nextpnr/himbaechel/uarch/ng-ultra/ng_ultra.cc
2024-11-26 10:58:39 +01:00

834 lines
34 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* NG-Ultra Architecture Implementation
*
* Copyright (C) 2024 YosysHQ GmbH
*
*/
#include <boost/algorithm/string.hpp>
#include <fstream>
#include <queue>
#include "himbaechel_api.h"
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include "extra_data.h"
#include "placer_heap.h"
#include "himbaechel_helpers.h"
#include "ng_ultra.h"
#include "location_map.h"
#define GEN_INIT_CONSTIDS
#define HIMBAECHEL_CONSTIDS "uarch/ng-ultra/constids.inc"
#include "himbaechel_constids.h"
using namespace NEXTPNR_NAMESPACE_PREFIX ng_ultra;
NEXTPNR_NAMESPACE_BEGIN
NgUltraImpl::~NgUltraImpl(){};
void NgUltraImpl::init_database(Arch *arch)
{
init_uarch_constids(arch);
arch->load_chipdb("ng-ultra/ng-ultra.bin");
arch->set_package("FF-1760");
arch->set_speed_grade("DEFAULT");
}
void NgUltraImpl::init(Context *ctx)
{
HimbaechelAPI::init(ctx);
for (int i=1;i<=8;i++)
for (int j=0;j<20;j++)
gck_per_lobe[i].push_back(GckConfig(BelId()));
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_IOM) {
std::set<IdString> ckg;
IdString bank = tile_name_id(bel.tile);
iom_bels.emplace(bank,bel);
WireId belpin = ctx->getBelPinWire(bel,id_CKO1);
for (auto dh : ctx->getPipsDownhill(belpin)) {
WireId pip_dst = ctx->getPipDstWire(dh);
for (const auto &item : ctx->getWireBelPins(pip_dst)) {
if (boost::contains(ctx->nameOfBel(item.bel),"WFG_C")) {
unused_wfg[item.bel] = tile_name_id(item.bel.tile);
}
else if (boost::contains(ctx->nameOfBel(item.bel),"PLL")) {
ckg.emplace(tile_name_id(item.bel.tile));
unused_pll[item.bel] = tile_name_id(item.bel.tile);
}
}
}
std::pair<IdString,IdString> p;
p.first = *ckg.begin();
if (ckg.size()==2) p.second = *(ckg.begin()++);
bank_to_ckg[bank] = p;
} else if (ctx->getBelType(bel) == id_IOTP) {
if (ctx->getBelName(bel)[1] == ctx->id("D08P_CLK.IOTP")) {
global_capable_bels.emplace(bel,id_P17RI);
} else if (ctx->getBelName(bel)[1] == ctx->id("D09P_CLK.IOTP")) {
global_capable_bels.emplace(bel,id_P19RI);
}
} else if (ctx->getBelType(bel) == id_GCK) {
std::string name = ctx->getBelName(bel)[1].c_str(ctx);
int lobe = std::stoi(name.substr(1,1));
int num = std::stoi(name.substr(4,2).c_str());
gck_per_lobe[lobe][num-1] = GckConfig(bel);
}
locations.emplace(stringf("%s:%s",tile_name(bel.tile).c_str(), ctx->getBelName(bel)[1].c_str(ctx)),bel);
Loc loc = ctx->getBelLocation(bel);
tile_locations.emplace(tile_name(bel.tile).c_str(),Loc(loc.x & 0xfffe, loc.y & 0xfffe, 0));
}
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_DSP) {
WireId cco = ctx->getBelPinWire(bel,id_CCO);
WireId cci;
for (auto dh : ctx->getPipsDownhill(cco)) {
cci = ctx->getPipDstWire(dh);
}
if (cci!=WireId()) {
std::string loc = stringf("%s:%s",tile_name(cci.tile).c_str(), ctx->getWireName(cci)[1].c_str(ctx));
loc.erase(loc.find(".CCI"));
BelId dsp_bel = locations[loc];
dsp_cascade.emplace(dsp_bel, bel);
}
}
}
}
namespace {
// Note: These are per Cell type not Bel type
// Sinks
const dict<IdString,pool<IdString>> fabric_lowskew_sinks = {
// TILE - DFF
{ id_BEYOND_FE, { id_CK, id_L, id_R }},
// { id_DFF, { id_CK }}, // This is part of BEYOND_FE
// TILE - Register file
{ id_RF, { id_WCK }},
{ id_RFSP, { id_WCK }},
{ id_XHRF, { id_WCK1, id_WCK2 }},
{ id_XWRF, { id_WCK1, id_WCK2 }},
