nextpnr/common/timing_opt.cc
D. Shah 6d23461bcd ecp5: Proof-of-concept using IdStringList for bel names
This uses the new IdStringList API to store bel names for the ECP5. Note
that other arches and the GUI do not yet build with this
proof-of-concept patch.

getBelByName still uses the old implementation and could be more
efficiently implemented with further development.

Signed-off-by: D. Shah <dave@ds0.me>
2021-02-02 17:00:12 +00:00

625 lines
27 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells
* on a critical path
*
* Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
* https://www.cerc.utexas.edu/utda/publications/C205.pdf
*
* Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles,
* and deal with the fact that not every cell on the crit path may be swappable.
*/
#include "timing_opt.h"
#include <boost/range/adaptor/reversed.hpp>
#include <queue>
#include "nextpnr.h"
#include "timing.h"
#include "util.h"
namespace std {
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString>>
{
std::size_t operator()(
const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString> &idp) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.second));
return seed;
}
};
template <> struct hash<std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId>>
{
std::size_t operator()(const std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<int>()(idp.first));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
return seed;
}
};
#if !defined(ARCH_GENERIC) && !defined(ARCH_GOWIN)
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId>>
{
std::size_t
operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
return seed;
}
};
#endif
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
class TimingOptimiser
{
public:
TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg){};
bool optimise()
{
log_info("Running timing-driven placement optimisation...\n");
ctx->lock();
if (ctx->verbose)
timing_analysis(ctx, false, true, false, false);
for (int i = 0; i < 30; i++) {
log_info(" Iteration %d...\n", i);
get_criticalities(ctx, &net_crit);
setup_delay_limits();
auto crit_paths = find_crit_paths(0.98, 50000);
for (auto &path : crit_paths)
optimise_path(path);
if (ctx->verbose)
timing_analysis(ctx, false, true, false, false);
}
ctx->unlock();
return true;
}
private:
void setup_delay_limits()
{
max_net_delay.clear();
for (auto net : sorted(ctx->nets)) {
NetInfo *ni = net.second;
for (auto usr : ni->users) {
max_net_delay[std::make_pair(usr.cell->name, usr.port)] = std::numeric_limits<delay_t>::max();
}
if (!net_crit.count(net.first))
continue;
auto &nc = net_crit.at(net.first);
if (nc.slack.empty())
continue;
for (size_t i = 0; i < ni->users.size(); i++) {
auto &usr = ni->users.at(i);
delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr);
if (nc.max_path_length != 0) {
max_net_delay[std::make_pair(usr.cell->name, usr.port)] =
net_delay + ((nc.slack.at(i) - nc.cd_worst_slack) / 10);
}
}
}
}
bool check_cell_delay_limits(CellInfo *cell)
{
for (const auto &port : cell->ports) {
int nc;
if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE)
continue;
NetInfo *net = port.second.net;
if (net == nullptr)
continue;
if (port.second.type == PORT_IN) {
if (net->driver.cell == nullptr || net->driver.cell->bel == BelId())
continue;
for (auto user : net->users) {
if (user.cell == cell && user.port == port.first) {
if (ctx->predictDelay(net, user) >
1.1 * max_net_delay.at(std::make_pair(cell->name, port.first)))
return false;
}
}
} else if (port.second.type == PORT_OUT) {
for (auto user : net->users) {
// This could get expensive for high-fanout nets??
