543 lines
24 KiB
C++
543 lines
24 KiB
C++
/*
|
|
* nextpnr -- Next Generation Place and Route
|
|
*
|
|
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells
|
|
* on a critical path
|
|
*
|
|
* Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
|
|
* https://www.cerc.utexas.edu/utda/publications/C205.pdf
|
|
*
|
|
* Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles,
|
|
* and deal with the fact that not every cell on the crit path may be swappable.
|
|
*/
|
|
|
|
#include "timing.h"
|
|
#include "timing_opt.h"
|
|
#include "nextpnr.h"
|
|
#include "util.h"
|
|
#include <boost/range/adaptor/reversed.hpp>
|
|
#include <queue>
|
|
|
|
namespace std {
|
|
|
|
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString>>
|
|
{
|
|
std::size_t operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString> &idp) const noexcept
|
|
{
|
|
std::size_t seed = 0;
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.second));
|
|
return seed;
|
|
}
|
|
};
|
|
|
|
template <> struct hash<std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId>>
|
|
{
|
|
std::size_t operator()(const std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
|
|
{
|
|
std::size_t seed = 0;
|
|
boost::hash_combine(seed, hash<int>()(idp.first));
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
|
|
return seed;
|
|
}
|
|
};
|
|
|
|
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId>>
|
|
{
|
|
std::size_t operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
|
|
{
|
|
std::size_t seed = 0;
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
|
|
return seed;
|
|
}
|
|
};
|
|
}
|
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
class TimingOptimiser
|
|
{
|
|
public:
|
|
TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg) {};
|
|
bool optimise() {
|
|
log_info("Running timing-driven placement optimisation...\n");
|
|
#if 1
|
|
timing_analysis(ctx, false, true, ctx->debug, false);
|
|
#endif
|
|
for (int i = 0; i < 20; i++) {
|
|
log_info(" Iteration %d...\n", i);
|
|
get_criticalities(ctx, &net_crit);
|
|
setup_delay_limits();
|
|
auto crit_paths = find_crit_paths(0.98, 1000);
|
|
for (auto &path : crit_paths)
|
|
optimise_path(path);
|
|
#if 1
|
|
timing_analysis(ctx, false, true, ctx->debug, false);
|
|
#endif
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// Ratio of available to already-candidates to begin borrowing
|
|
const float borrow_thresh = 0.2;
|
|
|
|
void setup_delay_limits() {
|
|
max_net_delay.clear();
|
|
for (auto net : sorted(ctx->nets)) {
|
|
NetInfo *ni = net.second;
|
|
for (auto usr : ni->users) {
|
|
max_net_delay[std::make_pair(usr.cell->name, usr.port)]
|
|
= std::numeric_limits<delay_t>::max();
|
|
}
|
|
if (!net_crit.count(net.first))
|
|
continue;
|
|
auto &nc = net_crit.at(net.first);
|
|
if (nc.slack.empty())
|
|
continue;
|
|
for (size_t i = 0; i < ni->users.size(); i++) {
|
|
auto &usr = ni->users.at(i);
|
|
delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr);
|
|
if (nc.max_path_length != 0) {
|
|
max_net_delay[std::make_pair(usr.cell->name, usr.port)]
|
|
= net_delay + ((nc.slack.at(i) - nc.cd_worst_slack) / nc.max_path_length);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool check_cell_delay_limits(CellInfo *cell) {
|
|
for (const auto &port : cell->ports) {
|
|
int nc;
|
|
if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE)
|
|
continue;
|
|
NetInfo *net = port.second.net;
|
|
if (net == nullptr)
|
|
continue;
|
|
if (port.second.type == PORT_IN) {
|
|
if (net->driver.cell == nullptr || net->driver.cell->bel == BelId())
|
|
continue;
|
|
BelId srcBel = net->driver.cell->bel;
|
|
if (ctx->estimateDelay(ctx->getBelPinWire(srcBel, net->driver.port),
|
|
ctx->getBelPinWire(cell->bel, port.first)) > max_net_delay.at(std::make_pair(cell->name, port.first)))
|
|
return false;
|
|
} else if (port.second.type == PORT_OUT) {
|
|
for (auto user : net->users) {
|
|
// This could get expensive for high-fanout nets??
