nextpnr/common/router1.cc
Clifford Wolf aeaa0552ba Essentially a rewrite router1
Signed-off-by: Clifford Wolf <clifford@clifford.at>
2018-11-09 17:00:45 +01:00

559 lines
17 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <cmath>
#include <queue>
#include "log.h"
#include "router1.h"
#include "timing.h"
namespace {
USING_NEXTPNR_NAMESPACE
struct arc_key
{
NetInfo *net_info;
int user_idx;
bool operator==(const arc_key &other) const {
return (net_info == other.net_info) && (user_idx == other.user_idx);
}
struct Hash
{
std::size_t operator()(const arc_key &arg) const noexcept
{
std::size_t seed = std::hash<NetInfo*>()(arg.net_info);
seed ^= std::hash<int>()(arg.user_idx) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
};
struct arc_entry
{
arc_key arc;
delay_t pri;
struct Greater
{
bool operator()(const arc_entry &lhs, const arc_entry &rhs) const noexcept
{
return lhs.pri > rhs.pri;
}
};
};
struct QueuedWire
{
WireId wire;
PipId pip;
delay_t delay = 0, penalty = 0, togo = 0;
int randtag = 0;
struct Greater
{
bool operator()(const QueuedWire &lhs, const QueuedWire &rhs) const noexcept
{
delay_t l = lhs.delay + lhs.penalty + lhs.togo;
delay_t r = rhs.delay + rhs.penalty + rhs.togo;
return l == r ? lhs.randtag > rhs.randtag : l > r;
}
};
};
struct Router1
{
Context *ctx;
const Router1Cfg &cfg;
std::priority_queue<arc_entry, std::vector<arc_entry>, arc_entry::Greater> arc_queue;
std::unordered_map<WireId, std::unordered_set<arc_key, arc_key::Hash>> wire_to_arc;
std::unordered_set<arc_key, arc_key::Hash> queued_arcs;
std::unordered_map<WireId, QueuedWire> visited;
std::priority_queue<QueuedWire, std::vector<QueuedWire>, QueuedWire::Greater> queue;
std::unordered_map<WireId, int> wireScores;
std::unordered_map<PipId, int> pipScores;
int arcs_with_ripup = 0;
int arcs_without_ripup = 0;
bool ripup_flag;
Router1(Context *ctx, const Router1Cfg &cfg) : ctx(ctx), cfg(cfg) { }
void arc_queue_insert(const arc_key &arc, WireId src_wire, WireId dst_wire)
{
if (queued_arcs.count(arc))
return;
delay_t pri = ctx->estimateDelay(src_wire, dst_wire) - arc.net_info->users[arc.user_idx].budget;
arc_entry entry;
entry.arc = arc;
entry.pri = pri;
arc_queue.push(entry);
queued_arcs.insert(arc);
}
void arc_queue_insert(const arc_key &arc)
{
NetInfo *net_info = arc.net_info;
int user_idx = arc.user_idx;
auto src_wire = ctx->getNetinfoSourceWire(net_info);
auto dst_wire = ctx->getNetinfoSinkWire(net_info, net_info->users[user_idx]);
arc_queue_insert(arc, src_wire, dst_wire);
}
void ripup_net(NetInfo *net)
{
if (ctx->debug)
log(" ripup net %s\n", net->name.c_str(ctx));
auto net_wires_copy = net->wires;
for (auto &it : net_wires_copy) {
if (it.second.pip == PipId())
ripup_wire(it.first);
else
ripup_pip(it.second.pip);
}
ripup_flag = true;
}
void ripup_wire(WireId wire)
{
if (ctx->debug)
log(" ripup wire %s\n", ctx->getWireName(wire).c_str(ctx));
wireScores[wire]++;
if (ctx->getBoundWireNet(wire)) {
for (auto &it : wire_to_arc[wire])
arc_queue_insert(it);
wire_to_arc[wire].clear();
ctx->unbindWire(wire);
}
NetInfo *net = ctx->getConflictingWireNet(wire);
if (net != nullptr) {