{ id_XPRF, { id_WCK1, id_WCK2 }},
// TILE - CDC
{ id_CDC, { id_CK1, id_CK2 }},
{ id_DDE, { id_CK1, id_CK2 }},
{ id_TDE, { id_CK1, id_CK2 }},
{ id_XCDC, { id_CK1, id_CK2 }},
// TILE - FIFO
{ id_FIFO, { id_RCK, id_WCK }},
{ id_XHFIFO, { id_RCK1, id_RCK2, id_WCK1, id_WCK2 }},
{ id_XWFIFO, { id_RCK1, id_RCK2, id_WCK1, id_WCK2 }},
// CGB - RAM
{ id_RAM, { id_ACK, id_BCK }},
// CGB - DSP
{ id_DSP, {id_CK }},
};
const dict<IdString,pool<IdString>> ring_clock_sinks = {
// CKG
{ id_PLL, { id_CLK_CAL, id_FBK, id_REF }},
{ id_WFB, { id_ZI }},
{ id_WFG, { id_ZI }}
};
const dict<IdString,pool<IdString>> ring_over_tile_clock_sinks = {
// IOB
{ id_DFR, { id_CK }},
{ id_DDFR, { id_CK, id_CKF }},
};
// IOB
// { id_IOM, { id_ALCK1, id_ALCK2, id_ALCK3, id_CCK, id_FCK1, id_FCK2, id_FDCK,
// id_LDSCK1, id_LDSCK2, id_LDSCK3, id_SWRX1CK, id_SWRX2CK }},
// HSSL
// { id_CRX, { id_LINK }},
// { id_CTX, { id_LINK }},
// { id_PMA, { id_hssl_clock_i1, id_hssl_clock_i2, id_hssl_clock_i3, id_hssl_clock_i4 },
const dict<IdString,pool<IdString>> tube_clock_sinks = {
// TUBE
{ id_GCK, { id_SI1, id_SI2 }},
};
// Sources
// CKG
const dict<IdString,pool<IdString>> ring_clock_source = {
{ id_IOM, { id_CKO1, id_CKO2 }},
{ id_WFB, { id_ZO }},
{ id_WFG, { id_ZO }},
{ id_PLL, { id_OSC, id_VCO, id_REFO, id_LDFO,
id_CLK_DIV1, id_CLK_DIV2, id_CLK_DIV3, id_CLK_DIV4,
id_CLK_DIVD1, id_CLK_DIVD2, id_CLK_DIVD3, id_CLK_DIVD4, id_CLK_DIVD5,
id_CLK_CAL_DIV }}
};
// TUBE
const dict<IdString,pool<IdString>> tube_clock_source = {
{ id_GCK, { id_SO }},
};
};
const dict<IdString,pool<IdString>>& NgUltraImpl::get_fabric_lowskew_sinks() { return fabric_lowskew_sinks; }
bool NgUltraImpl::is_fabric_lowskew_sink(const PortRef &ref)
{
return fabric_lowskew_sinks.count(ref.cell->type) && fabric_lowskew_sinks.at(ref.cell->type).count(ref.port);
}
bool NgUltraImpl::is_ring_clock_sink(const PortRef &ref)
{
return ring_clock_sinks.count(ref.cell->type) && ring_clock_sinks.at(ref.cell->type).count(ref.port);
}
bool NgUltraImpl::is_ring_over_tile_clock_sink(const PortRef &ref)
{
return ring_over_tile_clock_sinks.count(ref.cell->type) && ring_over_tile_clock_sinks.at(ref.cell->type).count(ref.port);
}
bool NgUltraImpl::is_tube_clock_sink(const PortRef &ref)
{
return tube_clock_sinks.count(ref.cell->type) && tube_clock_sinks.at(ref.cell->type).count(ref.port);
}
bool NgUltraImpl::is_ring_clock_source(const PortRef &ref)
{
return ring_clock_source.count(ref.cell->type) && ring_clock_source.at(ref.cell->type).count(ref.port);
}
bool NgUltraImpl::is_tube_clock_source(const PortRef &ref)
{
return tube_clock_source.count(ref.cell->type) && tube_clock_source.at(ref.cell->type).count(ref.port);
}
const NGUltraTileInstExtraDataPOD *NgUltraImpl::tile_extra_data(int tile) const
{
return reinterpret_cast<const NGUltraTileInstExtraDataPOD *>(ctx->chip_info->tile_insts[tile].extra_data.get());
}
IdString NgUltraImpl::tile_name_id(int tile) const
{
const auto &data = *tile_extra_data(tile);
return IdString(data.name);
}
std::string NgUltraImpl::tile_name(int tile) const
{
return stringf("%s", tile_name_id(tile).c_str(ctx));
}
int NgUltraImpl::tile_lobe(int tile) const
{
const auto &data = *tile_extra_data(tile);
return data.lobe;
}
TileTypeExtra NgUltraImpl::tile_type(int tile) const
{
const auto &data = *tile_extra_data(tile);