|
|
BelId dstBel = user.cell->bel;
|
|
if (dstBel == BelId())
|
|
continue;
|
|
if (ctx->estimateDelay(ctx->getBelPinWire(cell->bel, port.first),
|
|
ctx->getBelPinWire(dstBel, user.port)) > max_net_delay.at(std::make_pair(user.cell->name, user.port)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BelId cell_swap_bel(CellInfo *cell, BelId newBel) {
|
|
BelId oldBel = cell->bel;
|
|
CellInfo *other_cell = ctx->getBoundBelCell(newBel);
|
|
NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK);
|
|
ctx->unbindBel(oldBel);
|
|
if (other_cell != nullptr) {
|
|
ctx->unbindBel(newBel);
|
|
ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
|
|
}
|
|
ctx->bindBel(newBel, cell, STRENGTH_WEAK);
|
|
return oldBel;
|
|
}
|
|
|
|
// Check that a series of moves are both legal and remain within maximum delay bounds
|
|
// Moves are specified as a vector of pairs <cell, oldBel>
|
|
bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true) {
|
|
for (auto &entry : move) {
|
|
if (!ctx->isBelLocationValid(entry.first->bel))
|
|
return false;
|
|
if (!ctx->isBelLocationValid(entry.second))
|
|
return false;
|
|
if (!check_delays)
|
|
continue;
|
|
if (!check_cell_delay_limits(entry.first))
|
|
return false;
|
|
// We might have swapped another cell onto the original bel. Check this for max delay violations
|
|
// too
|
|
CellInfo *swapped = ctx->getBoundBelCell(entry.second);
|
|
if (swapped != nullptr && !check_cell_delay_limits(swapped))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap) {
|
|
BelId curr = cell->bel;
|
|
Loc curr_loc = ctx->getBelLocation(curr);
|
|
int found_count = 0;
|
|
for (int dy = -d; dy <= d; dy++) {
|
|
for (int dx = -d; dx <= d; dx++) {
|
|
// Go through all the Bels at this location
|
|
// First, find all bels of the correct type that are either unbound or bound normally
|
|
// Strongly bound bels are ignored
|
|
// FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
|
|
std::vector<BelId> free_bels_at_loc;
|
|
std::vector<BelId> bound_bels_at_loc;
|
|
for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
|
|
if (ctx->getBelType(bel) != cell->type)
|
|
continue;
|
|
CellInfo *bound = ctx->getBoundBelCell(bel);
|
|
if (bound == nullptr) {
|
|
free_bels_at_loc.push_back(bel);
|
|
} else if (bound->belStrength <= STRENGTH_WEAK) {
|
|
bound_bels_at_loc.push_back(bel);
|
|
}
|
|
}
|
|
BelId candidate;
|
|
|
|
while (!free_bels_at_loc.empty() && !bound_bels_at_loc.empty()) {
|
|
BelId try_bel;
|
|
if (!free_bels_at_loc.empty()) {
|
|
int try_idx = ctx->rng(int(free_bels_at_loc.size()));
|
|
try_bel = free_bels_at_loc.at(try_idx);
|
|
free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx);
|
|
} else {
|
|
int try_idx = ctx->rng(int(bound_bels_at_loc.size()));
|
|
try_bel = bound_bels_at_loc.at(try_idx);
|
|
bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx);
|
|
}
|
|
if (bel_candidate_cells.count(try_bel) && !allow_swap) {
|
|
// Overlap is only allowed if it is with the previous cell (this is handled by removing those
|
|
// edges in the graph), or if allow_swap is true to deal with cases where overlap means few neighbours
|
|
// are identified
|
|
if (bel_candidate_cells.at(try_bel).size() > 1 || (bel_candidate_cells.at(try_bel).size() == 0 ||
|
|
*(bel_candidate_cells.at(try_bel).begin()) != prev_cell))
|
|
continue;
|
|
}
|
|
// TODO: what else to check here?
