
- VSS and VCC sources in each cell are used; - constant LUT inputs are disabled; - putting the class declaration into a header file. Signed-off-by: YRabbit <rabbit@yrabbit.cyou>
238 lines
8.8 KiB
Python
238 lines
8.8 KiB
Python
from os import path
|
|
import sys
|
|
|
|
import importlib.resources
|
|
import pickle
|
|
import gzip
|
|
import re
|
|
import argparse
|
|
|
|
sys.path.append(path.join(path.dirname(__file__), "../.."))
|
|
from himbaechel_dbgen.chip import *
|
|
from apycula import chipdb
|
|
|
|
# Z of the bels
|
|
VCC_Z = 277
|
|
GND_Z = 288
|
|
|
|
created_tiletypes = set()
|
|
|
|
# u-turn at the rim
|
|
uturnlut = {'N': 'S', 'S': 'N', 'E': 'W', 'W': 'E'}
|
|
def uturn(db: chipdb, x: int, y: int, wire: str):
|
|
m = re.match(r"([NESW])([128]\d)(\d)", wire)
|
|
if m:
|
|
direction, num, segment = m.groups()
|
|
# wires wrap around the edges
|
|
# assumes 0-based indexes
|
|
if y < 0:
|
|
y = -1 - y
|
|
direction = uturnlut[direction]
|
|
if x < 0:
|
|
x = -1 - x
|
|
direction = uturnlut[direction]
|
|
if y > db.rows - 1:
|
|
y = 2 * db.rows - 1 - y
|
|
direction = uturnlut[direction]
|
|
if x > db.cols - 1:
|
|
x = 2 * db.cols - 1 - x
|
|
direction = uturnlut[direction]
|
|
wire = f'{direction}{num}{segment}'
|
|
return (x, y, wire)
|
|
|
|
def create_nodes(chip: Chip, db: chipdb):
|
|
# : (x, y)
|
|
dirs = { 'N': (0, -1), 'S': (0, 1), 'W': (-1, 0), 'E': (1, 0) }
|
|
X = db.cols
|
|
Y = db.rows
|
|
global_nodes = {}
|
|
for y in range(Y):
|
|
for x in range(X):
|
|
nodes = []
|
|
# SN and EW
|
|
for i in [1, 2]:
|
|
nodes.append([NodeWire(x, y, f'SN{i}0'),
|
|
NodeWire(*uturn(db, x, y - 1, f'N1{i}1')),
|
|
NodeWire(*uturn(db, x, y + 1, f'S1{i}1'))])
|
|
nodes.append([NodeWire(x, y, f'EW{i}0'),
|
|
NodeWire(*uturn(db, x - 1, y, f'W1{i}1')),
|
|
NodeWire(*uturn(db, x + 1, y, f'E1{i}1'))])
|
|
for d, offs in dirs.items():
|
|
# 1-hop
|
|
for i in [0, 3]:
|
|
nodes.append([NodeWire(x, y, f'{d}1{i}0'),
|
|
NodeWire(*uturn(db, x + offs[0], y + offs[1], f'{d}1{i}1'))])
|
|
# 2-hop
|
|
for i in range(8):
|
|
nodes.append([NodeWire(x, y, f'{d}2{i}0'),
|
|
NodeWire(*uturn(db, x + offs[0], y + offs[1], f'{d}2{i}1')),
|
|
NodeWire(*uturn(db, x + offs[0] * 2, y + offs[1] * 2, f'{d}2{i}2'))])
|
|
# 4-hop
|
|
for i in range(4):
|
|
nodes.append([NodeWire(x, y, f'{d}8{i}0'),
|
|
NodeWire(*uturn(db, x + offs[0] * 4, y + offs[1] * 4, f'{d}8{i}4')),
|
|
NodeWire(*uturn(db, x + offs[0] * 8, y + offs[1] * 8, f'{d}8{i}8'))])
|
|
for node in nodes:
|
|
chip.add_node(node)
|
|
# VCC and VSS sources in the all tiles
|
|
global_nodes.setdefault('GND', []).append(NodeWire(x, y, 'VSS'))
|
|
global_nodes.setdefault('VCC', []).append(NodeWire(x, y, 'VCC'))
|
|
|
|
for node in global_nodes.values():
|
|
chip.add_node(node)