return (TileTypeExtra)data.tile_type;
}
bool NgUltraImpl::get_mux_data(BelId bel, IdString port, uint8_t *value)
{
return get_mux_data(ctx->getBelPinWire(bel, port), value);
}
bool NgUltraImpl::get_mux_data(WireId wire, uint8_t *value)
{
for (PipId pip : ctx->getPipsUphill(wire)) {
if (!ctx->getBoundPipNet(pip))
continue;
const auto &pip_data = chip_pip_info(ctx->chip_info, pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pip_data.extra_data.get());
if (!extra_data.name) continue;
if (extra_data.type == PipExtra::PIP_EXTRA_MUX) {
*value = extra_data.input;
return true;
}
}
return false;
}
bool NgUltraImpl::update_bff_to_csc(CellInfo *cell, BelId bel, PipId dst_pip)
{
const auto &bel_data = chip_bel_info(ctx->chip_info, bel);
const auto &extra_data = *reinterpret_cast<const NGUltraBelExtraDataPOD *>(bel_data.extra_data.get());
// Check if CSC mode only if FE is capable
if (extra_data.flags & BEL_EXTRA_FE_CSC) {
WireId dwire = ctx->getPipDstWire(dst_pip);
for (PipId pip : ctx->getPipsDownhill(dwire)) {
if (!ctx->getBoundPipNet(pip))
continue;
for (PipId pip2 : ctx->getPipsDownhill(ctx->getPipDstWire(pip))) {
if (!ctx->getBoundPipNet(pip2))
continue;
IdString dst = ctx->getWireName(ctx->getPipDstWire(pip2))[1];
if (boost::ends_with(dst.c_str(ctx),".DS")) {
cell->setParam(ctx->id("type"), Property("CSC"));
return true;
}
}
}
}
return false;
}
bool NgUltraImpl::update_bff_to_scc(CellInfo *cell, BelId bel, PipId dst_pip)
{
const auto &bel_data = chip_bel_info(ctx->chip_info, bel);
const auto &extra_data = *reinterpret_cast<const NGUltraBelExtraDataPOD *>(bel_data.extra_data.get());
// Check if SCC mode only if FE is capable
if (extra_data.flags & BEL_EXTRA_FE_SCC) {
WireId dwire = ctx->getPipDstWire(dst_pip);
for (PipId pip : ctx->getPipsUphill(dwire)) {
if (!ctx->getBoundPipNet(pip))
continue;
for (PipId pip2 : ctx->getPipsUphill(ctx->getPipSrcWire(pip))) {
if (!ctx->getBoundPipNet(pip2))
continue;
IdString dst = ctx->getWireName(ctx->getPipSrcWire(pip2))[1];
if (boost::starts_with(dst.c_str(ctx),"SYSTEM.ST1")) {
cell->setParam(ctx->id("type"), Property("SCC"));
return true;
}
}
}
}
return false;
}
void NgUltraImpl::postRoute()
{
ctx->assignArchInfo();
log_break();
log_info("Resources spent on routing:\n");
int bff_count = 0, csc_count = 0, scc_count = 0, lut_bypass = 0, fe_new = 0, wfg_bypass = 0, gck_bypass = 0;
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
for (auto &w : ni->wires) {
if (w.second.pip != PipId()) {
const auto &pip_data = chip_pip_info(ctx->chip_info, w.second.pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pip_data.extra_data.get());
if (!extra_data.name) continue;
if (extra_data.type == PipExtra::PIP_EXTRA_BYPASS) {
IdStringList id = ctx->getPipName(w.second.pip);
BelId bel = ctx->getBelByName(IdStringList::concat(id[0], IdString(extra_data.name)));
IdString type = ctx->getBelType(bel);
if (!ctx->getBoundBelCell(bel)) {
CellInfo *cell = ctx->createCell(ctx->id(ctx->nameOfBel(bel)), type);
ctx->bindBel(bel,cell,PlaceStrength::STRENGTH_FIXED);
if (type==id_BEYOND_FE) fe_new++;
}
CellInfo *cell = ctx->getBoundBelCell(bel);
switch(type.index) {
case id_BEYOND_FE.index :
if (extra_data.input==0) {
// set bypass mode for DFF
cell->setParam(ctx->id("type"), Property("BFF"));
cell->params[id_dff_used] = Property(1,1);