BelId dstBel = user.cell->bel;
if (dstBel == BelId())
continue;
if (ctx->predictDelay(net, user) >
1.1 * max_net_delay.at(std::make_pair(user.cell->name, user.port))) {
return false;
}
}
}
}
return true;
}
BelId cell_swap_bel(CellInfo *cell, BelId newBel)
{
BelId oldBel = cell->bel;
if (oldBel == newBel)
return oldBel;
CellInfo *other_cell = ctx->getBoundBelCell(newBel);
NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK);
ctx->unbindBel(oldBel);
if (other_cell != nullptr) {
ctx->unbindBel(newBel);
ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
}
ctx->bindBel(newBel, cell, STRENGTH_WEAK);
return oldBel;
}
// Check that a series of moves are both legal and remain within maximum delay bounds
// Moves are specified as a vector of pairs <cell, oldBel>
bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true)
{
for (auto &entry : move) {
if (!ctx->isBelLocationValid(entry.first->bel))
return false;
if (!ctx->isBelLocationValid(entry.second))
return false;
if (!check_delays)
continue;
if (!check_cell_delay_limits(entry.first))
return false;
// We might have swapped another cell onto the original bel. Check this for max delay violations
// too
CellInfo *swapped = ctx->getBoundBelCell(entry.second);
if (swapped != nullptr && !check_cell_delay_limits(swapped))
return false;
}
return true;
}
int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap)
{
BelId curr = cell->bel;
Loc curr_loc = ctx->getBelLocation(curr);
int found_count = 0;
cell_neighbour_bels[cell->name] = std::unordered_set<BelId>{};
for (int dy = -d; dy <= d; dy++) {
for (int dx = -d; dx <= d; dx++) {
// Go through all the Bels at this location
// First, find all bels of the correct type that are either unbound or bound normally
// Strongly bound bels are ignored
// FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
std::vector<BelId> free_bels_at_loc;
std::vector<BelId> bound_bels_at_loc;
for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
if (!ctx->isValidBelForCellType(cell->type, bel))
continue;
CellInfo *bound = ctx->getBoundBelCell(bel);
if (bound == nullptr) {
free_bels_at_loc.push_back(bel);
} else if (bound->belStrength <= STRENGTH_WEAK && bound->constr_parent == nullptr &&
bound->constr_children.empty()) {
bound_bels_at_loc.push_back(bel);
}
}
BelId candidate;
while (!free_bels_at_loc.empty() || !bound_bels_at_loc.empty()) {
BelId try_bel;
if (!free_bels_at_loc.empty()) {
int try_idx = ctx->rng(int(free_bels_at_loc.size()));
try_bel = free_bels_at_loc.at(try_idx);
free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx);
} else {
int try_idx = ctx->rng(int(bound_bels_at_loc.size()));
try_bel = bound_bels_at_loc.at(try_idx);
bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx);
}
if (bel_candidate_cells.count(try_bel) && !allow_swap) {
// Overlap is only allowed if it is with the previous cell (this is handled by removing those
// edges in the graph), or if allow_swap is true to deal with cases where overlap means few
// neighbours are identified
if (bel_candidate_cells.at(try_bel).size() > 1 ||
(bel_candidate_cells.at(try_bel).size() == 1 &&
*(bel_candidate_cells.at(try_bel).begin()) != prev_cell))
continue;
}
// TODO: what else to check here?
candidate = try_bel;
break;
}
if (candidate != BelId()) {
cell_neighbour_bels[cell->name].insert(candidate);
bel_candidate_cells[candidate].insert(cell->name);
// Work out if we need to delete any overlap
std::vector<IdString> overlap;
for (auto other : bel_candidate_cells[candidate])
if (other != cell->name && other != prev_cell)
overlap.push_back(other);
if (overlap.size() > 0)
NPNR_ASSERT(allow_swap);
for (auto ov : overlap) {
bel_candidate_cells[candidate].erase(ov);
cell_neighbour_bels[ov].erase(candidate);
}
}
}
}
return found_count;
}
std::vector<std::vector<PortRef *>> find_crit_paths(float crit_thresh, size_t max_count)
{
std::vector<std::vector<PortRef *>> crit_paths;
std::vector<std::pair<NetInfo *, int>> crit_nets;
std::vector<IdString> netnames;
std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames),
[](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv) { return kv.first; });
ctx->sorted_shuffle(netnames);
for (auto net : netnames) {
if (crit_nets.size() >= max_count)
break;
if (!net_crit.count(net))
continue;
auto crit_user = std::max_element(net_crit[net].criticality.begin(), net_crit[net].criticality.end());
if (*crit_user > crit_thresh)
crit_nets.push_back(
std::make_pair(ctx->nets[net].get(), crit_user - net_crit[net].criticality.begin()));
}
auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t {
NPNR_ASSERT(port.net != nullptr);
for (size_t i = 0; i < port.net->users.size(); i++) {
auto &usr = port.net->users.at(i);
if (usr.cell == cell && usr.port == port.name)
return i;
}
NPNR_ASSERT_FALSE("port user not found on net");
};
std::unordered_set<PortRef *> used_ports;
for (auto crit_net : crit_nets) {
if (used_ports.count(&(crit_net.first->users.at(crit_net.second))))
continue;
std::deque<PortRef *> crit_path;
// FIXME: This will fail badly on combinational loops
// Iterate backwards following greatest criticality
NetInfo *back_cursor = crit_net.first;
while (back_cursor != nullptr) {
float max_crit = 0;
std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
CellInfo *cell = back_cursor->driver.cell;
if (cell == nullptr)
break;
for (auto port : cell->ports) {
if (port.second.type != PORT_IN)
continue;
NetInfo *pn = port.second.net;
if (pn == nullptr)
continue;
if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
continue;