wireScores[wire] += net->wires.size();
ripup_net(net);
}
ripup_flag = true;
}
void ripup_pip(PipId pip)
{
if (ctx->debug)
log(" ripup pip %s\n", ctx->getPipName(pip).c_str(ctx));
WireId wire = ctx->getPipDstWire(pip);
wireScores[wire]++;
pipScores[pip]++;
if (ctx->getBoundPipNet(pip)) {
for (auto &it : wire_to_arc[wire])
arc_queue_insert(it);
wire_to_arc[wire].clear();
ctx->unbindPip(pip);
}
NetInfo *net = ctx->getConflictingPipNet(pip);
if (net != nullptr) {
wireScores[wire] += net->wires.size();
pipScores[pip] += net->wires.size();
ripup_net(net);
}
ripup_flag = true;
}
void setup()
{
for (auto &net_it : ctx->nets)
{
NetInfo *net_info = net_it.second.get();
#ifdef ARCH_ECP5
// ECP5 global nets currently appear part-unrouted due to arch database limitations
// Don't touch them in the router
if (net_info->is_global)
return;
#endif
if (net_info->driver.cell == nullptr)
return;
auto src_wire = ctx->getNetinfoSourceWire(net_info);
if (src_wire == WireId())
log_error("No wire found for port %s on source cell %s.\n", net_info->driver.port.c_str(ctx),
net_info->driver.cell->name.c_str(ctx));
for (int user_idx = 0; user_idx < int(net_info->users.size()); user_idx++) {
auto dst_wire = ctx->getNetinfoSinkWire(net_info, net_info->users[user_idx]);
if (dst_wire == WireId())
log_error("No wire found for port %s on destination cell %s.\n", net_info->users[user_idx].port.c_str(ctx),
net_info->users[user_idx].cell->name.c_str(ctx));
arc_key arc;
arc.net_info = net_info;
arc.user_idx = user_idx;
WireId cursor = dst_wire;
wire_to_arc[cursor].insert(arc);
while (src_wire != cursor) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end()) {
arc_queue_insert(arc, src_wire, dst_wire);
break;
}
NPNR_ASSERT(it->second.pip != PipId());
cursor = ctx->getPipSrcWire(it->second.pip);
wire_to_arc[cursor].insert(arc);
}
}
std::vector<WireId> unbind_wires;
for (auto &it : net_info->wires)
if (it.second.strength < STRENGTH_LOCKED && wire_to_arc.count(it.first) == 0)
unbind_wires.push_back(it.first);
for (auto it : unbind_wires)
ctx->unbindWire(it);
}
}
arc_key arc_queue_pop()
{
arc_entry entry = arc_queue.top();
arc_queue.pop();
queued_arcs.erase(entry.arc);
return entry.arc;
}
bool route_arc(const arc_key &arc, bool ripup)
{
NetInfo *net_info = arc.net_info;
int user_idx = arc.user_idx;
auto src_wire = ctx->getNetinfoSourceWire(net_info);
auto dst_wire = ctx->getNetinfoSinkWire(net_info, net_info->users[user_idx]);
ripup_flag = false;
if (ctx->debug) {
log("Routing arc %d on net %s (%d arcs total):\n", user_idx, net_info->name.c_str(ctx), int(net_info->users.size()));
log(" source ... %s\n", ctx->getWireName(src_wire).c_str(ctx));
log(" sink ..... %s\n", ctx->getWireName(dst_wire).c_str(ctx));
}
// unbind wires that are currently used exclusively by this arc
std::vector<WireId> unbind_wires;
for (auto &wire_it : net_info->wires) {
auto wire = wire_it.first;
auto wire_to_arc_it = wire_to_arc.find(wire);
NPNR_ASSERT(wire_to_arc_it != wire_to_arc.end());
wire_to_arc_it->second.erase(arc);
if (wire_to_arc_it->second.empty())
unbind_wires.push_back(wire);
}
for (auto it : unbind_wires)
ctx->unbindWire(it);
// reset wire queue