// Note: no conflict, CSC and SCC modes are never available on same position
if (update_bff_to_csc(cell, bel, w.second.pip))
csc_count++;
else if(update_bff_to_scc(cell, bel, w.second.pip))
scc_count++;
else
bff_count++;
} else {
lut_bypass++;
cell->params[id_lut_used] = Property(1,1);
cell->params[id_lut_table] = Property(0xaaaa, 16);
}
break;
case id_WFG.index : wfg_bypass++;
cell->type = id_WFB;
break;
case id_GCK.index : gck_bypass++;
cell->setParam(ctx->id("std_mode"), extra_data.input == 0 ? Property("BYPASS") : Property("CSC"));
break;
default:
log_error("Unmaped bel type '%s' for routing\n",type.c_str(ctx));
}
}
}
}
}
if (bff_count)
log_info(" %6d DFFs used as BFF\n", bff_count);
if (csc_count)
log_info(" %6d DFFs used as CSC\n", csc_count);
if (scc_count)
log_info(" %6d DFFs used as SCC\n", scc_count);
if(lut_bypass)
log_info(" %6d LUTs used in bypass mode\n", lut_bypass);
if (fe_new)
log_info(" %6d newly allocated FEs\n", fe_new);
if (wfg_bypass)
log_info(" %6d WFGs used as WFB\n", wfg_bypass);
if (gck_bypass)
log_info(" %6d GCK\n", gck_bypass);
// Handle LUT permutation
for (auto &cell : ctx->cells) {
if (cell.second->type == id_BEYOND_FE) {
// if LUT part used
if (cell.second->params.count(id_lut_table) != 0) {
std::array<std::vector<unsigned>, 4> phys_to_log;
unsigned orig_init = int_or_default(cell.second->params, id_lut_table);
const std::array<IdString, 4> ports{id_I1, id_I2, id_I3, id_I4};
for (unsigned i = 0; i < 4; i++) {
WireId pin_wire = ctx->getBelPinWire(cell.second->bel, ports[i]);
for (PipId pip : ctx->getPipsUphill(pin_wire)) {
if (!ctx->getBoundPipNet(pip))
continue;
const auto &pip_data = chip_pip_info(ctx->chip_info, pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pip_data.extra_data.get());
if (!extra_data.name) continue;
if (extra_data.type == PipExtra::PIP_EXTRA_LUT_PERMUTATION) {
NPNR_ASSERT(extra_data.output == i);
phys_to_log[extra_data.input].push_back(i);
}
}
}
unsigned permuted_init = 0;
for (unsigned i = 0; i < 16; i++) {
unsigned log_idx = 0;
for (unsigned j = 0; j < 4; j++) {
if ((i >> j) & 0x1) {
for (auto log_pin : phys_to_log[j])
log_idx |= (1 << log_pin);
}
}
if ((orig_init >> log_idx) & 0x1)
permuted_init |= (1 << i);
}
cell.second->params[id_lut_table] = Property(permuted_init, 16);
}
}
}
fixup_crossbars();
print_utilisation(ctx);
const ArchArgs &args = ctx->args;
if (args.options.count("bit")) {
write_bitstream_json(args.options.at("bit"));
}
}
void NgUltraImpl::configurePlacerHeap(PlacerHeapCfg &cfg)
{
cfg.beta = 0.5;
cfg.placeAllAtOnce = true;
}
namespace {
template <size_t N> bool check_assign_sig(std::array<const NetInfo*, N> &sig_set, const NetInfo *sig)
{
if (sig == nullptr)
return true;
for (size_t i = 0; i < N; i++)
if (sig_set[i] == sig) {
return true;
} else if (sig_set[i] == nullptr) {
sig_set[i] = sig;
return true;
}
return false;
};
struct SectionFEWorker
{
std::array<const NetInfo *, 2> clk{}; // from local system matrix
std::array<const NetInfo *, 2> reset{}; // from local system matrix
std::array<const NetInfo *, 2> load{}; // from local system matrix
std::array<const NetInfo *, 1> shared{}; // 1 from local system matrix
// Additional R and L can be used from RI network
bool run(const NgUltraImpl *impl,const Context *ctx, BelId bel, CellInfo *cell)
{
Loc loc = ctx->getBelLocation(bel);