|
|
|
|
# About X and Y as parameters - in some cases, the type of manufacturer's tile
|
|
# is not different, but some wires are not physically present, that is, routing
|
|
# depends on the location of otherwise identical tiles. There are many options
|
|
# for taking this into account, but for now we make a distinction here, by
|
|
# coordinates.
|
|
def create_switch_matrix(tt: TileType, db: chipdb, x: int, y: int):
|
|
pips = db.grid[y][x].pips
|
|
for dst, srcs in pips.items():
|
|
if not tt.has_wire(dst):
|
|
tt.create_wire(dst)
|
|
for src in srcs.keys():
|
|
if not tt.has_wire(src):
|
|
tt.create_wire(src)
|
|
tt.create_pip(src, dst)
|
|
|
|
def create_null_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
|
|
if ttyp in created_tiletypes:
|
|
return ttyp
|
|
tt = chip.create_tile_type(f"NULL_{ttyp}")
|
|
create_switch_matrix(tt, db, x, y)
|
|
return ttyp
|
|
|
|
# responsible nodes, there will be IO banks, configuration, etc.
|
|
def create_corner_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
|
|
if ttyp in created_tiletypes:
|
|
return ttyp
|
|
tt = chip.create_tile_type(f"CORNER_{ttyp}")
|
|
|
|
if x == 0 and y == 0:
|
|
# GND is the logic low level generator
|
|
tt.create_wire('VSS', 'GND')
|
|
gnd = tt.create_bel('GND', 'GND', z = GND_Z)
|
|
tt.add_bel_pin(gnd, "G", "VSS", PinType.OUTPUT)
|
|
# VCC is the logic high level generator
|
|
tt.create_wire('VCC', 'VCC')
|
|
gnd = tt.create_bel('VCC', 'VCC', z = VCC_Z)
|
|
tt.add_bel_pin(gnd, "V", "VCC", PinType.OUTPUT)
|
|
|
|
create_switch_matrix(tt, db, x, y)
|
|
return ttyp
|
|
|
|
# simple IO - only A and B
|
|
def create_io_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
|
|
if ttyp in created_tiletypes:
|
|
return ttyp
|
|
tt = chip.create_tile_type(f"IO_{ttyp}")
|
|
for i in range(2):
|
|
name = ['IOBA', 'IOBB'][i]
|
|
# wires
|
|
portmap = db.grid[y][x].bels[name].portmap
|
|
tt.create_wire(portmap['I'], "IO_I")
|
|
tt.create_wire(portmap['O'], "IO_I")
|
|
# bels
|
|
io = tt.create_bel(name, "IOB", z = i)
|
|
tt.add_bel_pin(io, "I", portmap['I'], PinType.INPUT)
|
|
tt.add_bel_pin(io, "O", portmap['O'], PinType.OUTPUT)
|
|
create_switch_matrix(tt, db, x, y)
|
|
return ttyp
|
|
|
|
# XXX 6 lut+dff only for now
|
|
def create_logic_tiletype(chip: Chip, db: chipdb, x: int, y: int, ttyp: int):
|
|
N = 6
|
|
lut_inputs = ['A', 'B', 'C', 'D']
|
|
if ttyp in created_tiletypes:
|
|
return ttyp
|
|
tt = chip.create_tile_type(f"LOGIC_{ttyp}")
|
|
# setup wires
|
|
for i in range(N):
|
|
for inp_name in lut_inputs:
|
|
tt.create_wire(f"{inp_name}{i}", "LUT_INPUT")
|
|
tt.create_wire(f"F{i}", "LUT_OUT")
