5_globals(ctx);
ctx->fixupHierarchy();
ctx->check();
}
private:
Context *ctx;
pool<IdString> packed_cells;
std::vector<std::unique_ptr<CellInfo>> new_cells;
struct SliceUsage
{
bool lut0_used = false, lut1_used = false;
bool ccu2_used = false, dpram_used = false, ramw_used = false;
bool ff0_used = false, ff1_used = false;
bool mux5_used = false, muxx_used = false;
};
dict<IdString, SliceUsage> sliceUsage;
dict<IdString, IdString> lutffPairs;
dict<IdString, IdString> fflutPairs;
dict<IdString, IdString> lutPairs;
};
// Main pack function
bool Arch::pack()
{
Context *ctx = getCtx();
try {
log_break();
Ecp5Packer(ctx).pack();
log_info("Checksum: 0x%08x\n", ctx->checksum());
assignArchInfo();
ctx->settings[id_pack] = 1;
archInfoToAttributes();
return true;
} catch (log_execution_error_exception) {
assignArchInfo();
return false;
}
}
void Arch::assign_arch_info_for_cell(CellInfo *ci)
{
auto get_port_net = [&](CellInfo *ci, IdString p) {
NetInfo *n = ci->getPort(p);
return n ? n->name : IdString();
};
if (ci->type == id_TRELLIS_COMB) {
std::string mode = str_or_default(ci->params, id_MODE, "LOGIC");
ci->combInfo.flags = ArchCellInfo::COMB_NONE;
if (mode == "CCU2")
ci->combInfo.flags |= ArchCellInfo::COMB_CARRY;
if (mode == "DPRAM") {
ci->combInfo.flags |= ArchCellInfo::COMB_LUTRAM;
std::string wckmux = str_or_default(ci->params, id_WCKMUX, "WCK");
if (wckmux == "INV")
ci->combInfo.flags |= ArchCellInfo::COMB_RAM_WCKINV;
std::string wremux = str_or_default(ci->params, id_WREMUX, "WRE");
if (wremux == "INV" || wremux == "0")
ci->combInfo.flags |= ArchCellInfo::COMB_RAM_WREINV;
ci->combInfo.ram_wck = get_port_net(ci, id_WCK);
ci->combInfo.ram_wre = get_port_net(ci, id_WRE);
}
if (mode == "RAMW_BLOCK")
ci->combInfo.flags |= ArchCellInfo::COMB_RAMW_BLOCK;
if (ci->getPort(id_F1) != nullptr)
ci->combInfo.flags |= ArchCellInfo::COMB_MUX5;
if (ci->getPort(id_FXA) != nullptr || ci->getPort(id_FXB) != nullptr) {
ci->combInfo.flags |= ArchCellInfo::COMB_MUX6;
NetInfo *fxa = ci->getPort(id_FXA);
if (fxa != nullptr)
ci->combInfo.mux_fxad = fxa->driver.cell;
}
} else if (ci->type == id_TRELLIS_FF) {
ci->ffInfo.flags = ArchCellInfo::FF_NONE;
if (str_or_default(ci->params, id_GSR, "ENABLED") == "ENABLED")
ci->ffInfo.flags |= ArchCellInfo::FF_GSREN;
if (str_or_default(ci->params, id_SRMODE, "LSR_OVER_CE") == "ASYNC")
ci->ffInfo.flags |= ArchCellInfo::FF_ASYNC;
if (ci->getPort(id_M) != nullptr)
ci->ffInfo.flags |= ArchCellInfo::FF_M_USED;
std::string clkmux = str_or_default(ci->params, id_CLKMUX, "CLK");
std::string cemux = str_or_default(ci->params, id_CEMUX, "CE");
std::string lsrmux = str_or_default(ci->params, id_LSRMUX, "LSR");
if (clkmux == "INV" || clkmux == "0")
ci->ffInfo.flags |= ArchCellInfo::FF_CLKINV;
if (cemux == "INV" || cemux == "0")
ci->ffInfo.flags |= ArchCellInfo::FF_CEINV;
if (cemux == "1" || cemux == "0")
ci->ffInfo.flags |= ArchCellInfo::FF_CECONST;
if (lsrmux == "INV")
ci->ffInfo.flags |= ArchCellInfo::FF_LSRINV;
ci->ffInfo.clk_sig = get_port_net(ci, id_CLK);
ci->ffInfo.ce_sig = get_port_net(ci, id_CE);
ci->ffInfo.lsr_sig = get_port_net(ci, id_LSR);
} else if (ci->type == id_DP16KD) {
ci->ramInfo.is_pdp = (int_or_default(ci->params, id_DATA_WIDTH_A, 0) == 36);
// Output register mode (REGMODE_{A,B}). Valid options are 'NOREG' and 'OUTREG'.