for (uint8_t id = 0; id <= BEL_LUT_MAX_Z; id++) {
const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,id)));
if (ff == nullptr)
continue;
if (!check_assign_sig(reset, ff->getPort(id_R))) {
if (!check_assign_sig(shared, ff->getPort(id_R)))
return false;
}
if (!check_assign_sig(load, ff->getPort(id_L))) {
if (!check_assign_sig(shared, ff->getPort(id_L)))
return false;
}
if (!check_assign_sig(clk, ff->getPort(id_CK)))
return false;
}
const auto &bel_data = chip_bel_info(ctx->chip_info, bel);
const auto &extra_data = *reinterpret_cast<const NGUltraBelExtraDataPOD *>(bel_data.extra_data.get());
std::string type = str_or_default(cell->params, ctx->id("type"), "");
if (type=="CSC" && (extra_data.flags & BEL_EXTRA_FE_CSC) == 0) return false; // No CSC capability on FE
if (type=="SCC" && (extra_data.flags & BEL_EXTRA_FE_SCC) == 0) return false; // No SCC capability on FE
if (extra_data.flags & BEL_EXTRA_FE_CSC)
return false;
return true;
}
};
}; // namespace
bool NgUltraImpl::isBelLocationValid(BelId bel, bool explain_invalid) const
{
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell == nullptr) {
return true;
}
if (ctx->getBelType(bel) == id_BEYOND_FE) {
SectionFEWorker worker;
return worker.run(this, ctx, bel, cell);
}
else if (ctx->getBelType(bel).in(id_RF, id_XRF)) {
Loc loc = ctx->getBelLocation(bel);
if (loc.z == BEL_XRF_Z) {
// If we used any of RFs we can not used XRF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z+1)))) return false;
// If we used any FIFO we can not use XRF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z+1)))) return false;
// If we used XFIFO we can not use XRF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
} else {
// If we used XRF we can not use individual RF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XRF_Z)))) return false;
// If we used XFIFO we can not use RF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
int index = loc.z - BEL_RF_Z;
// If we used coresponding FIFO we can not use RF
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z + index)))) return false;
}
}
else if (ctx->getBelType(bel).in(id_FIFO, id_XFIFO)) {
Loc loc = ctx->getBelLocation(bel);
if (loc.z == BEL_XFIFO_Z) {
// If we used any of RFs we can not used XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z+1)))) return false;
// If we used any FIFO we can not use XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z+1)))) return false;
// If we used XFIFO we can not use XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
// If we used any CDC we can not use XFIFO
// NOTE: CDC1 is in S4 and CDC2 is S12
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x-1,loc.y,BEL_CDC_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+1,loc.y,BEL_CDC_Z+1)))) return false;
// If we used XCDC we can not use XFIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XCDC_Z)))) return false;
} else {
// If we used XFIFO we can not use individual FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
// If we used XRF we can not use FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XRF_Z)))) return false;
// If we used XCDC we can not use FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XCDC_Z)))) return false;
int index = loc.z - BEL_FIFO_Z;
// If we used coresponding RF we can not use FIFO
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_RF_Z + index)))) return false;