if (!queue.empty()) {
std::priority_queue<QueuedWire, std::vector<QueuedWire>, QueuedWire::Greater> new_queue;
queue.swap(new_queue);
}
visited.clear();
int visitCnt = 0;
int maxVisitCnt = INT_MAX;
delay_t best_est = 0;
{
QueuedWire qw;
qw.wire = src_wire;
qw.pip = PipId();
qw.delay = ctx->getWireDelay(qw.wire).maxDelay();
qw.penalty = 0;
if (cfg.useEstimate) {
qw.togo = ctx->estimateDelay(qw.wire, dst_wire);
best_est = qw.delay + qw.togo;
}
qw.randtag = ctx->rng();
queue.push(qw);
visited[qw.wire] = qw;
}
while (visitCnt++ < maxVisitCnt && !queue.empty())
{
QueuedWire qw = queue.top();
queue.pop();
for (auto pip : ctx->getPipsDownhill(qw.wire)) {
delay_t next_delay = qw.delay + ctx->getPipDelay(pip).maxDelay();
delay_t next_penalty = qw.penalty;
WireId next_wire = ctx->getPipDstWire(pip);
next_delay += ctx->getWireDelay(next_wire).maxDelay();
if (!ctx->checkWireAvail(next_wire)) {
NetInfo *ripupWireNet = ctx->getConflictingWireNet(next_wire);
if (ripupWireNet == nullptr)
continue;
if (ripupWireNet == net_info) {
next_penalty += cfg.wireReusePenalty;
} else {
if (!ripup)
continue;
auto scores_it = wireScores.find(next_wire);
if (scores_it != wireScores.end())
next_penalty += scores_it->second * cfg.wireRipupPenalty;
}
}
if (!ctx->checkPipAvail(pip)) {
NetInfo *ripupPipNet = ctx->getConflictingPipNet(pip);
if (ripupPipNet == nullptr)
continue;
if (ripupPipNet == net_info) {
next_penalty += cfg.pipReusePenalty;
} else {
if (!ripup)
continue;
auto scores_it = pipScores.find(pip);
if (scores_it != pipScores.end())
next_penalty += scores_it->second * cfg.pipRipupPenalty;
}
}
if (visited.count(next_wire)) {
if (visited.at(next_wire).delay + visited.at(next_wire).penalty <= next_delay + next_penalty + ctx->getDelayEpsilon())
continue;
#if 0 // FIXME
if (ctx->debug)
log("Found better route to %s. Old vs new delay estimate: %.3f %.3f\n",
ctx->getWireName(next_wire).c_str(),
ctx->getDelayNS(visited.at(next_wire).delay),
ctx->getDelayNS(next_delay));
#endif
}
QueuedWire next_qw;
next_qw.wire = next_wire;
next_qw.pip = pip;
next_qw.delay = next_delay;
next_qw.penalty = next_penalty;
if (cfg.useEstimate) {
next_qw.togo = ctx->estimateDelay(next_wire, dst_wire);
delay_t this_est = next_qw.delay + next_qw.togo;
if (this_est > best_est + cfg.estimatePrecision)
continue;
if (best_est > this_est)
best_est = this_est;
}
next_qw.randtag = ctx->rng();
visited[next_qw.wire] = next_qw;
queue.push(next_qw);
if (maxVisitCnt == INT_MAX && next_wire == dst_wire)
maxVisitCnt = 2*visitCnt;
}
}
if (ctx->debug)
log(" total number of visited nodes: %d\n", visitCnt);
if (visited.count(dst_wire) == 0) {
if (ctx->debug)
log(" no route found for this arc\n");
return false;
}
WireId cursor = dst_wire;
while (1) {
if (ctx->debug)
log(" node %s\n", ctx->getWireName(cursor).c_str(ctx));
if (!ctx->checkWireAvail(cursor)) {
NetInfo *ripupWireNet = ctx->getConflictingWireNet(cursor);
NPNR_ASSERT(ripupWireNet != nullptr);
if (ripupWireNet != net_info)
ripup_wire(cursor);
}
auto pip = visited[cursor].pip;
if (pip == PipId()) {
NPNR_ASSERT(cursor == src_wire);
} else {
if (!ctx->checkPipAvail(pip)) {