std::string regmode_a = str_or_default(ci->params, id_REGMODE_A, "NOREG");
if (regmode_a != "NOREG" && regmode_a != "OUTREG")
log_error("DP16KD %s has invalid REGMODE_A configuration '%s'\n", ci->name.c_str(this), regmode_a.c_str());
std::string regmode_b = str_or_default(ci->params, id_REGMODE_B, "NOREG");
if (regmode_b != "NOREG" && regmode_b != "OUTREG")
log_error("DP16KD %s has invalid REGMODE_B configuration '%s'\n", ci->name.c_str(this), regmode_b.c_str());
ci->ramInfo.is_output_a_registered = regmode_a == "OUTREG";
ci->ramInfo.is_output_b_registered = regmode_b == "OUTREG";
// Based on the REGMODE, we have different timing lookup tables.
if (!ci->ramInfo.is_output_a_registered && !ci->ramInfo.is_output_b_registered) {
ci->ramInfo.regmode_timing_id = id_DP16KD_REGMODE_A_NOREG_REGMODE_B_NOREG;
} else if (!ci->ramInfo.is_output_a_registered && ci->ramInfo.is_output_b_registered) {
ci->ramInfo.regmode_timing_id = id_DP16KD_REGMODE_A_NOREG_REGMODE_B_OUTREG;
} else if (ci->ramInfo.is_output_a_registered && !ci->ramInfo.is_output_b_registered) {
ci->ramInfo.regmode_timing_id = id_DP16KD_REGMODE_A_OUTREG_REGMODE_B_NOREG;
} else if (ci->ramInfo.is_output_a_registered && ci->ramInfo.is_output_b_registered) {
ci->ramInfo.regmode_timing_id = id_DP16KD_REGMODE_A_OUTREG_REGMODE_B_OUTREG;
}
} else if (ci->type == id_MULT18X18D) {
// For the multiplier block, our timing db is dictated by whether any of the input/output registers are
// enabled. To that end, we need to work out what the parameters are for the INPUTA_CLK, INPUTB_CLK and
// OUTPUT_CLK are.
// The clock check is the same IN_A/B and OUT, so hoist it to a function
auto get_clock_parameter = [&](std::string param_name) {
std::string clk = str_or_default(ci->params, id(param_name), "NONE");
if (clk != "NONE" && clk != "CLK0" && clk != "CLK1" && clk != "CLK2" && clk != "CLK3")
log_error("MULT18X18D %s has invalid %s configuration '%s'\n", ci->name.c_str(this), param_name.c_str(),
clk.c_str());
return clk;
};
// Get the input clock setting from the cell
std::string reg_inputa_clk = get_clock_parameter("REG_INPUTA_CLK");
std::string reg_inputb_clk = get_clock_parameter("REG_INPUTB_CLK");
// Inputs are registered IFF the REG_INPUT value is not NONE
const bool is_in_a_registered = reg_inputa_clk != "NONE";
const bool is_in_b_registered = reg_inputb_clk != "NONE";
// Similarly, get the output register clock
std::string reg_output_clk = get_clock_parameter("REG_OUTPUT_CLK");
const bool is_output_registered = reg_output_clk != "NONE";
// If only one of the inputs is registered, we are going to treat that as
// neither input registered so that we don't have to deal with mixed timing.
// Emit a warning to that effect.
const bool any_input_registered = is_in_a_registered || is_in_b_registered;
const bool both_inputs_registered = is_in_a_registered && is_in_b_registered;
const bool input_registers_mismatched = any_input_registered && !both_inputs_registered;
if (input_registers_mismatched) {
log_warning("MULT18X18D %s has unsupported mixed input register modes (reg_inputa_clk=%s, "
"reg_inputb_clk=%s)\n",
ci->name.c_str(this), reg_inputa_clk.c_str(), reg_inputb_clk.c_str());
log_warning("Timings for MULT18X18D %s will be calculated as though neither input were registered\n",
ci->name.c_str(this));
// Act as though the inputs are unregistered, so select timing DB based only on the
// output register mode
ci->multInfo.timing_id = is_output_registered ? id_MULT18X18D_REGS_OUTPUT : id_MULT18X18D_REGS_NONE;
} else {
// Based on our register settings, pick the timing data to use for this cell
if (!both_inputs_registered && !is_output_registered) {
ci->multInfo.timing_id = id_MULT18X18D_REGS_NONE;
} else if (both_inputs_registered && !is_output_registered) {
ci->multInfo.timing_id = id_MULT18X18D_REGS_INPUT;
} else if (!both_inputs_registered && is_output_registered) {
ci->multInfo.timing_id = id_MULT18X18D_REGS_OUTPUT;
} else if (both_inputs_registered && is_output_registered) {
ci->multInfo.timing_id = id_MULT18X18D_REGS_ALL;
}
}
// If we aren't a pure combinatorial multiplier, then our timings are
// calculated with respect to CLK0
ci->multInfo.is_clocked = ci->multInfo.timing_id != id_MULT18X18D_REGS_NONE;
}
}
void Arch::assignArchInfo()
{
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
assign_arch_info_for_cell(ci);
}
for (auto &net : nets) {
net.second->is_global = bool_or_default(net.second->attrs, id_ECP5_IS_GLOBAL);
}
}
NEXTPNR_NAMESPACE_END