// If we used coresponding CDC we can not use FIFO
// NOTE: CDC1 is in S4 and CDC2 is S12
int rel = (index == 0) ? -1 : +1;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x + rel,loc.y,BEL_CDC_Z + index)))) return false;
}
}
else if (ctx->getBelType(bel).in(id_CDC, id_XCDC)) {
Loc loc = ctx->getBelLocation(bel);
if (loc.z == BEL_XCDC_Z) {
// If we used any of CDCs we can not used XCDC
// NOTE: CDC1 is in S4 and CDC2 is S12
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x-1,loc.y,BEL_CDC_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+1,loc.y,BEL_CDC_Z+1)))) return false;
// If we used any FIFO we can not use XCDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z)))) return false;
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_FIFO_Z+1)))) return false;
// If we used XFIFO we can not use XCDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x,loc.y,BEL_XFIFO_Z)))) return false;
} else {
// NOTE: CDC1 is in S4 and CDC2 is S12 so we move calculation relative to S8
int index = loc.z - BEL_CDC_Z;
int fix = (index == 0) ? +1 : -1;
// If we used XCDC we can not use individual CDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+fix,loc.y,BEL_XCDC_Z)))) return false;
// If we used XFIFO we can not use CDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+fix,loc.y,BEL_XFIFO_Z)))) return false;
// If we used coresponding FIFO we can not use CDC
if (ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x+fix,loc.y,BEL_FIFO_Z + index)))) return false;
}
}
return true;
}
// Bel bucket functions
IdString NgUltraImpl::getBelBucketForCellType(IdString cell_type) const
{
if (cell_type.in(id_IOP,id_IP,id_OP,id_IOTP,id_ITP,id_OTP))
return ctx->idf("IOP/IOTP");
else if (cell_type.in(id_BFR, id_DFR, id_DDFR))
return ctx->idf("DFR/DDFR");
else if (cell_type.in(id_RF, id_RFSP))
return id_RF;
else if (cell_type.in(id_XHRF, id_XWRF, id_XPRF))
return id_XRF;
else if (cell_type.in(id_DDE, id_TDE, id_CDC, id_BGC, id_GBC))
return id_CDC;
else if (cell_type.in(id_XCDC))
return id_XCDC;
else if (cell_type.in(id_FIFO))
return id_FIFO;
else if (cell_type.in(id_XHFIFO, id_XWFIFO))
return id_XFIFO;
else if (cell_type.in(id_WFB, id_WFG))
return id_WFG;
else
return cell_type;
}
BelBucketId NgUltraImpl::getBelBucketForBel(BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type.in(id_IOP, id_IOTP))
return ctx->idf("IOP/IOTP");
else if (bel_type.in(id_DFR, id_DDFR))
return ctx->idf("DFR/DDFR");
return bel_type;
}
bool NgUltraImpl::isValidBelForCellType(IdString cell_type, BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_IOTP)
return cell_type.in(id_IOP,id_IP,id_OP,id_IOTP,id_ITP,id_OTP);
else if (bel_type == id_IOP)
return cell_type.in(id_IOP,id_IP,id_OP);
else if (bel_type == id_DDFR)
return cell_type.in(id_BFR,id_DFR,id_DDFR);
else if (bel_type == id_DFR)
return cell_type.in(id_BFR,id_DFR);
else if (bel_type == id_RF)
return cell_type.in(id_RF,id_RFSP);
else if (bel_type == id_XRF)
return cell_type.in(id_XHRF,id_XWRF,id_XPRF);
else if (bel_type == id_CDC)
return cell_type.in(id_DDE, id_TDE, id_CDC, id_BGC, id_GBC);
else if (bel_type == id_XCDC)
return cell_type.in(id_XCDC);
else if (bel_type == id_FIFO)
return cell_type.in(id_FIFO);
else if (bel_type == id_XFIFO)
return cell_type.in(id_XHFIFO, id_XWFIFO);
else if (bel_type == id_WFG)