|
|
candidate = try_bel;
|
|
break;
|
|
}
|
|
|
|
if (candidate != BelId()) {
|
|
cell_neighbour_bels[cell->name].insert(candidate);
|
|
bel_candidate_cells[candidate].insert(cell->name);
|
|
// Work out if we need to delete any overlap
|
|
std::vector<IdString> overlap;
|
|
for (auto other : bel_candidate_cells[candidate])
|
|
if (other != cell->name && other != prev_cell)
|
|
overlap.push_back(other);
|
|
if (overlap.size() > 0)
|
|
NPNR_ASSERT(allow_swap);
|
|
for (auto ov : overlap) {
|
|
bel_candidate_cells[candidate].erase(ov);
|
|
cell_neighbour_bels[ov].erase(candidate);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found_count;
|
|
}
|
|
|
|
std::vector<std::vector<PortRef*>> find_crit_paths(float crit_thresh, size_t max_count) {
|
|
std::vector<std::vector<PortRef*>> crit_paths;
|
|
std::vector<std::pair<NetInfo *, int>> crit_nets;
|
|
std::vector<IdString> netnames;
|
|
std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames),
|
|
[](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv){
|
|
return kv.first;
|
|
});
|
|
ctx->sorted_shuffle(netnames);
|
|
for (auto net : netnames) {
|
|
if (crit_nets.size() >= max_count)
|
|
break;
|
|
if (!net_crit.count(net))
|
|
continue;
|
|
auto crit_user = std::max_element(net_crit[net].criticality.begin(),
|
|
net_crit[net].criticality.end());
|
|
if (*crit_user > crit_thresh)
|
|
crit_nets.push_back(std::make_pair(ctx->nets[net].get(), crit_user - net_crit[net].criticality.begin()));
|
|
}
|
|
|
|
auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t {
|
|
NPNR_ASSERT(port.net != nullptr);
|
|
for (size_t i = 0; i < port.net->users.size(); i++) {
|
|
auto &usr = port.net->users.at(i);
|
|
if (usr.cell == cell && usr.port == port.name)
|
|
return i;
|
|
}
|
|
NPNR_ASSERT_FALSE("port user not found on net");
|
|
};
|
|
|
|
for (auto crit_net : crit_nets) {
|
|
std::deque<PortRef*> crit_path;
|
|
|
|
// FIXME: This will fail badly on combinational loops
|
|
|
|
// Iterate backwards following greatest criticality
|
|
NetInfo* back_cursor = crit_net.first;
|
|
while (back_cursor != nullptr) {
|
|
float max_crit = 0;
|
|
std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
|
|
CellInfo *cell = back_cursor->driver.cell;
|
|
if (cell == nullptr)
|
|
break;
|
|
for (auto port : cell->ports) {
|
|
if (port.second.type != PORT_IN)
|
|
continue;
|
|
NetInfo *pn = port.second.net;
|
|
if (pn == nullptr)
|
|
continue;
|
|
if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
|
|
continue;
|
|
int ccount;
|
|
DelayInfo combDelay;
|
|
TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
|
|
if (tpclass != TMG_COMB_INPUT)
|
|
continue;
|
|
bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay);
|
|
if (!is_path)
|
|
continue;
|
|
size_t user_idx = port_user_index(cell, port.second);
|
|
float usr_crit = net_crit.at(pn->name).criticality.at(user_idx);
|
|
if (usr_crit >= max_crit) {
|
|
max_crit = usr_crit;
|
|
crit_sink = std::make_pair(pn, user_idx);
|
|
}
|
|
}
|
|
|
|
if (crit_sink.first != nullptr) {
|
|
crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second)));
|
|
}
|
|
back_cursor = crit_sink.first;
|
|
}
|
|
// Iterate forwards following greatest criticiality
|
|
PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second));
|
|
while (fwd_cursor != nullptr) {
|
|
crit_path.push_back(fwd_cursor);
|
|
float max_crit = 0;
|
|
std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