int ccount;
DelayInfo combDelay;
TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
if (tpclass != TMG_COMB_INPUT)
continue;
bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay);
if (!is_path)
continue;
size_t user_idx = port_user_index(cell, port.second);
float usr_crit = net_crit.at(pn->name).criticality.at(user_idx);
if (used_ports.count(&(pn->users.at(user_idx))))
continue;
if (usr_crit >= max_crit) {
max_crit = usr_crit;
crit_sink = std::make_pair(pn, user_idx);
}
}
if (crit_sink.first != nullptr) {
crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second)));
used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
}
back_cursor = crit_sink.first;
}
// Iterate forwards following greatest criticiality
PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second));
while (fwd_cursor != nullptr) {
crit_path.push_back(fwd_cursor);
float max_crit = 0;
std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
CellInfo *cell = fwd_cursor->cell;
for (auto port : cell->ports) {
if (port.second.type != PORT_OUT)
continue;
NetInfo *pn = port.second.net;
if (pn == nullptr)
continue;
if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
continue;
int ccount;
DelayInfo combDelay;
TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT)
continue;
bool is_path = ctx->getCellDelay(cell, fwd_cursor->port, port.first, combDelay);
if (!is_path)
continue;
auto &crits = net_crit.at(pn->name).criticality;
for (size_t i = 0; i < crits.size(); i++) {
if (used_ports.count(&(pn->users.at(i))))
continue;
if (crits.at(i) >= max_crit) {
max_crit = crits.at(i);
crit_sink = std::make_pair(pn, i);
}
}
}
if (crit_sink.first != nullptr) {
fwd_cursor = &(crit_sink.first->users.at(crit_sink.second));
used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
} else {
fwd_cursor = nullptr;
}
}
std::vector<PortRef *> crit_path_vec;
std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec));
crit_paths.push_back(crit_path_vec);
}
return crit_paths;
}
void optimise_path(std::vector<PortRef *> &path)
{
path_cells.clear();
cell_neighbour_bels.clear();
bel_candidate_cells.clear();
if (ctx->debug)
log_info("Optimising the following path: \n");
auto front_port = path.front();
NetInfo *front_net = front_port->cell->ports.at(front_port->port).net;
if (front_net != nullptr && front_net->driver.cell != nullptr) {
auto front_cell = front_net->driver.cell;
if (front_cell->belStrength <= STRENGTH_WEAK && cfg.cellTypes.count(front_cell->type) &&
front_cell->constr_parent == nullptr && front_cell->constr_children.empty()) {
path_cells.push_back(front_cell->name);
}
}
for (auto port : path) {
if (ctx->debug) {
float crit = 0;
NetInfo *pn = port->cell->ports.at(port->port).net;
if (net_crit.count(pn->name) && !net_crit.at(pn->name).criticality.empty())
for (size_t i = 0; i < pn->users.size(); i++)
if (pn->users.at(i).cell == port->cell && pn->users.at(i).port == port->port)
crit = net_crit.at(pn->name).criticality.at(i);
log_info(" %s.%s at %s crit %0.02f\n", port->cell->name.c_str(ctx), port->port.c_str(ctx),
ctx->nameOfBel(port->cell->bel), crit);
}
if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end())
continue;
if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type) ||
port->cell->constr_parent != nullptr || !port->cell->constr_children.empty())
continue;
if (ctx->debug)
log_info(" can move\n");
path_cells.push_back(port->cell->name);
}
if (path_cells.size() < 2) {
if (ctx->debug) {
log_info("Too few moveable cells; skipping path\n");
log_break();
}
return;
}
// Calculate original delay before touching anything
delay_t original_delay = 0;
for (size_t i = 0; i < path.size(); i++) {
NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
for (size_t j = 0; j < pn->users.size(); j++) {
auto &usr = pn->users.at(j);
if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
original_delay += ctx->predictDelay(pn, usr);
break;
}
}
}
IdString last_cell;
const int d = 2; // FIXME: how to best determine d
for (auto cell : path_cells) {
// FIXME: when should we allow swapping due to a lack of candidates
find_neighbours(ctx->cells[cell].get(), last_cell, d, false);
last_cell = cell;
}
if (ctx->debug) {
for (auto cell : path_cells) {
log_info("Candidate neighbours for %s (%s):\n", cell.c_str(ctx), ctx->nameOfBel(ctx->cells[cell]->bel));
for (auto neigh : cell_neighbour_bels.at(cell)) {
log_info(" %s\n", ctx->nameOfBel(neigh));
}
}
}
// Actual BFS path optimisation algorithm
std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs;
std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>> backtrace;
std::queue<std::pair<int, BelId>> visit;
std::unordered_set<std::pair<int, BelId>> to_visit;
for (auto startbel : cell_neighbour_bels[path_cells.front()]) {
// Swap for legality check
CellInfo *cell = ctx->cells.at(path_cells.front()).get();
BelId origBel = cell_swap_bel(cell, startbel);
std::vector<std::pair<CellInfo *, BelId>> move{std::make_pair(cell, origBel)};
if (acceptable_move(move)) {
auto entry = std::make_pair(0, startbel);
visit.push(entry);
cumul_costs[path_cells.front()][startbel] = 0;
}
// Swap back
cell_swap_bel(cell, origBel);
}
while (!visit.empty()) {
auto entry = visit.front();
visit.pop();
auto cellname = path_cells.at(entry.first);
if (entry.first == int(path_cells.size()) - 1)
continue;
std::vector<std::pair<CellInfo *, BelId>> move;
// Apply the entire backtrace for accurate legality and delay checks
// This is probably pretty expensive (but also probably pales in comparison to the number of swaps
// SA will make...)