return cell_type.in(id_WFB,id_WFG);
else
return (bel_type == cell_type);
}
bool NgUltraImpl::getChildPlacement(const BaseClusterInfo *cluster, Loc root_loc,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
Loc prev = root_loc;
for (auto child : cluster->constr_children) {
Loc child_loc = if_using_basecluster<Loc>(child, [&](const BaseClusterInfo *child) {
switch(child->constr_z) {
case PLACE_CY_CHAIN : { Loc l = getNextLocInCYChain(prev); prev = l; return l; }
case PLACE_LUT_CHAIN : { Loc l = getNextLocInLUTChain(prev); prev = l; return l; }
case PLACE_DFF_CHAIN : { Loc l = getNextLocInDFFChain(prev); prev = l; return l; }
case PLACE_CY_FE1 ... PLACE_CY_FE4: return getCYFE(root_loc, child->constr_z - PLACE_CY_FE1 );
case PLACE_XLUT_FE1 ... PLACE_XLUT_FE4: return getXLUTFE(root_loc, child->constr_z - PLACE_XLUT_FE1 );
case PLACE_XRF_I1 ... PLACE_XRF_WEA:
return getXRFFE(root_loc, child->constr_z - PLACE_XRF_I1 );
case PLACE_CDC_AI1 ... PLACE_CDC_DDRSTI:
return getCDCFE(root_loc, child->constr_z - PLACE_CDC_AI1 );
case PLACE_FIFO_I1 ... PLACE_FIFO_REQ2:
return getFIFOFE(root_loc, child->constr_z - PLACE_FIFO_I1 );
case PLACE_DSP_CHAIN : { Loc l = getNextLocInDSPChain(this, prev); prev = l; return l; }
default:
Loc result;
result.x = root_loc.x + child->constr_x;
result.y = root_loc.y + child->constr_y;
result.z = child->constr_abs_z ? child->constr_z : (root_loc.z + child->constr_z);
return result;
}
});
BelId child_bel = ctx->getBelByLocation(child_loc);
if (child_bel == BelId() || !this->isValidBelForCellType(child->type, child_bel))
return false;
placement.emplace_back(child, child_bel);
bool val = if_using_basecluster<bool>(child, [&](const BaseClusterInfo *child_cluster) -> bool {
return getChildPlacement(child_cluster, child_loc, placement);
});
if (!val) return false;
}
return true;
}
bool NgUltraImpl::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
CellInfo *root_cell = get_cluster_root(ctx, cluster);
return if_using_basecluster<bool>(root_cell, [&](const BaseClusterInfo *cluster) -> bool {
placement.clear();
NPNR_ASSERT(root_bel != BelId());
Loc root_loc = ctx->getBelLocation(root_bel);
if (cluster->constr_abs_z) {
// Coerce root to absolute z constraint
root_loc.z = cluster->constr_z;
root_bel = ctx->getBelByLocation(root_loc);
if (root_bel == BelId() || !this->isValidBelForCellType(root_cell->type, root_bel))
return false;
}
placement.emplace_back(root_cell, root_bel);
return getChildPlacement(cluster, root_loc, placement);
});
}
BoundingBox NgUltraImpl::getRouteBoundingBox(WireId src, WireId dst) const
{
if ((tile_type(src.tile)!=TILE_EXTRA_FABRIC || tile_type(dst.tile)!=TILE_EXTRA_FABRIC)) {
return { 0, 0, ctx->getGridDimX(), ctx->getGridDimY() };
}
int x0, y0, x1, y1;
auto expand = [&](int x, int y) {
x0 = std::min(x0, x);
x1 = std::max(x1, x);
y0 = std::min(y0, y);
y1 = std::max(y1, y);
};
tile_xy(ctx->chip_info, src.tile, x0, y0);
x1 = x0;
y1 = y0;
int dx, dy;
tile_xy(ctx->chip_info, dst.tile, dx, dy);
expand(dx, dy);
// Reach 7 MESH above and below (3 left and 3 right of TILE/CGB)
return {(x0 & 0xfffc) - 3*4, // 3 MESH on left
(y0 & 0xfffc) - 4, // row above
(x1 & 0xfffc) + 4*4, // MESH bellow and 3 right
(y1 & 0xfffc) + 8}; // current and row bellow
}
delay_t NgUltraImpl::estimateDelay(WireId src, WireId dst) const
{