|
|
CellInfo *cell = fwd_cursor->cell;
|
|
for (auto port : cell->ports) {
|
|
if (port.second.type != PORT_OUT)
|
|
continue;
|
|
NetInfo *pn = port.second.net;
|
|
if (pn == nullptr)
|
|
continue;
|
|
if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
|
|
continue;
|
|
int ccount;
|
|
DelayInfo combDelay;
|
|
TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
|
|
if (tpclass != TMG_COMB_OUTPUT)
|
|
continue;
|
|
auto &crits = net_crit.at(pn->name).criticality;
|
|
auto most_crit_usr = std::max_element(crits.begin(), crits.end());
|
|
if (*most_crit_usr >= max_crit) {
|
|
max_crit = *most_crit_usr;
|
|
crit_sink = std::make_pair(pn, std::distance(crits.begin(), most_crit_usr));
|
|
}
|
|
}
|
|
if (crit_sink.first != nullptr) {
|
|
fwd_cursor = &(crit_sink.first->users.at(crit_sink.second));
|
|
} else {
|
|
fwd_cursor = nullptr;
|
|
}
|
|
}
|
|
|
|
std::vector<PortRef*> crit_path_vec;
|
|
std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec));
|
|
crit_paths.push_back(crit_path_vec);
|
|
}
|
|
|
|
return crit_paths;
|
|
}
|
|
|
|
void optimise_path(std::vector<PortRef*> &path) {
|
|
path_cells.clear();
|
|
cell_neighbour_bels.clear();
|
|
bel_candidate_cells.clear();
|
|
if (ctx->debug)
|
|
log_info("Optimising the following path: \n");
|
|
for (auto port : path) {
|
|
if (ctx->debug)
|
|
log_info(" %s.%s at %s\n", port->cell->name.c_str(ctx), port->port.c_str(ctx), ctx->getBelName(port->cell->bel).c_str(ctx));
|
|
if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end())
|
|
continue;
|
|
if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type))
|
|
continue;
|
|
if (ctx->debug)
|
|
log_info(" can move\n");
|
|
path_cells.push_back(port->cell->name);
|
|
}
|
|
|
|
if (path_cells.empty())
|
|
return;
|
|
|
|
IdString last_cell;
|
|
const int d = 3; // FIXME: how to best determine d
|
|
for (auto cell : path_cells) {
|
|
// FIXME: when should we allow swapping due to a lack of candidates
|
|
find_neighbours(ctx->cells[cell].get(), last_cell, d, false);
|
|
last_cell = cell;
|
|
}
|
|
// Map cells that we will actually modify to the arc we will use for cost
|
|
// calculation
|
|
// for delay calc purposes
|
|
std::unordered_map<IdString, std::pair<PortRef *, PortRef *>> cost_ports;
|
|
PortRef *last_port = nullptr;
|
|
auto pcell = path_cells.begin();
|
|
for (auto port : path) {
|
|
if (port->cell->name == *pcell) {
|
|
cost_ports[*pcell] = std::make_pair(last_port, port);
|
|
pcell++;
|
|
}
|
|
last_port = port;
|
|
}
|
|
|
|
// Actual BFS path optimisation algorithm
|
|
std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs;
|
|
std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>> backtrace;
|
|
std::queue<std::pair<int, BelId>> visit;
|
|
std::unordered_set<std::pair<int, BelId>> to_visit;
|
|
|
|
for (auto startbel : cell_neighbour_bels[path_cells.front()]) {
|
|
auto entry = std::make_pair(0, startbel);
|
|
visit.push(entry);
|
|
cumul_costs[path_cells.front()][startbel] = 0;
|
|
}
|
|
|
|
while(!visit.empty()) {
|
|
auto entry = visit.front();
|
|
visit.pop();
|
|
auto cellname = path_cells.at(entry.first);
|
|
if (entry.first == int(path_cells.size()) - 1)
|
|
continue;
|
|
std::vector<std::pair<CellInfo *, BelId>> move;
|
|
// Apply the entire backtrace for accurate legality and delay checks
|
|
// This is probably pretty expensive (but also probably pales in comparison to the number of swaps
|
|
// SA will make...)