NetInfo *ripupPipNet = ctx->getConflictingPipNet(pip);
NPNR_ASSERT(ripupPipNet != nullptr);
if (ripupPipNet != net_info)
ripup_pip(pip);
}
}
if (ctx->checkWireAvail(cursor)) {
if (pip == PipId())
ctx->bindWire(cursor, net_info, STRENGTH_WEAK);
else if (ctx->checkPipAvail(pip))
ctx->bindPip(pip, net_info, STRENGTH_WEAK);
}
wire_to_arc[cursor].insert(arc);
if (pip == PipId())
break;
cursor = ctx->getPipSrcWire(pip);
}
if (ripup_flag)
arcs_with_ripup++;
else
arcs_without_ripup++;
return true;
}
};
} // namespace
NEXTPNR_NAMESPACE_BEGIN
Router1Cfg::Router1Cfg(Context *ctx) : Settings(ctx)
{
maxIterCnt = get<int>("router1/maxIterCnt", 200);
cleanupReroute = get<bool>("router1/cleanupReroute", true);
fullCleanupReroute = get<bool>("router1/fullCleanupReroute", true);
useEstimate = get<bool>("router1/useEstimate", true);
wireRipupPenalty = ctx->getRipupDelayPenalty();
pipRipupPenalty = ctx->getRipupDelayPenalty();
wireReusePenalty = -wireRipupPenalty/8;
pipReusePenalty = -pipRipupPenalty/8;
estimatePrecision = 100 * ctx->getRipupDelayPenalty();
}
bool router1(Context *ctx, const Router1Cfg &cfg)
{
try {
log_break();
log_info("Routing..\n");
ctx->lock();
log_info("Setting up routing queue.\n");
Router1 router(ctx, cfg);
router.setup();
log_info("Added %d arcs to routing queue.\n", int(router.arc_queue.size()));
int iter_cnt = 0;
int last_arcs_with_ripup = 0;
int last_arcs_without_ripup = 0;
while (!router.arc_queue.empty()) {
if (++iter_cnt % 1000 == 0) {
log_info("At iteration %d:\n", iter_cnt);
log_info(" routed %d (%d) arcs with rip-up.\n", router.arcs_with_ripup, router.arcs_with_ripup - last_arcs_with_ripup);
log_info(" routed %d (%d) arcs without rip-up.\n", router.arcs_without_ripup, router.arcs_without_ripup - last_arcs_without_ripup);
log_info(" %d arcs remaining in routing queue.\n", int(router.arc_queue.size()));
last_arcs_with_ripup = router.arcs_with_ripup;
last_arcs_without_ripup = router.arcs_without_ripup;
}
arc_key arc = router.arc_queue_pop();
if (!router.route_arc(arc, true)) {
log_warning("Failed to find a route for arc %d of net %s.\n",
arc.user_idx, arc.net_info->name.c_str(ctx));
#ifndef NDEBUG
ctx->check();
#endif
ctx->unlock();
return false;
}
}
log_info("At iteration %d:\n", iter_cnt);
log_info(" routed %d (%d) arcs with rip-up.\n", router.arcs_with_ripup, router.arcs_with_ripup - last_arcs_with_ripup);
log_info(" routed %d (%d) arcs without rip-up.\n", router.arcs_without_ripup, router.arcs_without_ripup - last_arcs_without_ripup);
log_info(" %d arcs remaining in routing queue.\n", int(router.arc_queue.size()));
log_info("Routing finished after %d iterations.\n", iter_cnt);
log_info("Checksum: 0x%08x\n", ctx->checksum());
#ifndef NDEBUG
ctx->check();
#endif
timing_analysis(ctx, true /* slack_histogram */, true /* print_path */);
ctx->unlock();
return true;
} catch (log_execution_error_exception) {
#ifndef NDEBUG
ctx->check();
#endif
ctx->unlock();
return false;
}
}
bool Context::getActualRouteDelay(WireId src_wire, WireId dst_wire, delay_t *delay,
std::unordered_map<WireId, PipId> *route, bool useEstimate)
{
// FIXME
return false;
}
NEXTPNR_NAMESPACE_END