int sx, sy, dx, dy;
tile_xy(ctx->chip_info, src.tile, sx, sy);
tile_xy(ctx->chip_info, dst.tile, dx, dy);
if (sx==dx && sy==dy) {
// Same sub tile
return 50;
} else if (((sx & 0xfffc) == (dx & 0xfffc)) && ((sy & 0xfffc) == (dy & 0xfffc))) {
// Same "TILE"
return 200;
}
return 500 + 100 * (std::abs(dy - sy)/4 + std::abs(dx - sx)/4);
}
delay_t NgUltraImpl::predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const
{
Loc src_loc = ctx->getBelLocation(src_bel), dst_loc = ctx->getBelLocation(dst_bel);
if (src_loc.x==dst_loc.x && src_loc.y==dst_loc.y) {
// Same sub tile
return 50;
} else if (((src_loc.x & 0xfffc) == (dst_loc.x & 0xfffc)) && ((src_loc.y & 0xfffc) == (dst_loc.y & 0xfffc))) {
// Same "TILE"
return 200;
}
return 500 + 100 * (std::abs(dst_loc.y - src_loc.y)/4 + std::abs(dst_loc.x - src_loc.x)/4);
}
void NgUltraImpl::fixup_crossbars()
{
auto is_crossbar_pip = [&] (PipId pip) {
const auto &pd = chip_pip_info(ctx->chip_info, pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pd.extra_data.get());
return (extra_data.name && extra_data.type == PipExtra::PIP_EXTRA_CROSSBAR);
};
auto crossbar_key = [&] (PipId pip) {
auto &pd = chip_pip_info(ctx->chip_info, pip);
const auto &extra_data = *reinterpret_cast<const NGUltraPipExtraDataPOD *>(pd.extra_data.get());
return std::make_pair(pip.tile, IdString(extra_data.name));
};
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
dict<WireId, std::vector<PipId>> downstream;
// build a map of wires to sinks
for (auto &w : ni->wires) {
if (w.second.pip != PipId()) {
downstream[ctx->getPipSrcWire(w.second.pip)].push_back(w.second.pip);
}
}
// the original drivers of crossbars
dict<std::pair<int, IdString>, WireId> crossbar_entries;
// traverse from the start forwards so we always reach closer wires first in the route tree
WireId src = ctx->getNetinfoSourceWire(ni);
if (src == WireId() || !downstream.count(src)) {
continue;
}
std::queue<WireId> visit;
visit.push(src);
while (!visit.empty()) {
WireId cursor = visit.front();
visit.pop();
if (!downstream.count(cursor))
continue;
for (auto pip : downstream.at(cursor)) {
WireId dst = ctx->getPipDstWire(pip);
if (is_crossbar_pip(pip)) {
auto key = crossbar_key(pip);
if (!crossbar_entries.count(key)) {
crossbar_entries[key] = ctx->getPipSrcWire(pip);
} else {
WireId xbar_src = crossbar_entries.at(key);
if (ctx->getPipSrcWire(pip) != xbar_src) {
// rewrite to be driven by original entry
ctx->unbindPip(pip);
PipId found_pip = PipId();
for (auto search_pip : ctx->getPipsUphill(dst)) {
if (ctx->getPipSrcWire(search_pip) == xbar_src) {
found_pip = search_pip;
break;
}
}
NPNR_ASSERT(found_pip != PipId());
// rebind
//log_info(" replacing crossbar pip %s with %s on %s\n", ctx->nameOfPip(pip), ctx->nameOfPip(found_pip), ctx->nameOf(ni));
ctx->bindPip(found_pip, ni, STRENGTH_STRONG);
}
}
}
visit.push(dst);
}
downstream.erase(cursor);
}
// check everything was visited by our BFS tree traversal
NPNR_ASSERT(downstream.empty());
}
}
struct NgUltraArch : HimbaechelArch
{
NgUltraArch() : HimbaechelArch("ng-ultra"){};
bool match_device(const std::string &device) override { return device == "NG-ULTRA"; }
std::unique_ptr<HimbaechelAPI> create(const std::string &device, const dict<std::string, std::string> &args)
{
return std::make_unique<NgUltraImpl>();
}
} ngUltraArch;
NEXTPNR_NAMESPACE_END