|
|
std::vector<std::pair<IdString, BelId>> route_to_entry;
|
|
auto cursor = std::make_pair(cellname, entry.second);
|
|
route_to_entry.push_back(cursor);
|
|
while (backtrace.count(cursor)) {
|
|
cursor = backtrace.at(cursor);
|
|
route_to_entry.push_back(cursor);
|
|
}
|
|
for (auto rt_entry : boost::adaptors::reverse(route_to_entry)) {
|
|
CellInfo *cell = ctx->cells.at(rt_entry.first).get();
|
|
BelId origBel = cell_swap_bel(cell, rt_entry.second);
|
|
move.push_back(std::make_pair(cell, origBel));
|
|
}
|
|
|
|
delay_t cdelay = cumul_costs[cellname][entry.second];
|
|
|
|
// Have a look at where we can travel from here
|
|
for (auto neighbour : cell_neighbour_bels.at(path_cells.at(entry.first + 1))) {
|
|
// Edges between overlapping bels are deleted
|
|
if (neighbour == entry.second)
|
|
continue;
|
|
// Experimentally swap the next path cell onto the neighbour bel we are trying
|
|
IdString ncname = path_cells.at(entry.first + 1);
|
|
CellInfo *next_cell = ctx->cells.at(ncname).get();
|
|
BelId origBel = cell_swap_bel(next_cell, neighbour);
|
|
move.push_back(std::make_pair(next_cell, origBel));
|
|
|
|
// Check the new cumulative delay
|
|
auto port_pair = cost_ports.at(ncname);
|
|
delay_t edge_delay = ctx->estimateDelay(ctx->getBelPinWire(port_pair.first->cell->bel, port_pair.first->port),
|
|
ctx->getBelPinWire(port_pair.second->cell->bel, port_pair.second->port));
|
|
delay_t total_delay = cdelay + edge_delay;
|
|
// First, check if the move is actually worthwhile from a delay point of view before the expensive
|
|
// legality check
|
|
if (!cumul_costs.count(ncname) || !cumul_costs.at(ncname).count(neighbour)
|
|
|| cumul_costs.at(ncname).at(neighbour) > total_delay) {
|
|
// Now check that the swaps we have made to get here are legal and meet max delay requirements
|
|
if (acceptable_move(move)) {
|
|
cumul_costs[ncname][neighbour] = total_delay;
|
|
backtrace[std::make_pair(ncname, neighbour)] = std::make_pair(cellname, entry.second);
|
|
if (!to_visit.count(std::make_pair(entry.first + 1, neighbour)))
|
|
visit.push(std::make_pair(entry.first + 1, neighbour));
|
|
}
|
|
}
|
|
// Revert the experimental swap
|
|
cell_swap_bel(move.back().first, move.back().second);
|
|
move.pop_back();
|
|
}
|
|
|
|
// Revert move by swapping cells back to their original order
|
|
// Execute swaps in reverse order to how we made them originally
|
|
for (auto move_entry : boost::adaptors::reverse(move)) {
|
|
cell_swap_bel(move_entry.first, move_entry.second);
|
|
}
|
|
}
|
|
|
|
// Did we find a solution??
|
|
if (cumul_costs.count(path_cells.back())) {
|
|
// Find the end position with the lowest total delay
|
|
auto &end_options = cumul_costs.at(path_cells.back());
|
|
auto lowest = std::min_element(end_options.begin(), end_options.end(), [](const std::pair<BelId, delay_t> &a,
|
|
const std::pair<BelId, delay_t> &b) {
|
|
return a.second < b.second;
|
|
});
|
|
NPNR_ASSERT(lowest != end_options.end());
|
|
|
|
std::vector<std::pair<IdString, BelId>> route_to_solution;
|
|
auto cursor = std::make_pair(path_cells.back(), lowest->first);
|
|
route_to_solution.push_back(cursor);
|
|
while (backtrace.count(cursor)) {
|
|
cursor = backtrace.at(cursor);
|
|
route_to_solution.push_back(cursor);
|
|
}
|
|
if (ctx->debug)
|
|
log_info("Found a solution with cost %.02f ns\n", ctx->getDelayNS(lowest->second));
|
|
for (auto rt_entry : boost::adaptors::reverse(route_to_solution)) {
|
|
CellInfo *cell = ctx->cells.at(rt_entry.first).get();
|
|
cell_swap_bel(cell, rt_entry.second);
|
|
if(ctx->debug)
|
|
log_info(" %s at %s\n", rt_entry.first.c_str(ctx), ctx->getBelName(rt_entry.second).c_str(ctx));
|
|
}
|
|
|
|
} else {
|
|
if (ctx->debug)
|
|
log_info("Solution was not found\n");
|
|
}
|
|
if (ctx->debug)
|
|
log_break();
|
|
}
|
|
|
|
// Current candidate Bels for cells (linked in both direction>
|
|
std::vector<IdString> path_cells;
|
|
std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels;
|
|
std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells;
|
|
// Map cell ports to net delay limit
|
|
std::unordered_map<std::pair<IdString, IdString>, delay_t> max_net_delay;
|
|
// Criticality data from timing analysis
|
|
NetCriticalityMap net_crit;
|
|
Context *ctx;
|
|
TimingOptCfg cfg;
|
|
|
|
};
|
|
|
|
bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx, cfg).optimise(); }
|
|
|
|
NEXTPNR_NAMESPACE_END
|