std::vector<std::pair<IdString, BelId>> route_to_entry;
auto cursor = std::make_pair(cellname, entry.second);
route_to_entry.push_back(cursor);
while (backtrace.count(cursor)) {
cursor = backtrace.at(cursor);
route_to_entry.push_back(cursor);
}
for (auto rt_entry : boost::adaptors::reverse(route_to_entry)) {
CellInfo *cell = ctx->cells.at(rt_entry.first).get();
BelId origBel = cell_swap_bel(cell, rt_entry.second);
move.push_back(std::make_pair(cell, origBel));
}
// Have a look at where we can travel from here
for (auto neighbour : cell_neighbour_bels.at(path_cells.at(entry.first + 1))) {
// Edges between overlapping bels are deleted
if (neighbour == entry.second)
continue;
// Experimentally swap the next path cell onto the neighbour bel we are trying
IdString ncname = path_cells.at(entry.first + 1);
CellInfo *next_cell = ctx->cells.at(ncname).get();
BelId origBel = cell_swap_bel(next_cell, neighbour);
move.push_back(std::make_pair(next_cell, origBel));
delay_t total_delay = 0;
for (size_t i = 0; i < path.size(); i++) {
NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
for (size_t j = 0; j < pn->users.size(); j++) {
auto &usr = pn->users.at(j);
if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
total_delay += ctx->predictDelay(pn, usr);
break;
}
}
if (path.at(i)->cell == next_cell)
break;
}
// First, check if the move is actually worthwhile from a delay point of view before the expensive
// legality check
if (!cumul_costs.count(ncname) || !cumul_costs.at(ncname).count(neighbour) ||
cumul_costs.at(ncname).at(neighbour) > total_delay) {
// Now check that the swaps we have made to get here are legal and meet max delay requirements
if (acceptable_move(move)) {
cumul_costs[ncname][neighbour] = total_delay;
backtrace[std::make_pair(ncname, neighbour)] = std::make_pair(cellname, entry.second);
if (!to_visit.count(std::make_pair(entry.first + 1, neighbour)))
visit.push(std::make_pair(entry.first + 1, neighbour));
}
}
// Revert the experimental swap
cell_swap_bel(move.back().first, move.back().second);
move.pop_back();
}
// Revert move by swapping cells back to their original order
// Execute swaps in reverse order to how we made them originally
for (auto move_entry : boost::adaptors::reverse(move)) {
cell_swap_bel(move_entry.first, move_entry.second);
}
}
// Did we find a solution??
if (cumul_costs.count(path_cells.back())) {
// Find the end position with the lowest total delay
auto &end_options = cumul_costs.at(path_cells.back());
auto lowest = std::min_element(end_options.begin(), end_options.end(),
[](const std::pair<BelId, delay_t> &a, const std::pair<BelId, delay_t> &b) {
return a.second < b.second;
});
NPNR_ASSERT(lowest != end_options.end());
std::vector<std::pair<IdString, BelId>> route_to_solution;
auto cursor = std::make_pair(path_cells.back(), lowest->first);
route_to_solution.push_back(cursor);
while (backtrace.count(cursor)) {
cursor = backtrace.at(cursor);
route_to_solution.push_back(cursor);
}
if (ctx->debug)
log_info("Found a solution with cost %.02f ns (existing path %.02f ns)\n",
ctx->getDelayNS(lowest->second), ctx->getDelayNS(original_delay));
for (auto rt_entry : boost::adaptors::reverse(route_to_solution)) {
CellInfo *cell = ctx->cells.at(rt_entry.first).get();
cell_swap_bel(cell, rt_entry.second);
if (ctx->debug)
log_info(" %s at %s\n", rt_entry.first.c_str(ctx), ctx->nameOfBel(rt_entry.second));
}
} else {
if (ctx->debug)
log_info("Solution was not found\n");
}
if (ctx->debug)
log_break();
}
// Current candidate Bels for cells (linked in both direction>
std::vector<IdString> path_cells;
std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels;
std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells;
// Map cell ports to net delay limit
std::unordered_map<std::pair<IdString, IdString>, delay_t> max_net_delay;
// Criticality data from timing analysis
NetCriticalityMap net_crit;
Context *ctx;
TimingOptCfg cfg;
};
bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx, cfg).optimise(); }
NEXTPNR_NAMESPACE_END