|
|
# experimental. the wire is false - it is assumed that DFF is always
|
|
# connected to the LUT's output F{i}, but we can place primitives
|
|
# arbitrarily and create a pass-through LUT afterwards.
|
|
# just out of curiosity
|
|
tt.create_wire(f"XD{i}", "FF_INPUT")
|
|
tt.create_wire(f"Q{i}", "FF_OUT")
|
|
for j in range(3):
|
|
tt.create_wire(f"CLK{j}", "TILE_CLK")
|
|
tt.create_wire(f"LSR{j}", "TILE_LSR")
|
|
|
|
# create logic cells
|
|
for i in range(N):
|
|
# LUT
|
|
lut = tt.create_bel(f"LUT{i}", "LUT4", z = (i * 2 + 0))
|
|
for j, inp_name in enumerate(lut_inputs):
|
|
tt.add_bel_pin(lut, f"I{j}", f"{inp_name}{i}", PinType.INPUT)
|
|
tt.add_bel_pin(lut, "F", f"F{i}", PinType.OUTPUT)
|
|
# FF data can come from LUT output, but we pretend that we can use
|
|
# any LUT input
|
|
tt.create_pip(f"F{i}", f"XD{i}")
|
|
for inp_name in lut_inputs:
|
|
tt.create_pip(f"{inp_name}{i}", f"XD{i}")
|
|
# FF
|
|
ff = tt.create_bel(f"DFF{i}", "DFF", z =(i * 2 + 1))
|
|
tt.add_bel_pin(ff, "D", f"XD{i}", PinType.INPUT)
|
|
tt.add_bel_pin(ff, "CLK", f"CLK{i // 2}", PinType.INPUT)
|
|
tt.add_bel_pin(ff, "Q", f"Q{i}", PinType.OUTPUT)
|
|
tt.add_bel_pin(ff, "RESET", f"LSR{i // 2}", PinType.INPUT)
|
|
create_switch_matrix(tt, db, x, y)
|
|
return ttyp
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Make Gowin BBA')
|
|
parser.add_argument('-d', '--device', required=True)
|
|
parser.add_argument('-o', '--output', default="out.bba")
|
|
|
|
args = parser.parse_args()
|
|
|
|
device = args.device
|
|
with gzip.open(importlib.resources.files("apycula").joinpath(f"{device}.pickle"), 'rb') as f:
|
|
db = pickle.load(f)
|
|
|
|
X = db.cols;
|
|
Y = db.rows;
|
|
|
|
ch = Chip("gowin", device, X, Y)
|
|
|
|
# Init constant ids
|
|
ch.strs.read_constids(path.join(path.dirname(__file__), "constids.inc"))
|
|
|
|
# The manufacturer distinguishes by externally identical tiles, so keep
|
|
# these differences (in case it turns out later that there is a slightly
|
|
# different routing or something like that).
|
|
logic_tiletypes = {12, 13, 14, 15, 16, 17}
|
|
io_tiletypes = {53, 58, 64} # Tangnano9k leds tiles and clock ;)
|
|
# Setup tile grid
|
|
for x in range(X):
|
|
for y in range(Y):
|
|
ttyp = db.grid[y][x].ttyp
|
|
if (x == 0 or x == X - 1) and (y == 0 or y == Y - 1):
|
|
assert ttyp not in created_tiletypes, "Duplication of corner types"
|
|
ttyp = create_corner_tiletype(ch, db, x, y, ttyp)
|
|
created_tiletypes.add(ttyp)
|
|
ch.set_tile_type(x, y, f"CORNER_{ttyp}")
|
|
continue
|
|
if ttyp in logic_tiletypes:
|
|
ttyp = create_logic_tiletype(ch, db, x, y, ttyp)
|
|
created_tiletypes.add(ttyp)
|
|
ch.set_tile_type(x, y, f"LOGIC_{ttyp}")
|
|
elif ttyp in io_tiletypes:
|
|
ttyp = create_io_tiletype(ch, db, x, y, ttyp)
|
|
created_tiletypes.add(ttyp)
|
|
ch.set_tile_type(x, y, f"IO_{ttyp}")
|
|
else:
|
|
ttyp = create_null_tiletype(ch, db, x, y, ttyp)
|
|
created_tiletypes.add(ttyp)
|
|
ch.set_tile_type(x, y, f"NULL_{ttyp}")
|
|
|
|
# Create nodes between tiles
|
|
create_nodes(ch, db)
|
|
ch.write_bba(args.output)
|
|
if __name__ == '__main__':
|
|
main()
|